當前位置:首頁 » 基礎知識 » 四年級下冊數學第9單元重點知識
擴展閱讀
兒童推拿如何調理 2024-11-25 22:43:15

四年級下冊數學第9單元重點知識

發布時間: 2024-08-20 22:01:42

A. 冀教版四年級數學知識點總結

第一單元 乘法

一、三位數乘兩位數筆算

1、三位數乘兩位數的計演算法則:先用兩位數的個位上的數與三位數的每一位相乘,乘得的積和個位對齊,再用兩位數十位上的數與三位數的每一位相乘,所得的積和十位對齊,最後把兩次乘得的積相加。

2、三位數乘兩位數,所得的積不是四位數就是五位數。

二、乘數末尾有0的乘法

1、末尾有0的乘法計算方法:先把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。

2.乘積末尾0的個數不是由乘數末尾有幾個0決定的,乘法在計算過程中末尾有時也會產生0. 附:常用數量關系

正方形的面積=邊長×邊長 正方形的周長=邊長×4

長方形的面積=長×寬 長方形的周長=(長+寬)×2

①總價=單價×數量 單價=總價÷數量 數量=總價÷單價

②路程=速度×時間 速度=路程÷時間 時間=路程÷速度

第二單元 升和毫升

一、容量的理解

1.容量是一個物體可以容納液體的多少。

二、升和毫升之間的進率

1、1升(L)=1000毫升(ml 、mL)

2.計量水、油、飲料等液體時,一般用升或毫升做單位。

3、1毫升大約等於23滴水。

第三單元 三角形

一、定義:由三條線段圍成的封閉圖形叫做三角形。

二、三角形的特徵及分類

1、三角形任意兩邊之和大於第三邊。

2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。

3、三角形具有穩定性。如:人字梁、自行車車架。

4、三個角都是銳角的三角形是銳角三角形。

5、有一個角是直角的三角形是直角三角形。

6、有一個角是鈍角的三角形是鈍角三角形。

7、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。

三、等腰三角形、等邊三角形

1、兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角相等,是軸對稱圖形,有一條對稱軸

2、三條邊都相等的三角形是等邊三角形,三個角也都相等(每個角都是60°。)

3、有一個角是直角的等腰三角形叫做等腰直角三角形,它的底角等於45°,頂角等於90°。

4、等腰三角形的頂角=180°-底角×2或180°-底角-底角

5、等腰三角形的底角=(180°-頂角)÷2

第四單元 混合運算

一、不含括弧的混合運算

1.四則運算中不含括弧時,先做乘除再做加減。

二、含有小括弧的混合運算

1、要先算小括弧裡面的。

三、含有中括弧的混合運算

1.既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。

第五單元 平行四邊形和梯形

一、認識平行四邊形

1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。

從一個頂點向對邊可以作兩種不同的高。底和高一定要對應。一個平行四邊形有無數條高。

2、用兩塊完全一樣的三角尺可以拼成一個平行四邊形。

3、平行四邊形容易變形(不穩定性)。生活中許

多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、

伸降機

4、把平行四邊形拉成一個長方形,周長不變,面積變了。

二、認識梯形

1、只有一組對邊平行的四邊形叫梯形。平

行的一組對邊較短的叫做梯形的上底,較長的

叫做梯形的下底,不平行的一組對邊叫做梯形

的腰,兩條平行線之間的距離叫做梯形的高

(無數條)。

2、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。

3、兩個完全一樣的.梯形可以拼成一個平行四邊形。

4、正方形、長方形屬於特殊的平行四邊形。

第六單元 找規律

1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)

2、排列:爸爸、媽媽、我排列照相,有幾種排法:2×3。即n×(n-1)×……×1

第七單元 運算律

1、乘法交換律:a×b=b×a 2、乘法結合律:(a×b)×c=a×(b×c)

3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)

4、乘法分配律衍生:(a-b)×c=a×c-b×c

第八單元 對稱、平移和旋轉

一、軸對稱圖形

如果一個圖形對折後,摺痕兩邊的部分能完全重合,這個圖形就是軸對稱圖形。摺痕所在的直線叫做這個圖形的對稱軸。

二、對稱軸的條數

1、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。

三、平移和旋轉

1、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。

2、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。

第九單元 倍數和因數

1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)

2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。

3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。

4、一個數最大的因數等於這個數最小的倍數(都是它本身)。

5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)

6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)

7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。

8、既是2的倍數又是5的倍數個位上一定是0。(如:10、20、30、40……)

9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。10、一個數只有1和它本身兩個因數的數叫素數(或質數)。

10、 2是質數中唯一的偶數。(所以“所有的素數都是奇數”這一說法是錯誤的。)

11、一個數除了1和它本身兩個因數外,還有其他的因數的數叫合數。如:4、6、8、9、10……

12、1既不是質數也不是合數, 質數只有2個因數,合數至少有3個因數

13、哥德巴赫猜想:任何大於4的偶數都可以表示成兩個奇素數之和。如8=3+5,10=5+5,12=5+7等等。

14、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、71、73、79、83、89、97。(共25個)

第十單元 用計算器探索規律

1、積的變化規律:

①一個因數不變,另一個因數乘或除以幾(0除外),積也跟著乘或除以幾(0除外)。

②如果一個因數擴大幾倍,另一個因數縮小相同的倍數,那麼積不變。

2、商的變化規律:①被除數和除數同時乘(或除以)相同的數(0除外),商不變。注意:被除數的變化會帶來余數的變化

②被除數乘(或除以)一個數,除數不變,商也乘幾(或除以)幾。

B. 四年級數學知識要點

總:一、億以內數的認識1.一(個),十,百、千、萬……億都是計數單位.2.每相鄰兩個計數單位之間有什麼關系?每相鄰兩個計數單位的進率都是「10」.3.求近似數的方法叫「四捨五入」法.4.是「舍」還是「入」要看省略的尾數部分的最高位數是小於5還是大於5.5.表示物體個數的1,2,3,4,5,6,7,8,9,10,11,……都是自然數.一個物體也沒有用0表示.0也是自然數.6.最小的自然數是0,沒有最大的自然數,自然數的個數是無限的.7.每相鄰的兩個計數單位之間的進率都是十,這種計數方法叫做十進制計數法.二、角的度量 1.像手電筒簡、汽車燈和太陽等射出來的光線,都可以近似地看成是射線.射線只有一個端點,可以向一端無限延伸.2.直線沒有端點、可以向兩端無限延伸.3.直線、射錢與線段有什麼聯系和區別?聯系:射線、線段都是直線的一部分,線段是直線的有限部分.區別:直線無端點,長度無限,向兩方無限延伸,射線只有一個端點,長度無限,向一方無限延伸,線段有兩個端點,長度有限.4.直線和射線都可以無限延伸.線段可以量出長度.5.從一點引出兩條直線所組成的圖形叫做角.6.角的計量單位是「度」,用符號號「°」表示.把半圓分成180等份,每一份所對的角的大小是1度,記作1°.7.銳角、鈍角、直角,平角和周角之間有什麼關系?直角=90度,鈍角大於直角小於平角,平角=180度,周角=360度,銳角小於90度。

單元概括:

第一單元 億以上數的認識 姓名:
一、億以內數的讀法:○1先讀萬級,再讀個級。○2萬級的數,要按照個級的讀法來讀,再在後面加一個「萬」字。○3每級末尾不管有幾個0都不讀;中間有一個或連續幾個0都只讀一個零。 二、億以內數的寫法:○1先寫萬級,再寫個級。○2哪一個數位上一個單位
也沒有,就在哪一位上寫0。○
3一定要先分級再來讀數或寫數。 三、比較數的大小的方法:○1位數不同時,位數多的數大。○2位數相同時,從最高位比起,哪個數最高位上的數大,這個數就大;如果最高位上的數字相同,就比較下一位上的數字,直到比較出大小為止。
四、整萬數改寫成用「萬」作單位的數的方法;將萬位後面的4個0省略,換成一個「萬」字。
五、用「四捨五入」法求近似數的方法:求一個數的近似數,主要是看它的省略的尾數,如果省略的尾數最高位上的數是0、1、2、3、4,就把尾數都捨去,改寫成「0」,如果省略的尾數最高位上的數是5、6、7、8、9,就把尾數省略,並向前一位進1。
六、用「四捨五入」法求近似數的關鍵:找准尾數的最高位,如果省略萬位後面的尾數,就看千位;如果省略千位後面的尾數,就看百位;如果省略百位後面的尾數,就看十位„„
七、表示物體個數的0、1、2、3、4、5、6、7、8、9„„都是自然數,0是最小的自然數。沒有最大的自然數,自然數的個數是無限的。
八、每相鄰兩個計數單位之間的進率是十,這種計數法叫做十進制計數法。 九、億以上數的讀法與億以內數讀法相同:先分級,從最高位讀起,一級一級往下讀,讀億級時按照個級讀法來讀,再在後面加一個「億」字。
十、億以上數的寫法與億以內的寫法相同:先分級,從最高位寫起,一級一級往下寫,每一級的寫法與個級的寫法一樣。 十一、讀數和寫數關鍵都是「先分級」。
十二、對整億數的改寫:直接省略億位後面的8個0,再加上一個「億」字。 十三、不是整億數的用「四捨五入」法省略億位後面的尾數再改寫:先分級再在尾數最高位「千萬位」上進行「四捨五入」,用「」寫出得數,不要忘記寫「億」字。
十四、算盤上每一檔代表一個數位,記數前先要確定某一檔作個位,向左依次是十位、百位、千位„„。每一檔的上珠代表5,下珠代表1。 十五、電子計算器操作鍵的功能。
符號 名稱 功能 ON/C 開啟鍵 開或消除輸入的內容 OFF 關閉鍵 關閉 CE 消除鍵 只消除上一次剛輸入的內容

第二單元 角的度量
一、直線、射線、線段的聯系和區別
聯 系 區 別 都是直的 端點個數 延長情況 長短
直線 無 可以向兩端無限延長 無
射線 1 可以向一端無限延長 無
線段 2 不能向一端延長 有長短
二、從一點出發可以畫無數條射線,經過一點只能畫無數條直線,經過兩點只能畫一條直線。

三、量角器由中心點,0刻度線,內圈刻度,外圈刻度組成,在量角時注意:(1)量角器的中心點與角的頂點重合.(2)使量角器的內面0刻度(外面的0刻度)與角的一條邊重合.(3)角的另一邊指向哪,就根據內圈(外圈)刻度讀數.(4)要注意從0刻度讀起,做到「0對內讀內,0對外讀外」。
四、角的大小與角的兩邊長短無關與兩邊叉開的大小有關,角的兩邊叉開越大角就越大.
五、小於900的角叫銳角,大於900而小於1800
的角叫鈍角.
六、1平角1800
=2直角
1周角=3600
=2平角=4直角
七、銳角<直角<鈍角<平角<周角
八、畫指定度數的角,注意做到兩重合:量角器的中心點與頂點重合;0刻度線與所畫的角的一條邊重合;還要看準度數,「0對內讀內,0對外讀外」所畫的邊對應的0刻度在內圈,就看內圈的刻度。
第三單元 三位數乘兩位數
一、口算整數或整千數乘一位數,都可以先把0前面的數相乘,再在積的末尾添上相應個數的0。
二、三位數乘兩位數的筆算方法,先用兩位數個位上的數去乘三位數,得數的末位與兩位數的個位對齊,再用兩位數十位上的數去乘三位數得數末位和兩位數的十位對齊,然後把兩次乘的結果加起來。
三、因數末尾有0的簡便演算法:先把0前面的數相乘,再看兩個因數末尾一共有幾個0,則在積的末尾添寫幾個0。
四、速度是指單位時間內所走的路程。其表示方法是所行路程/時間單位。如:120千米/時,50米/分,計算方法是用路程÷時間=速度。
五、路程=時間×速度 速度=路程÷時間 時間=路程÷速度
六、積的變化規律:兩數相乘,一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾(0除外)。乘法估算必須符合兩個要求:一是接近准確值(符合實際);二是計算方便。
七、乘法估算通常情況下是按照「四捨五入」法來估算,即把兩個因數看成是整十、整百或幾百幾十的數;但有時也要根據實際情況來分析,如估錢夠不夠要往大估。
第四單元 平行四邊形和梯形
1、在同一平面內不相交的兩條直線叫做平行線,它們的關系叫做互相平行。如果兩條直線相交成直角,這兩條直線互相平行,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
2、平行線的要點有:(1)在同一平面;(2)永不相交;(3)兩條直線。 3、平行線的基本性質:(1)經過直線外一點有並且只有一條直線與已知直線平行。(2)與一條直線距離相等的平行線可以畫兩條,如與已知直線相距5厘米的平行線有上和下各一條。(3)在同一平面內,如果兩條直線與另一條直線平行,哪么這兩條直線也一定互相平行。
4、垂線的基本性質:(1)經過直線外一點,有並且只有一條直線與已知直線平行;(2)從直線外一點到這條直線的所有線段中,與直線垂直的線段最短;(3)在同一平面內,如果兩條直線 與另一條直線垂直,哪么這兩條直線一定互相平行。 5、兩條直線在同一平面內的關系有:(1)平行:不相交的兩條直線;(2)相交:相交成直角就是垂直。
6、用三角板和直尺來畫平行線的方法:○1放三角尺,○2靠直尺,○3沿著直尺邊推三角尺,○4畫平行線。(總結為一放、二靠、三推、四畫)
7、兩組對邊分別平行的四邊形叫做平行四邊形;只有一組對邊平行的四邊形叫做梯形。 8、平行四邊形的特徵:(1)兩組對邊平行且相等;(2)四個內角的和等於360度;(3)相對的角相等;(4)相鄰的角互補。梯形的特徵:(1)只有一組對邊平行但不相等;(2)四個內角的和也等於360度;(3)最少有一個銳角和一個鈍角。
9、平行四邊形具有不穩定性,也就是說長方形可以拉成平形四邊形,平行四邊形可以變成長方形。長方形拉成平行四邊形後,周長不變,高變小,面積會變小。 10、平行四邊形和梯形的高都有無數條。
11、平行四邊形和梯形高的畫法,相當於過直線外一點畫已知直線的垂線。梯形的高只能從相互平行的兩條邊中任一邊上的一點向它的對邊畫垂線,而不能在梯形的腰上畫高。 12、從平行四邊形一條邊上的任意一點,到對邊引一條垂線,這點到垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。兩腰相等的梯形叫做等腰梯形。 13、從組合圖形中數平行四邊形或梯形的個數,也要按從小到大的順序來數,先給每個最小的圖標出序號,然後一個個的數,兩個兩個數,再三個三個數„„以此類推。 14、所有的四邊形的內角和都等於360度。三角形的內角和都等於180度。

第五單元 除數是兩位數的除法
16、除數是兩位數的口算除法,可以用想乘法算除法和表內除法計算的方法進行口算。 17、除法估算一般是把算式中不上整十的數用「四捨五入」法估算成整十數,再進行口算。 18、除數是兩位數的除法,要先看被除數的前兩位,如果前兩位不夠商1,就看前三位數,除到被除數的哪一位,商就寫在哪一位的上面,余數一定要比除數小。
19、如果除數是一個接近整十數兩位數,就用「四捨五入」法把除數看作與它接近整十數的兩位數的筆算除法,既可以按照「四捨五入」法試商,也可以把除數看作和它接近的幾十五,再利用一位數乘法直接確定商。
20、判定商是幾位數,先看被除數與除數的前幾位(取決於除數是幾位數), 如果除數是兩位數,就先看被除數的前兩位。
注意:每一步商的位置要正確,每求出一位商,餘下的數必須比除數小。 21、當除數不變時商與被除數變化正好相同。(0除外) 當被除數不變時,商與除數的變化正好相反。(0除外)
當除數與被除數同時乘(或除以)相同的數時,商不變。 22、總數量=每份數×份數 每份數=總數量÷份數
份數=總數量÷每份數
23、總價=單價×數量 單價=總價÷數量 數量=競價÷單價 24、被除數=商×除數+余數 商=(被除數-余數)÷除數 除數=(被除數-余數)÷商
25、除數不接近整十數時可看作個位是5的數來試商。
15×2=30 15×3=45 15×4=60 15×5=75 15×6=90 15×7=105 15×8=120 15×9=135
25×2=50 25×3=75 25×4=100 25×5=125

C. 人教版小學數學四年級下冊期末知識點

四年級作為小學的中高年級,是整個小學階段關鍵的一年,數學學習也是如此。在這一年裡,要做好學生復習的教導,我整理了人教版四年級數學(下冊)期末知識要點,希望能幫助到您。

人教版四年級數學(下冊)期末知識要點

第一單元 四則運算

1、加法的意義和各部分間的關系

(1)把兩個數合並成一個數的運算,叫做加法。

(2)相加的兩個數叫做加數。加得的數叫做和。

(3)加法各部分間的關系:

和=加數+加數

加數=和-另一個加數

2、減法的意義和各部分間的關系

(1)已知兩個數的和與其中的一個加數,求另一個加數的運算,叫做減法。

(2)減法各部分間的關系:

差=被減數-減數

減數=被減數-差

被減數=減數+差

3、減法是加法的逆運算。

4、乘法的意義和各部分間的關系

(1)求幾個相同加數的和和的簡便運算,叫做乘法。

(2)相乘的兩個數叫做因數。乘得的數叫做積。

(3)乘法各部分間的關系:

積=因數×因數

因數=積÷另一個因數

5、除法的意義和各部分間的關系

(1)已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。

(6)除法各部分間的關系:

商=被除數÷除數

除數=被除數÷商

被除數=商×除數

有餘數的除法:被除數=商×除數+余數

6、除法是乘法的逆運算。

7、加法、減法、乘法、除法統稱為四則運算。

8、四則混和運算的順序

(1)在沒有括弧的算式里,如果只有加、減法,或者只有乘、除法,都要按(從左往右)的順序計算;

(2)在沒有括弧的算式里,如果既有乘、除法,又有加、減法,要先算(乘、除法),後算(加、減法);(先乘除,後加減)

(3)在有括弧的算式里,要先算括弧裡面的,後算括弧外面的。

9、有關0的計算

①一個數和0相加,結果還得原數:

a + 0 =a 0 + a = a

②一個數減去0,結果還得這個數:

a - 0 = a

③一個數減去它自己,結果得零:

a - a = 0

④一個數和0相乘,結果得0:

a × 0 = 0 ; 0 × a = 0

⑤0除以一個非0的數,結果得0:

0 ÷ a = 0 ;

⑥ 0不能做除數:

a÷0 = (無意義)

10、租船問題

解答租船問題的方法:先假設、再調整。

先假設租價格便宜的船,並計算結果,如果船沒有坐滿,再進行調整。

第二單元 觀察物體(二)

1、從不同位置觀察物體

辨認從上面、前面、左面觀察到物體的形狀。

先數看到幾個面,再看它的排列法,畫圖形時要注意,只分上下畫數量。

2、從不同位置觀察同一個物體,所看到的圖形有可能一樣,也有可能不一樣。

3、從同一個位置觀察不同的物體,所看到的圖形有可能一樣,也有可能不一樣。

4、從不同的位置觀察,才能更全面地認識一個物體。

第三單元 運算定律

1、加法運算定律

①加法交換律:兩個數相加,交換加數的位置,和不變。

a+b=b+a

②加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。

(a+b) +c=a+(b+c)

(加法的這兩個定律往往結合起來一起使用)

2、連減的性質

一個數連續減去兩個數,等於這個數減去那兩個數的和。

a-b-c=a-(b+c)

3、乘法運算定律

①乘法交換律:兩個數相乘,交換因數的位置,積不變。

a×b=b×a

②乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘第三個數,也可以先把後兩個數相乘,再乘第一個數,積不變。

(a×b) ×c=a×(b×c)

(乘法的這兩個定律往往結合起來一起使用)

③乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。

(a+b) ×c=a×c+b×c

4、連除的性質

一個數連續除以兩個數,等於除以這兩個數的積。

a÷b÷c=a÷(b×c)

第四單元 小數的意義和性質

1、小數的意義

在進行測量和計算時,往往不能正好得到整數的結果,這時常用(小數)來表示。

分母是10、100、1000……的分數可以用小數來表示。

2、小數的組成

小數點前面的數叫小數的整數部分,小數點後面的數叫小數的小數部分。

3、小數的計數單位

小數點後面第一位是十分位,十分位的計數單位是十分之一,又可以寫作0.1;

小數點後面第二位是百分位,百分位的計數單位是百分之一,又可以寫作0.01;

小數點後面第三位是千分位,千分位的計數單位是千分之一,又可以寫作0.001……

4、小數每相鄰兩個計數單位間的進率都是10。

5、小數的讀法

整數部分按照整數的讀法去讀,小數點讀作「點」,小數部分要依次讀出每一個數字。

6、小數的寫法

整數部分按照整數的寫法來寫,小數點寫在個位的右下角,小數部分要依次寫出每一個數位上的數字。

7、小數的性質

在小數的末尾添上「0」或去掉「0」,小數的大小不變。

8、小數大小的比較

先比較整數部分,整數部分大,那個小數就大;整數部分相同,就比較小數部分,十分位相同,就比較百分位,百分位也相同,就比較千分位……

9、小數點的移動引起的小數大小變化規律

(1)小數點向右:移動一位,相當於把原數乘10,小數就擴大到原數的10倍;移動兩位,相當於把原數乘100,小數就擴大到原數的100倍;移動三位,相當於把原數乘1000,小數就擴大到原數的1000倍……

(2)小數點向左:移動一位,相當於把原數除以10,小數就縮小到原來的十分之一;移動兩位,相當於把原數除以100,小數就縮小到原來的一百分之一;移動三位,相當於把原數除以1000,小數就縮小到原來的一千分之一……

10、不同數量單位的數據之間的改寫

低級單位數÷進率=高級單位數

11、求近似數

保留整數,就是精確到個位,看十分位上的數來四捨五入;

保留一位小數,就是精確到十分位,看百分位上的數來四捨五入;

保留兩位小數,就是精確到百分位,看千分位上的數來四捨五入。

(表示近似數時小數末尾的0不能去掉)

12、非整萬或整億的數改寫成用「萬」或「億」作單位的數

改寫時,只要在萬位或億位的右邊,點上小數點,在數的後面加上「萬」字或「億」字。

第五單元 三角形

1、三角形

由三條線段圍成(每相鄰兩條線段的端點相連)的圖形叫三角形。

2、三角形的底和高

從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。這條對邊叫做三角形的底。

3、三角形的特性

三角形具有穩定性。

4、三角形三條邊的關系

三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

5、三角形的分類

(1)三角形按角分類,可以分為銳角三角形、直角三角形和鈍角三角形。

(2)三角形按邊分類,可以分為等腰三角形、等邊三角形和不等邊三角形。

6、三角形的內角和

三角形的三個內角和是180°。

7、兩點間的距離

兩點間的所有連線中線段最短,這條線段的長度叫做兩點間的距離。

8、多邊形的內角和

多邊形的內角和=(邊數-2)×180°

9、等腰三角形的特徵

兩腰相等,兩底角相等。相等的兩條邊叫做腰,相等的兩個內角叫做底角。

10、等邊三角形的特徵

三條邊的長度相等,三個內角的大小相等(都是60°)。

第六單元 小數的加減法

1、筆算小數加、減法的方法

(1)小數點對齊,也就是相同數位對齊;

(2)從末位算起,算加法時,哪一位數相加滿十都要向前一位進1;算減法時,哪一位不夠減就要從前一位退1。

(3)得數末尾有 0,一般要把0去掉。

(4)不要忘記了小數點。

2、小數加減混合運算的順序

(1)沒有括弧,按從左往右的順序依次計算;

(2)有小括弧,要先算小括弧裡面的。

3、小數加、減法的簡便運算

整數的運算定律在小數運算中同樣適用,所以在小數四則運算中,恰當地運用加法交換律、結合律及連減的運算性質會使計算更簡便。

4、 得數是小數時,(末尾)的0一般要去掉。

第七單元 圖形的運動(二)

1、軸對稱圖形的性質

對應點到對稱軸的距離都相等。

2、軸對稱圖形的對稱軸

對稱軸是一條直線,所以在畫對稱軸時,要畫到圖形外面,且要用虛線。

3、畫對稱軸

先找到與相反方向距離對稱軸相同的對應點,最後連線。

4、圖形平移的畫法

平移先找圖形點,平移完點連起來。

5、利用平移,可以求出不規則圖形的面積。

第八單元 平均數和條形統計圖

1、平均數的意義

一組數據的和除以這組數據的個數,所得的商叫做這組數據的平均數。平均數既可以描述一組數據本身的總體情況,也可以作為不同組數據比較的一個標准。

2、求平均數的方法

(1)移多補少法

(2)公式法:總數÷份數=平均數

3、復式條形統計圖

將兩個單式條形統計圖合並以後就得到一個復式條形統計圖。

(1)復式條形統計圖要有圖例。

(2)復式條形統計圖有橫向和縱向兩種。

(3)復式條形統計圖是用兩個單位長度表示一個的數量,根據數量的多少畫成長短不同的直條。

4、橫向復式條形統計圖的畫法

(1)准備尺子,鉛筆,橡皮等畫圖工具。

(2)注意寫單位,畫中坐標和橫坐標還有日期名字還有橫坐標上的「0」。

(3)假如位置有限,例如說0到10,到20,假如你寫到200,位置絕對有限,你可以在0的上面畫波浪線,然後寫100(當然其他數也可以,但最標準的還是畫閃電線)。

(4)例如上圖兩者要有不同的顏色,假如沒有色筆,第一個可以畫斜線,第二個可以塗得嚴嚴實實。

(5)在每個圖的下方都要寫標題。

5、復式條形統計圖

(1)用直條的長短表示數量的多少。

(2)能清楚地看出數量的多少,便於比較兩組數據的多少。

第九單元 數學廣角-雞兔同籠

1、雞兔同籠屬於假設問題,假設的和最後結果相反。

2、「雞兔同籠」問題的解題方法

(1)假設法

①假如都是兔

②假如都是雞

(2)古人「抬腳法」

假如每隻雞、每隻兔各抬起一半的腳,則每隻雞就變成了「獨腳雞」,每隻兔就變成了「雙腳兔」。這樣,雞和兔的腳的總數就少了一半。這種思維方法叫化歸法。

3、公式:

雞兔總腳數÷2-雞兔總數 = 兔的只數;

雞兔總數-兔的只數 = 雞的只數。

D. 四年級下冊數學復習資料

人教版四年級數學下冊復習資料

第1單元 四則運算
1、運算順序
P5:在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要 計算。
例如:98-46+25 6÷3×98
= =
= =

P6:在沒有括弧的算式里,有乘、除法和加、減法,要先算 。
例如:36+64÷4
=
=

P11:算式里有括弧的,要先算 。
例如:100÷(4+21)
=
=

2、P12: 、 、 和 統稱四則運算。

3、P13:有關0的運算
一個數與0相加,還得這個數。
一個數減去0,還得這個數。
一個數與0相乘,得0。
0除以一個數,得0。
0不能做除數,例如5÷0 是不存在,沒有意義的。
4、四則混合運算方法
一看(看數字,運算符號,想想運算順序是什麼。)
二畫(畫線,哪一步先算,就在哪一步的下面畫一條橫線,沒有計算的要照抄下來。)
三算(按照運算順序計算)
四檢驗(檢驗運算順序是否錯誤,計算是否算錯。)

第3單元 運算定律與簡便計算
1、運算定律與算式特點
運算定律 公式 舉例 算式特點
P28::加法交換律 a+b=b+a 34+89+66=34+66+89
26+47-6=26-6+47 1、只有加法,減法。
2、注意減法時要將前面的「-」號一起交換。
3、在簡便計算時,一般將加法交換律和加法結合律同時運用。

P29:加法結合律

a+b+c=a+(b+c)

88+104+96=88+(104+96)

79+26-9=26+(79-9)
P34:乘法交換律 a × b=b× a 4×58×25=4×25×58 1、只有乘法。
2、在簡便計算時,一般將乘法交換律和乘法結合律同時運用。
3、注意找好朋友:
2×5=10
4×25=100
8×125=1000
P35:乘法結合律

a×b×c
=a×(b×c)

125×67×8=67×(125×8)
P36:乘法分配律 拆:(a+b)×c
=a×c+b×c

合:a×b+a×c
=a×(b+c) 25×(200+4)=25×200+25×4

265×105-265×5=265×(105-5) 1、有乘法和加法;或者有乘法和減法。
2、拆的時候,是將括弧外面的數分給括弧裡面的兩個數。
3、合的時候,是提取相同的因數,將不同的因數相加或相減。

特別注意:乘法結合律與乘法分配律的區別
例如:125×(8×20) 125×(8+20)
= =
= =
= =
2、運算性質
連減的性質:一個數連續減去兩個數,可以減去這兩個數的和。
公式:a-b-c=a-(b+c)
舉例:128-57-43=128-(57+43)
記憶:減變,加不變
連除的性質:一個數連續除以兩個數,可以除以這兩個數的積
公式:a÷b÷c=a÷(b×c)
舉例:2000÷125÷8=2000÷(125×8)
記憶:除變,乘不變
3、兩個數相乘,可以將其中一個數進行拆分,再簡便計算。
例如:72×125 23×99
=(9×8)×125 =23×(100-1)
=9×(8×125) =23×100-23×1
=9×1000 =2300-23
=9000 =2277
第6單元 小數的加法與減法
1、小數的加減法方法
① 相同數位要對齊,也就是 要對齊。
② 從最低位算起,哪一位相加滿10,向前一位進1;哪一位不夠減,向前一位借1。
③不夠位時,用0佔位。
例如:8-2.49

2、小數的混合運算和簡便計算
小數的加減法的混合運算與整數的混合運算一樣。
小數的簡便計算與整數的簡便計算一樣,都是運用交換律和結合律進行簡便計算。
4單元 小數的意義與性質
1、小數的意義:把一個物體平均分成10份,100份,1000份、、、,每一份占其中的 , , 、、、
P51:分母是10的分數可以寫成一位小數,分母是100的分數可以寫成兩位小數,分母是1000的分數可以寫成三位小數、、、
小數的計數單位是十分之一,百分之一,千分之一、、、,分別寫作0.1,0.01,0.001、、、
每相鄰兩個計數單位之間的進率是 。
2、小數的數位順序表
P52:小數由 、 和 組成。
小數的數位順序表:
整數部分 小數點 小數部分
數位 …

… …
計數單位


整數部分的最低數位是 ,小數部分的最高數位是 。
2.309 ,2在 位,表示 個 ,3在 位,表示 個 ,
9在 位,表示 個 。
3、P53:小數的讀寫
① 先讀(寫)整數部分,按照整數的讀(寫)法來讀(寫)。
②再讀(寫)小數點
③最後讀(寫)小數部分,依次讀(寫)出每一位上的數字。
注意:小數部分有幾個0就要讀幾個零,小數末尾的0也要讀出。
例如:20.040 讀作: ,四百零七點零七 寫作: 。
4、P58:小數的性質: 。
5、P60:小數的大小比較
①先看整數部分,整數部分大的那個數就大。
②如果整數部分相同,就看十分位,十分位大的那個數就大。
③如果十分位還相同,再看百分位,直到比較出兩個小數的大小為止。。。
注意:數位不夠,用0佔位。
例如:8.11 ○ 8.101
6、P61:小數點位置移動引起的大小變化
小數點向右移動一位,小數就 到原來的 倍,也就是 ,
小數點向右移動兩位,小數就 到原來的 倍,也就是 ,
小數點向右移動三位,小數就 到原來的 倍,也就是 ,
小數點向左移動一位,小數就 到原來的 倍,也就是 ,
小數點向左移動兩位,小數就 到原來的 倍,也就是 ,
小數點向左移動三位,小數就 到原來的 倍,也就是 ,
例如:

7、P68:名數的改寫 (單位換算+題組練習)
8、P73:求一個小數的近似數
求近似數時,保留整數表示精確到 位;保留一位小數表示精確到 位;保留兩位小數表示精確到 位。
注意,在表示近似數時,小數末尾的0不能省略。
求小數的近似數與求整數的近似數類似,都是用 法。
例如:8.392≈ (精確到百分位)

P74:改寫成以「萬」或「億」作單位的數
①先分級,從個位起,每四個數位為一級。
②在萬(億)位的右邊點上小數點,在數的後面加上萬(億)字,求出精確數。
③再按要求求出近似數。最後注意帶上單位。
例如:保留一位小數:6 4850 0000 =

E. 部編版四年級數學知識點總結

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些 四年級數學 的知識點,希望對大家有所幫助。

小學數學四年級知識點

探索與發現(三)(乘法分配律)

知識點:

1、 乘法分配律:兩個數的和(或差)與一個數相乘,可以把兩個加數(或被減數、減數)分別與這個數相乘,在把兩個積相加(或相減),結果不變。用字母表示數:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c

補充知識點:

1、 式子的特點:式子的原算符號一般是×、+(-)、×的形式;在兩個乘法式子中,有一個相同的因數;另為兩個不同的因數之和(或之差)基本上是能湊成整十、整百、整千的數。

2、 102×88、99×15這類題的特點:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成整十、整百、整千與一個數的和(或差),再應用乘法分配律可以使運算簡便。

總結 :文為大家整理和分享的內容是四年級數學知識點:乘法分配律,怎麼樣,大家對知識點數學乘法分配律了解了多少呢?

四年級上冊數學萬以上數的讀法知識點

一、基礎知識

1、個十萬是一百萬,10個一百萬是一千萬,10個一千萬是一億

2、個(一),十百、千、萬、十萬、百萬……都是是計數單位

3、數位分級 方法 :從個位起,每四位為一級。

個級包括個位、十位、百位、千位,個級表示多少個「一」;

萬級包括萬位、十萬位、百萬位、千萬位,萬級表示多少個「萬」;

億級包括億位、十億位、百億位、千億位,億級表示多少個「億」。

4、十進制計數法:

兩個計數單位間的進率都是十,這種計數方法叫做十進制計數法。

5、讀數的法則:

(1)、讀數的時候我們先把這個數按四位一級分級。

(2)、從高位讀起,一級一級地讀;

(3)、讀億級或萬級時,先按個級數的讀法去讀,再在後面加一個「億」或「萬」字

(4)、每一級中間有一個0或連續幾個0,都只讀一個0;每一級末尾的0都不讀。

6、多位數的寫法法則:

(1)把數分級

(2)從高位到低位,一級一級地往下寫。

(3)哪一個數位上一個數也沒有,就在哪一個數位上寫0。

(4)寫完後再讀一讀所寫的數,檢查是否正確。

7、萬以上數的大小比較方法:

數位不同時:數位多的數大。

數位相同時:先比較左起第一位,數字大的那個數就大,如果左起第一位也相同,再比較左起第二位…… 以此類推。

數的大小比較兒歌

兩數比大小,先把位數看。

位數多的大,位數少的小。

位數相同時,就把高位瞧。

高位大的大,高位小的小。

高位相同時,依次往下找。

四年級上冊數學復習計劃

一、復習指導思想:

1、查漏補缺通過對基礎知識的復習和練習,加強學生的記憶,深化認識,使所學的知識內化為學生的知識素養。使學生對知識的掌握理解由感性認識提升到一個理性的認識上來。

2、靈活解題,提高綜合運用與解決實際問題的能力。使學生在復習、練習過程中,對知識進行分類、整理,幫助學生找出各知識之間的聯系和解題規律,重新整合,形成一個完整的知識體系。達到舉一反三、能綜合、靈活地運用所學的知識解決簡單實際問題應用數學能力。

3、在復習、練習過程當中,注重學生的 學習方法 、數感和數學思維的梳理和培養,發展學生 邏輯思維 能力。

4、養成學生認真做題、細心檢查的良好學習習慣,形成良好的數學情操。

二、復習內容:

1、數與代數

第一單元、大數的認識

第三單元、三位數乘兩位數

第五單元、除數是兩位數的除法

2、圖形與幾何第二單元、角的度量第四單元、平行四邊形和梯形

3、統計與概率第六單元、統計

4、數學思想方法第七單元、數學廣角(合理安排)

三、復習目標:

1.對萬級、億級的數,十進制計數法,用「萬」、「億」作單位表示大數目以及近似數、改寫等知識有進一步的認識,建立有關整數概念的認知結構;

2.進一步鞏固除數是兩位數的除法筆算,進一步提高用計算器進行大數目計算以及探索規律的操作技能,加深對計算器的認識;

3.掌握直線、射線和線段的特徵,認識角,能正確畫出平行線和垂線(過直線外一點和直線上一點),進一步發展空間觀念;

4.通過整理和復習,使學生進一步掌握統計的基本知識和方法,並能根據給定的數據整理製作統計圖,分析結果。

5.通過整理和復習,使學生進一步提高綜合運用所學知識解決實際問題的能力,在解決實際問題的過程中進一步體會數學的價值。

6.通過整理和復習,使學生經歷回顧本學期的學習情況,以及整理知識和學習方法的過程,激發學生主動學習的願望,進一步培養 反思 的意識和能力。

四、復習的具體 措施 :

(一)「大數的認識」1、利用數位順序表,復習數位、數級、計數單位、十進制計數法等有關知識,使學生進一步掌握這些基本概念。2、復習讀數法則,著重復習中間、末尾有0的數該怎樣讀,再完成總復習第1題。3、復習寫數方法,也是著重復習中間、末尾有0的數該怎樣寫,再完成總復習第2題。4、復習把大數改寫成用「萬」或「億」作單位的數的方法及用「四捨五入」法求近似數,完成總復習第3、4題。

(二)「乘法和除法」

1、復習乘、除法口算,把因數和積的關系、商變化的規律和乘、除法口算結合起來復習,使學生進一步理解口算算理,並靈活運用這些規律進行口算,使口算更正確、快速。完成總復習第5、8題。

2、復習筆算乘、除法,讓學生說一說進行乘、除法筆算需要注意什麼,如因數中間、末尾有0的乘法應注意什麼,除法試商、調商的原則是什麼等等,然後再完成總復習第6、7題。

3、復慣用乘、除法解決簡單的實際問題,通過復習使學生理解估算在解決問題中的必要性,體會估算策略的多樣化。完成總復習第9、10題。

(三)「空間與圖形」

1、進行適當的系統整理,使學生明確每個圖形的概念,弄清圖形間的聯系和區別,學會用數學化的語言來描述各種圖形的特徵。

2、利用圖示把各種圖形的關系畫出來,使學生看得更直觀、清晰。再完成總復習第11、12題。

(四)「統計」

復習復式條形統計圖和單式條形統計圖有什麼聯系和區別,畫復式條形統計圖需要注意什麼。完成總復習第13題。


部編版四年級數學知識點總結相關 文章 :

★ 部編版四年級數學知識點

★ 四年級學習方法指導

★ 部編版四年級下冊知識點梳理

★ 最好的學習方法推薦

★ 小學學習方法指導

★ 部編版四年級語文知識點總結

★ 小學生的學習技巧

★ 部編版四年級語文知識點歸納

★ 最好的學習方法指導和知識點總結

F. 四年級下數學1-9單元思維導圖一覽表,全都是考點,請收好

四年級下冊所學的數學章節內容之間的考點關系,特別適合用思維導圖來表示 ;首先,大家跟著小宋一起來回顧一下每章節的大致內容(如下):

四年級下數學中我們需要學習九個單元內容, 一四則運算;二是觀察物體;三是運算定律;四是小數的意義和性質;五是三角形;六是小數的加法和減法;七是圖形的運動;八是平均數與條形統計圖;九是數學廣角——雞兔同籠;

如第一單元四則運算主要是搞清楚四部分的運算關系: (1)加、減法的運算;(1)乘、除法的運算;(3)有關0的運算;(4)帶括弧的運算;一般考試題型都是計算或者口算之類的,當然也有應用題,主要是用四則混合運算的運算順序來解決應用題(如租船問題)等實際生活案例;

接下來,小宋將推出一期《四年級數學1-9單元思維導圖一覽表》,希望對同學們能有所幫助!

數學知識考點不同於語文考點,數學的邏輯性更強。因此,如果一份好的數學思維導圖,可以簡單明了地迅速讓同學們明白所有考點的關系,十分適合考點復慣用。

完整版請看我的個人主頁

G. 四年級數學下冊知識點

四年級數學下冊知識點1

第一單元知識點(四則運算)

1. 在沒有括弧的算式里,如果只有加、減法或者只有乘除法,都要從左往右按順序計算。(這是同級運算)

2. 在沒有括弧的算式里,有乘、除法和加減法,要先算乘除法,在算加減法。(這是兩級運算)

3. 算式里有括弧,先算括弧裡面的,在算括弧外面的。

4. 加法、減法、乘法和除法統稱四則運算。

5. 一個數加上0還得原數,一個數減去0也得原數。

6. 被減數等於減數,差是0。

7. 一個數和零相乘,仍得0。

8. 0除以一個非0的數,還得0。

9. 0不能作除數。

10. 在解決問題時,如果列綜合算式,必須用脫式計算。

11. 任何數除以0都得0。(×)因為0不能做除數。

第二單元知識點(觀察物體)

1. 如何確定物體所在的位置?

(1)明確方向。

(2)明確距離。

2.根據方向和距離來確定物體的位置。

3.在生活中一般先說物體所在方向離的近(夾角較小)的方位。

4.平面圖形的一般畫法:

(1)先確定某建築物的方向。

(2)再確定角度。(測量角度時,哪個方位在前,0刻度線就對准誰。)

(3)最後確定距離。

5.兩個城市的位置具有相對性,方向相對,角度和距離不發生改變。例如:甲地在乙地的南偏東30度500米處,則乙地在甲地的北偏西30度500米處。

第三單元知識點(運算定律)

1.兩個數相加,兩個加數交換位置,和不變。這叫做加法交換律。

用字母表示為:a+b=b+a

2.三個數相加,先把前兩個數相加,再加第三個數,或者先把後兩個數相加,再加第一個數,和不變。這叫做加法結合律。用字母表示為:(a+b)+c=a+(b+c)

3.兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法交換律。

用字母表示為:a×b=b×a

4.三個數相乘,先讓前兩個數相乘,再乘第三個數,或者先讓後兩個數相乘,再乘第一個數,積不變。這叫做乘法結合律。

用字母表示為:(a×b) ×c=a×(b×c)

5.兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。用字母表示為:(a+b)×c=a×c+b×c

6. 類似於乘法分配律的簡便公式;

(a-b)×c=a×c-b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

7.從一個數里連續減去兩個數,等於從這個數里減去另兩個數的和。這叫做減法的運算性質。用字母表示為:a-b-c=a-(b+c)

8.在一個帶有括弧的算式中,括弧前面是「+」,去掉括弧後,括弧裡面的運算符號不發生改變。用字母表示為:a+(b+c)=a+b+c a+(b-c)=a+b-c

括弧前面是「-」,去掉括弧後,括弧裡面的運算符號發生了變化,「+」變「-」, 「-」變「+」。 用字母表示為:a-(b+c)=a-b-c a-(b-c)=a-b+c

9.一個數連續除以兩個數,等於這個數除以另兩個數的積。這時除法的運算性質。用字母表示為:a÷b÷c=a÷(b×c)

10. 在一個帶有括弧的算式中,括弧前面是「×」,去掉括弧後,括弧裡面的運算符號不發生改變。用字母表示為:

a×(b×c)=a×b×c a×(b÷c)=a×b÷c

括弧前面是「÷」,去掉括弧後,括弧裡面的運算符號發生了改變。用字母表示為:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

12. 另兩種簡便方法:

(1) 把一個因數改寫成兩個一位數相乘的形式。

(2) 把一個因數改寫成兩個數相除的形式,然後變成乘除混和運算。

第四單元知識點(小數的意義和性質)

1. 在進行測量和計算時,往往不能正好得到整數的結果,這時就需要用小數來表示,這樣就產生了小數。

2. 分母是10、100、1000……的分數可以仿照整數的寫法寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數,叫做小數。

3. 小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……每相鄰兩個計數單位間的進率是10。

4.一位小數的計數單位是十分之一(寫作0.1),兩位小數的計數單位是百分之一(寫作0.01),,三位小數的計數單位是千分之一(寫作0.001)。

5.十分之幾用一位小數表示,百分之幾用兩位小數表示,千分之幾用三位小數表示……

6. 小數的讀法:

(1)先讀整數部分,再讀點,最後讀小數部分。

(2)整數部分按照整數的讀法來讀,小數部分要依次讀出每個數字。

(3)整數部分是0的小數,整數部分就讀「零」,小數部分有幾個0,就讀幾個零。

7.小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。

8.利用小數的性質進行小數的化簡和改寫。

例如:0.70=0.7 105.0900=105.09(這是小數的化簡)

又如:不改變數的大小,把下面各數寫成三位小數

0.2=0.200 4.08=4.080 3=3.000(這是改寫小數)

9.如何比較小數的大小?

先比較整數部分,整數部分相同,比較十分位上的數;十分位上的數相同,比較百分位上的數;百分位上的數相同,比較千分位上的數……

10.小數點移動的規律:

(1)小數點向右

移動一位,小數就擴大到原數的10倍;

移動兩位,小數就擴大到原數的100倍;

移動三位,小數就擴大到原數的1000倍;

……

(2)小數點向左

移動一位,小數就縮小到原數的1/10;

移動兩位,小數就縮小到原數的1/100;

移動三位,小數就縮小到原數的1/1000;

……

11.把量和單位名稱合起來的數叫名數。

12.單名數:只帶一個單位名稱的名數。例如:4千米、0.8噸、15.38元……

13.復名數:帶有兩個或兩個以上的單位名稱的名數。例如:

20元5角8分 5噸600克……

14.名數改寫的規律:先找進率;再看是把高級單位改寫成低級單位,還是是把低級單位改寫成高級單位;最後移動小數點。口訣如下:

(1)高到低,乘進率,小數點,向右移,移幾位,看進率。

例如:1.32千克=(1320 )克 (58 )厘米=0.58米

1千克=1000克 1米=100厘米

高→低 低←高

1.32×1000=1320克 0.58×100=58厘米

(2)低到高,用除法,小數點,向左移,移幾位,看進率。

例如:

7450米=(7.45 )千米 (9.02)噸=9020千克

1千米=1000米 1噸=1000千克

低→高 高←低

7450÷1000=7.45千米 9020÷1000=9.02噸

15.求小數的近似數,可用「四捨五入」法。

16.在表示近似數時,小數末尾的0不能去掉。

17.求小數的近似數的方法:

求近似數時,保留整數,表示精確到個位,看十分位上的數;保留一位小數,表示精確到十分位,看百分位上的數;保留兩位小數,表示精確到百分位,看百分位上的數;保留三位小數,表示精確到千分位,看萬分位上的數……。然後根據「四捨五入」法進行取捨。

例如:9.953≈ 10 (保留整數)

9.953≈10.0 (保留一位小數)

9.953≈9.95 (保留兩位小數)

23.4395≈23.440 (保留三位小數)

18. 1.0比1精確。保留的位數越多,數就越精確。

19.如何把一個數改寫成以萬為單位的數?

方法一:把已知數的小數點向左移動四位,進行化簡後,在數的末尾加寫一個萬字。

方法二:(1)先找萬位;(2)在萬位後面點「.」;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個萬字;(5)如果有單位名稱一定照抄過來。

20.如何把一個數改寫成以億為單位的數?

方法一:把已知數的小數點向左移動八位,進行化簡後,在數的末尾加寫一個億字。

方法二:(1)先找億位;(2)在億位後面點「.」;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個億字;(5)如果有單位名稱一定照抄過來。

註:對於改寫的方法,同學們靈活掌握。

21.下列各數中的「6」分別表示什麼?

6.32(表示6個一) 0.6(表示6個十分之一) 0.86(表示6個百分之一)

62.32(表示6個十) 3.416(表示千分之一)

22.三位小數一定小於四位小數。(×)例如:1.003﹥0.5678

23.去掉小數點後面的0,小數的大小不變。(×)

應該是去掉小數末尾的零,小數的大小不變。

24.小數就是比1小的數。(×)例如:10.1﹥1

25.近似數是0.5的兩位小數有5個。(×)

近似數是0.5的兩位小數有9個,分別是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的數,再利用「四捨五入」 法。)

26.近似數4.0與精確數4.0末尾的0都可以去掉。(×)

在表示近似數時,小數末尾的0不能去掉。

27.小數的位數越多,數就越大。(×)

28.小數都比自然數小。(×)

29.整數都大於小數。(×)

30.0.4與0.6之間的小數只有一個。(×)因為0.4與0.6之間的小數有無數個。31.近似數是6.50的三位小數中,最大是(6.504),最小是(6.495)。

方法:求最大近似數時,一定比6.50大,千分位上的數必須「舍」,也就是千分位上只能是1、2、3、4,其中最大的數是4,所以近似數是6.50的三位小數中,最大是6.504。

求最小的近似數時,一定比6.50小一個計數單位(本題少一個0.01,也就是6.49),這時千分位上的數必須「入」, 千分位上只能是5、6、7、8、9,其中最小的'數是5,所以近似數是6.50的三位小數中,最小是6.495。

四年級數學下冊知識點2

運算定律及簡便運算

一、加法運算定律:

1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a

2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+b+c

加法的這兩個定律往往結合起來一起使用。

如:165+93+35=93+(165+35)依據是什麼?

3、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。a-b-c=a-b+c

二、乘法運算定律:

1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a

2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。(a×b)×c=a×b×c

乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算

3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再把積相加。

(a+b)×c=a×c+b×c a-b×c=a×c-b×c

雞兔問題公式

(1)已知總頭數和總腳數,求雞、兔各多少:

(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;

總頭數-兔數=雞數。

或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;

總頭數-雞數=兔數。

例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………雞。

解二(4×36-100)÷(4-2)=22(只)………雞;

36-22=14(只)…………………………兔。

(答略)

(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式

(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數

或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。

(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數。

或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:

(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。

例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」

解一(4×1000-3525)÷(4+15)

=475÷19=25(個)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(個)(答略)

(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)

(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:

〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;

〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。

例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………雞

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

雞兔同籠

1、雞兔同籠屬於假設問題,假設的和最後結果相反。

2、「雞兔同籠」問題的解題方法

假設法:

①假如都是兔

②假如都是雞

③古人「抬腳法」:

解答思路:

假如每隻雞、每隻兔各抬起一半的腳,則每隻雞就變成了「獨腳雞」,每隻兔就變成了「雙腳兔」。這樣,雞和兔的腳的總數就少了一半。這種思維方法叫化歸法。

3、公式:

雞兔總腳數÷2-雞兔總數=兔的只數;

雞兔總數-兔的只數=雞的只數。

四則運算

1、加法、減法、乘法和除法統稱四則運算。

2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。

3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。

4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。

5、先乘除,後加減,有括弧,提前算

關於「0」的運算

1、「0」不能做除數; 字母表示:a÷0錯誤

2、一個數加上0還得原數; 字母表示:a+0=a

3、一個數減去0還得原數; 字母表示:a-0=a

4、被減數等於減數,差是0; 字母表示:a-a=0

5、一個數和0相乘,仍得0; 字母表示:a×0=0

6、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商; 5÷0得不到商.(無意義)

H. 小學四年級下冊數學復習資料

加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
有的可能不是
第一單元乘法
1、三位數乘兩位數,所得的積不是四位數就是五位數。
2、三位數乘兩位數的計演算法則:先用兩位數的個位上的數與三位數的每一位相乘,乘得的積和個位對齊,再用兩位數十位上的數與三位數的每一位相乘,所得的積和十位對齊,最後把兩次乘得的積相加。
3、末尾有0的乘法計算方法:現把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
第二單元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
第三單元三角形
1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形具有穩定性(也就是當一個三角形的三條邊的長度確定後,這個三角形的形狀和大小都不會改變),生活中很多物體利用了這樣的特性。如:人字梁、斜拉橋、自行車車架。
4、三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
5、有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
6、有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
7、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。(銳角三角形的三條高都在三角形內;直角三角形有兩條高落在兩條直角邊上;鈍角三角形有兩條高在三角形外)。
8、把一個三角形分成兩個直角三角形就是畫它的高。
9、兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)三條邊都
相等的三角形是等邊三角形,三條邊都相等,三個角也都
相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
10、有一個角是直角的等腰三角形叫做等腰直角三角形,
它的底角等於45°,頂角等於90°。
10、求三角形的一個角=180°-另外兩角的和
11、等腰三角形的頂角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-頂角)÷2
13、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
14、多邊形的內角和=180°×(n-2){n為邊數}
第四單元混合運算
1、混合運算中:先乘除後加減,既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
第五單元平行四邊形和梯形
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。
底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行
四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許
多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、
伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
第六單元找規律
1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
第七單元運算律
1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、衍生:(a-b)×c=a×c-b×c
5、簡便運算典型例題:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八單元對稱、平移和旋轉
1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
第九單元倍數和因數
1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。如18的因數有:1、2、3、6、9、18。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。如:18的倍數有:18、36、54、72、90……(省略號非常重要)
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。(如:10、20、30、40……)
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數。(或質數)如:2、3、5、7、11、13、17、19…… 2是素數中唯一的偶數。(所以「所有的素數都是奇數」這一說法是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。如:4、6、8、9、10……
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、哥德巴赫猜想:任何大於2的偶數都是兩個素數之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
第十單元用計算器探索規律
1、積的變化規律:
①一個因數縮小幾倍,另一個因數擴大相同的倍數,積不變。
②一個因數縮小(或擴大幾倍),另一個因數不變,積也隨著縮小(或擴大)幾倍。
2、商的變化規律:
①被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
②被除數擴大(或縮小)幾倍,除數不變,商也隨之擴大(或縮小)幾倍。
③被除數不變,除數縮小幾倍(0除外),商反而擴大幾倍。
第十二單元統計
1、折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
第十三單元用字母表示數
1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4•a或4a;a×a可以寫成a•a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
附:常用數量關系
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 C=(a+b)×2
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×塊數
塊數=房間面積÷每塊面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙
四 年 級 下 學 期 數 學 復 習 提 綱

領域 主要內容 重 點 難 點 相 關 概 念

數與代數 乘法 三位數乘兩位數的筆算
三步計算解決實際問題 三位數中間有0的筆算。 三位數乘兩位數,所得的積不是四位數就是五位數。
末尾有0的乘法計算方法:先把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
混合運算 三步計算混合運算的運算順序,中括弧。 明確運算順序,提高計算正確率。 先乘除後加減;既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
運算律 應用乘法分配律進行簡便運算 乘法交換律、結合律、分配律的簡便運算。 1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、拓展:(a-b)×c=a×c-b×c
5、簡便運算典型例題:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用計算器
探索規律 積的變化規律
商的不變規律,用簡便方法計算被除數和除數末尾都有0的除法 在計算和解決實際問題中的應用。 1、積的變化規律:
一個因數縮小(或擴大幾倍),另一個因數不變,積也同時縮小(或擴大)相同的倍數。
2、商的變化規律:
被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
倍數
因數 找10以內某個自然數的所有倍數(100以內)、找100以內某個自然數的所有因數
偶數和奇數,素數和合數的特徵,2、5和3的倍數的特徵 在掌握意義的基礎上綜合進行各類判斷,明白每類自然數的特徵。 1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數(或質數)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素數中唯一的偶數。(所以「所有的素數都是奇數」這句話是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
找規律 進一步認識生活中的簡單搭配、簡單排列現象的規律。對幾種事物進行有序的搭配或排列。 運用規律解決一些簡單的實際問題。 1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
用字母
表示數 用含有字母的式子表示簡單的數量、數量關系和公式,求含有字母的式子的值,化簡「ax+bx」的式子。 在具體的情境中用字母表示數量關系。 1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4·a或4a;a×a可以寫成a·a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
2、用字母表示數量關系:小玲到商店買1枝鋼筆和4本筆記本,每枝鋼筆7元,每本筆記本a元。她一共付出(7+4a)元。
3、用數代替字母求出含有字母的式子的值。4、化簡含有字母的式子。

解決問題
的策略

用畫圖和列表的策略解決有關面積和行程的實際問題 運用畫圖解決面積的增減問題。
正確畫示意圖
合理列表
常用的數量關系:
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 (C=(a+b)×2)
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×地磚的塊數
地磚的塊數=房間面積÷每塊地磚的面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙速度×時間
空間與圖形 三角形 三角形的分類、內角和、求第三個角的度數,正確測量和畫出三角形的高 三角形兩邊之和大於第三邊的應用。 1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形的分類:(按邊分類
三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)
三條邊都相等的三角形是等邊三角形,三條邊都相等,三個角也都相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
4、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。
5、把一個三角形分成兩個直角三角形就是畫它的高。
6、有一個角是直角的等腰三角形叫做等腰直角三角形,它的底角等於45°,頂角等於90°。
7、求三角形的一個角=180°-另外兩角的和
8、等腰三角形的頂角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-頂角)÷2
10、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
11、多邊形的內角和=180°×(n-2){n為邊的條數}
平行四邊形、梯形 平行四邊形、梯形的特徵,正確測量和畫出平行四邊形、梯形的高。 根據平行四邊形、梯形的底畫高。圖形之間的變換。
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
對稱、平移
和旋轉 確定軸對稱圖形的對稱軸,畫簡單軸對稱圖形的對稱軸。根據對稱軸畫另一半
在方格紙上把簡單圖形連續平移兩次。將簡單圖形旋轉90度 畫出簡單圖形按逆時針、順時針旋轉90度後的圖形 1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
升和毫升 升和毫升之間的進率。升和毫升在生活中的應用。 升和毫升在生活中的應用 1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
統計 統計 畫折線統計圖,對折線統計圖的數據進行分析。根據數據特點和實際需要選擇條形統計圖.或折線統計圖。 對折線統計圖的數據進行分析。 折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
回答者: 61084773400 | 一級 | 2011-6-19 17:38
一、運算順序:

在沒有括弧的算式里如果只有加減法或只有乘除法有依次計算。在沒有括弧的算式里,有加減法又有乘除法,要先乘除法,後算加減法。算式里有括弧時,要先算括弧裡面的。加減乘除法統稱四則運算。一個數加0得原數任何一個數乘0得00不能做除數,0除以一個非0的數等於0。0除0得不到固定的商。5除0得不到商

二、位置與方向

1.根據方向和距離確定或者繪制物體的具體點。(比例尺、角的畫法和度量)

2.位置間的相對性。會描述兩個物體間相互位置關系。(觀測點的確定)

B在A的東偏北30度2000米處;

A在B的西偏南30度200米處。

3.簡單路線圖的繪制。

三、運算定律及簡便運算:

1.加法運算定律:

加法交換律:兩個數相加,交換加數得位置,和不變。a+b=b+a
加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加 再加上第一個數 ,和不變。(a+b)+c=a+(b+c) 加法這兩個定律往往結合在一起使用。如:165+93+35=93+(165+35) 依據是什麼?
. 2、 連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和 。 a-b-c=a-(b+c)

3、乘法運算定律:

乘法交換律: 兩個數相乘,交換因數的位置,積不變。bXa=aXb
乘法結合律: 三個數相乘,可以先把前兩個數相乘,再乘第三個數 ,也可以先把後兩個數相乘,再乘以第一個數,積不變。 (axb)xc=ax(bxc) 乘法這兩個定律往往結合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)xc=axc+bxc

4.連除的性質:一個數連續除以兩個數,等於除以這兩個數的積。 a除b除c=a除{b乘c}

a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小數表示

小數的單位是十分之_百分之一.千分之一

每相鄰的兩個計數單位的進率是+整數整讀.小數依次讀出每1個整數整寫小數依次目小數末尾瞼0可去掉

小數擴大十倍,有向右移動一位擴大100倍向右移動兩位一千倍向右移動一位。。。

小數向左移一位縮小+倍向左移動兩位縮小一百倍向左移動三位縮小一千倍........

保留-位小數精確到+分位2位小數精確到百分位3位小數精確到千分位.....。

三條邊圍成的圖形叫三角形

三角的1個角到它對邊作-條直線這條直線叫三角形的高對邊叫三角形的底

特性穩定任意兩大於笫三邊

角的分類;大小分銳角直角鈍角長短分三邊不等等腰三角形總等180度兩個三角形能拼平行四邊形

把小數點對齊計算叫小數加減法在數據描出各點用線連起來間隔數=總長除間隔長

兩端教植棵數等於間隔+1隻植一端棵數=間隔

都不植棵數=間隔--

封閉棵數=間隔