當前位置:首頁 » 基礎知識 » 必考知識點高三數學
擴展閱讀
兒童推拿如何調理 2024-11-25 22:43:15

必考知識點高三數學

發布時間: 2024-08-23 10:25:23

① 高三數學知識點歸納有哪些

高三數學知識點歸納:

1、數列的定義、分類與通項公式。

(1)數列的定義:

①數列:按照一定順序排列的一列數。

②數列的項:數列中的每一個數。

(2)數列的分類:

分類標准類型滿足條件。

項數有窮數列項數有限。

無窮數列項數無限。

項與項間的大小關系遞增數列an+1>an其中n∈N。

遞減數列an+1。

常數列an+1=an。

(3)數列的通項公式:

如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那麼這個公式叫做這個數列的通項公式。

2、數列的遞推公式。

如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關系可用一個公式來表示,那麼這個公式叫數列的遞推公式。

3、對數列概念的理解。

(1)數列是按一定「順序」排列的一列數,一個數列不僅與構成它的「數」有關,而且還與這些「數」的排列順序有關,這有別於集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那麼它們就是不同的兩個數列。

(2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別。

4、數列的函數特徵。

數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_)。

② 高三數學知識點歸納有哪些

高三數學知識點歸納有如下:

一、圓的公式

1、圓體積=4/3(pi)(r^3)

2、面積=(pi)(r^2)

3、周長=2(pi)r

4、圓的標准方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

二、橢圓公式

1、橢圓周長公式:l=2πb+4(a-b)

2、橢圓周長定理:橢圓的周長等於該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

3、橢圓面積公式:s=πab

4、橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

三、兩角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

四、倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

五、半形公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

③ 高三數學有哪些知識點

高三數學的基本知識點和公式有哪些?不知道的考生看過來,下面由我為你精心准備了「高三數學有哪些知識點」僅供參考,持續關注本站將可鋒蘆毀以持續獲取更多的資訊!

高三數學有哪些知識點

高三數學知識點

1、忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。

2、判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

3、函數零點定理使用不當致誤

如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有「變號零點」和「不變號零點」,對於「不變號零點」函數的零點定理是「無能為力」嘩毀的,在解決函數的零點問題時要注意這個問題。

4、函數的單調區間理解不準致誤

在研究函數問題時要時時刻刻想到「函數的圖像」,學會從函數圖像上去分析問題、尋找解決問題的方法。對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾銀備個區間是該函數的單調遞增(減)區間即可。

高中數學公式

1、十倍角公式

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

2、萬能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

3、半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

4、和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

5、某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

拓展閱讀:高中數學題型解答方法

三角函數題型解答

這個題型有兩種考法,大概10%~20%的概率考解三角形,80%~90%的概率考三角函數本身。

(一)解三角形不管題目是什麼,作為被考察者,你要明白關於解三角形,你只學了三個公式——正弦定理,餘弦定理和面積公式。所以,解三角形的題目,求面積的話肯定用面積公式。至於什麼時候用正弦,什麼時候用餘弦,如果你不能迅速判斷,都嘗試一下也未嘗不可。

(二)三角函數三角函數,套路一般是給出一個比較復雜的式子,問函數的定義域、值域、周期頻率和單調性等問題。

立體幾何題型答題技巧

相比於前面的三角函數,立體幾何題型要稍微復雜一些,可能會卡住一些人。該題通常有2-3問,第一問求某條線的大小或證明某個線/面與另外一個線/面平行或垂直,最後一問求二面角。

這類題解題方法主要有兩種,傳統法和空間向量法,其中各有利弊。

(一)向量法:使用向量法的好處在於沒有任何思維含量,肯定能解出最終答案。缺點是計算量大,且容易出錯。

應用空間向量法,首先應該建立空間直角坐標系。建系結束後,根據已知條件可用向量確定每條直線。其形式為AB=(a,b,c)然後進行後續證明與求解。

(二)傳統法:學習立體幾何章節,雖然學了很多性質定理和判定定理,但針對高考立體幾何大題而言,解題方法基本是唯一的,除了上圖6和8有兩種解題方法以外,其他都是有唯一的方法。所以,熟練掌握解題模型,拿到題目直接按照標准解法去求解便可。

另外,還有一類題,是求點到平面距離的,這類題百分之百用等體積法求解。

數列題型怎麼答

從這里開始,題型難度開始明顯增加,但只要掌握了套路和方法,同樣並不困難。數列的考察主要是求解通項公式和前n項和。

(一)通項公式觀察題目中給出的條件形式,不同形式對應不同的解題方法。

通項公式的求法我給出了8種,著重掌握上圖中的1、4、5、6、7、8,其實4-8可以算作一種。除了以上八種方法,還有一種叫定義法,就是題中給出首項和公差或者公比,按照等差等比數列的定義進行求解。

(二)求前n項和求前n項和主要有四種方法——倒序相加法,錯位相減法,分組求和法,裂項相消法。同樣,每種方法都有對應的使用范圍。

當然,還有課本上關於等差數列和等比數列求前n項和的基本方法,請大家牢記掌握。

④ 高考數學必考知識點歸納有哪些

高考數學必考知識點歸納:

第一,函數與導數

主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

第二,平面向量與三角函數、三角變換及其應用

這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

第三,數列及其應用

這部分是高考的重點而且是難點,主要出一些綜合題。

第四,不等式

主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

第五,概率和統計

這部分和我們的生活聯系比較大,屬應用題。

第六,空間位置關系的定性與定量分析

主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

第七,解析幾何

高考的難點,運算量大,一般含參數。高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。

⑤ 高三數學知識點歸納

高三數學知識點匯總歸納
在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點匯總歸納,僅供參考,希望能夠幫助到大家。

高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
1不等式的兩邊都加上或減去同一個整式,不等號方向不變。
2不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
3不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
1一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
2一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
1解一元一次不等式(組)
2根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
3用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C―底面周長
S底―底面積,S側―側面積,S表―表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b
另外,若b>0,則有>1?;=1?;
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:1a>b,ab>0?<;2a
3a>b>0,0;40
(2)若a>b>0,m>0,則
1真分數的性質:<;>
(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
1能使不等式成立的未知數的值,叫做不等式的解。
2一個含有未知數的不等式的所有解,組成這個不等式的解集。
3求不等式解集的過程叫做解不等式。
不等式的判定:
1常見的不等號有「>」「<」「≤」「≥」及「≠」。分別讀作「大於,小於,小於等於,大於等於,不等於」,其中「≤」又叫作不大於,「≥」叫作不小於;
2在不等式「a>b」或「a
3不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
1不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c
bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:「」和「」即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
2關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有1確定性;2互異性;3無序性
2.集合表示方法1列舉法;2描述法;3韋恩圖;4數軸法
(3)集合的運算
1A∩(B∪C)=(A∩B)∪(A∩C)
2Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、來表示。元素常用小寫字母a、b、c、來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。