當前位置:首頁 » 基礎知識 » 數學44知識點目錄
擴展閱讀
如何讓天秤座原諒你同學 2024-11-26 01:34:44
歌詞我穿過多少迷霧 2024-11-26 01:20:54

數學44知識點目錄

發布時間: 2024-08-16 00:02:57

數學知識

一、數與式
(一)有理數
1、有理數的分類
2、數軸的定義與應用
3、相反數
4、倒數
5、絕對值
6、有理數的大小比較
7、有理數的運算
(二)實數
8、實數的分類
9、實數的運算
10、科學記數法
11、近似數與有效數字
12、平方根與算術根和立方根
13、非負數
14、零指數次冪、負指數次冪
(三)代數式
15、代數式、代數式的值
16、列代數式
(四)整式
17、整式的分類
18、整式的加減、乘除的運算
19、冪的有關運算性質
20、乘法公式
21、因式分解
(五)分式
22、分式的定義
23、分式的基本性質
24、分式的運算
(六)二次根式
25、二次根式的意義
26、根式的基本性質
27、根式的運算
二、方程和不等式
(一)一元一次方程
28、方程、方程的解的有關定義
29、一元一次的定義
30、一元一次方程的解法
31、列方程解應用題的一般步驟
(二)二元一次方程
32、二元一次方程的定義
33、二元一次方程組的定義
34、二元一次方程組的解法(代入法消元法、加減消元法)
35、二元一次方程組的應用
(三)一元二次方程
36、一元二次方程的定義
37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)
38、一元二次方程根與系數的關系和根的判別式
39、一元二次方程的應用
(四)分式方程
40、分式方程的定義
41、分式方程的解法(轉化為整式方程、檢驗)
42、分式方程的增根的定義
43、分式方程的應用
(五)不等式和不等式組
44、不等式(組)的有關定義
45、不等式的基本性質
46、一元一次不等式的解法
47、一元一次不等式組的解法
48、一元一次不等式(組)的應用
三、函數
(一)位置的確定與平面直角坐標系
49、位置的確定
50、坐標變換
51、平面直角坐標系內點的特徵
52、平面直角坐標系內點坐標的符號與點的象限位置
53、對稱問題:P(x,y)→Q(x,- y)關於x軸對稱
P(x,y)→Q(- x,y)關於y軸對稱
P(x,y)→Q(- x,- y)關於原點對稱
54、變數、自變數、因變數、函數的定義
55、函數自變數、因變數的取值范圍(使式子有意義的條件、圖象法)
56、函數的圖象:變數的變化趨勢描述
(二)一次函數與正比例函數
57、一次函數的定義與正比例函數的定義
58、一次函數的圖象:直線,畫法
59、一次函數的性質(增減性)
60、一次函數y=kx+b(k≠0)中k、b符號與圖象位置
61、待定系數法求一次函數的解析式(一設二列三解四回)
62、一次函數的平移問題
63、一次函數與一元一次方程、一元一次不等式、二元一次方程的關系(圖象法)
64、一次函數的實際應用
65、一次函數的綜合應用
(1)一次函數與方程綜合
(2)一次函數與其它函數綜合
(3)一次函數與不等式的綜合
(4)一次函數與幾何綜合
(三)反比例函數
66、反比例函數的定義
67、反比例函數解析式的確定
68、反比例函數的圖象:雙曲線
69、反比例函數的性質(增減性質)
70、反比例函數的實際應用
71、反比例函數的綜合應用(四個方面、面積問題)
(四)二次函數
72、二次函數的定義
73、二次函數的三種表達式(一般式、頂點式、交點式)
74、二次函數解析式的確定(待定系數法)
75、二次函數的圖象:拋物線、畫法(五點法)
76、二次函數的性質(增減性的描述以對稱軸為分界)
77、二次函數y=ax2+bx+c(a≠0)中a、b、c、△與特殊式子的符號與圖象位置關系
78、求二次函數的頂點坐標、對稱軸、最值
79、二次函數的交點問題
80、二次函數的對稱問題
81、二次函數的最值問題(實際應用)
82、二次函數的平移問題
83、二次函數的實際應用
84、二次函數的綜合應用
(1)二次函數與方程綜合
(2)二次函數與其它函數綜合
(3)二次函數與不等式的綜合
(4)二次函數與幾何綜合

1,過兩點有且只有一條直線
2,兩點之間線段最短
3,同角或等角的補角相等
4,同角或等角的餘角相等
5,過一點有且只有一條直線和已知直線垂直
6,直線外一點與直線上各點連接的所有線段中,垂線段最短
7,經過直線外一點,有且只有一條直線與這條直線平行
8,如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9,同位角相等,兩直線平行
10,內錯角相等,兩直線平行
11,同旁內角互補 兩直線行
12,兩直線平行,同位角相等
13,兩直線平行,內錯角相等
14,兩直線平行,同旁內角互補
15,三角形兩邊的和大於第三邊
16,三角形兩邊的差小於第三邊
17,三角形三個內角的和等180°
18,直角三角形的兩個銳角互余
19,三角形的一個外角等於和它不相鄰的兩個內角的和
20,三角形的一個外角大於任何一個和它不相鄰的內角
21,全等三角形的對應邊,對應角相等
22,有兩邊和它們的夾角對應相等的兩個三角形全等 (SAS)
23 有兩角和它們的夾邊對應相等的兩個三角形全等(ASA)
24,有兩角和其中一角的對邊對應相等的兩個三角形全等(AAS)
25,有三邊對應相等的兩個三角形全等 (SSS)
26,有斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)
27,在角的平分線上的點到這個角的兩邊的距離相等
28,到一個角的兩邊的距離相同的點,在這個角的平分線上
29,角的平分線是到角的兩邊距離相等的所有點的集合
30,等腰三角形的性質定理 等腰三角形的兩個底角相等
31,等腰三角形頂角的平分線平分底邊並且垂直於底邊
32,等腰三角形的頂角平分線,底邊上的中線和高互相重合
33,等邊三角形的各角都相等,並且每一個角都等於60°
34,等腰三角形的判定定理 如果一個三角形有兩個角相等, 那麼這兩個角所對的邊也相等(等角對等邊)
35,三個角都相等的三角形是等邊三角形
36,有一個角等於60°的等腰三角形是等邊三角形
37,在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38,直角三角形斜邊上的中線等於斜邊上的一半
39,線段垂直平分線上的點和這條線段兩個端點的距離相等
40,和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41,線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42,關於某條直線對稱的兩個圖形是全等形
43,如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44,兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45,如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46,直角三角形兩直角邊a,b的平方和,等於斜邊c的平方,即a+b=c
47,如果三角形的三邊長a,b,c有關系a+b=c,那麼這個三角形是直角三角形
48,四邊形的內角和等於360°
49,四邊形的外角和等於360°
50,多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51,任意多邊的外角和等於360°
52,平行四邊形的對角相等
53,平行四邊形的對邊相等
54,夾在兩條平行線間的平行線段相等
55,平行四邊形的對角線互相平分
56,兩組對角分別相等的四邊形是平行四邊形
57,兩組對邊分別相等的四邊形是平行四邊形
58,對角線互相平分的四邊形是平行四邊形
59,一組對邊平行相等的四邊形是平行四邊形
60,矩形的四個角都是直角
61,矩形的對角線相等
62,有三個角是直角的四邊形是矩形
63,對角線相等的平行四邊形是矩形
64,菱形的四條邊都相等
65,菱形的對角線互相垂直,並且每一條對角線平分一組對角
66,菱形面積=對角線乘積的一半,即S=(a×b)÷2
67,四邊都相等的四邊形是菱形
68,對角線互相垂直的平行四邊形是菱形
69,正方形的四個角都是直角,四條邊都相等
70,正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71,關於中心對稱的兩個圖形是全等的
72,關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73,如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74,等腰梯形在同一底上的兩個角相等
75,等腰梯形的兩條對角線相等
76,在同一底上的兩個角相等的梯形是等腰梯形
77,對角線相等的梯形是等腰梯形
78,如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79,經過梯形一腰的中點與底平行的直線,必平分另一腰
80,經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81,三角形的中位線平行於第三邊,並且等於它的一半
82,梯形的中位線平行於兩底,並且等於兩底和的 一半
L=(a+b) S=L×h
83,如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84,如果a/b=c/d,那麼
(a±b)/ b=(c±d)/d
85,如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86,三條平行線截兩條直線,所得的對應線段成比例
87,平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88,如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89,平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90,平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91,兩角對應相等,兩三角形相似(ASA)
92,直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93,兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94,三邊對應成比例,兩三角形相似(SSS)
95,如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96,相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97,相似三角形周長的比等於相似比
98,相似三角形面積的比等於相似比的平方
99,任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100,任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101,圓是定點的距離等於定長的點的集合
102,圓的內部可以看作是圓心的距離小於半徑的點的集合
103,圓的外部可以看作是圓心的距離大於半徑的點的集合
104,同圓或等圓的半徑相等
105,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106,和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107,到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108,到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109,不在同一直線上的三個點確定一條直線
110,垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111, ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112,圓的兩條平行弦所夾的弧相等
113,圓是以圓心為對稱中心的中心對稱圖形
114,在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115,在同圓或等圓中,如果兩個圓心角,兩條弧,兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116,一條弧所對的圓周角等於它所對的圓心角的一半
117,同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118,半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119,如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120,圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121,①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122,經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123,圓的切線垂直於經過切點的半徑
124,經過圓心且垂直於切線的直線必經過切點
125,經過切點且垂直於切線的直線必經過圓心
126,從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127,圓的外切四邊形的兩組對邊的和相等
128,弦切角等於它所夾的弧對的圓周角
129,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130,圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131,如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132,從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133,從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134,如果兩個圓相切,那麼切點一定在連心線上
135,①兩圓外離d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136,相交兩圓的連心線垂直平分兩圓的公共弦
137,把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138,任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139,正n邊形的每個內角都等於(n-2)×180°/n
140,正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141,正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142,正三角形面積√3a/4 a表示邊長
143,如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為
(n-2)(k-2)=4
144,弧長計算公式:L=n∏R/180
145,扇形面積公式:S扇形=n∏R/360=LR/2
146,內公切線長= d-(R-r) 外公切線長= d-(R+r)

② 鍥涘勾綰т笅鍐屾暟瀛︾煡璇嗙偣褰掔撼鎬葷粨

鍥涘勾綰ф暟瀛︿笅鍐岀煡璇嗙偣褰掔撼
涓銆佸姞娉曡繍綆楀畾寰
1. 鍔犳硶浜ゆ崲寰嬶細涓や釜鏁扮浉鍔狅紝浜ゆ崲鍔犳暟鐨勪綅緗錛屽拰涓嶅彉銆俛+b=b+a
2. 鍔犳硶緇撳悎寰嬶細涓変釜鏁扮浉鍔狅紝鍙浠ュ厛鎶婂墠涓や釜鏁扮浉鍔狅紝鍐嶅姞涓婄涓変釜鏁幫紝鎴栬呭厛鎶婂悗涓や釜鏁扮浉鍔狅紝鍐嶅姞涓婄涓涓鏁幫紝鍜屼笉鍙樸(a+b)+c=a+(b+c)
浜屻佷箻娉曡繍綆楀畾寰
1. 涔樻硶浜ゆ崲寰嬶細涓や釜鏁扮浉涔橈紝浜ゆ崲鍥犳暟鐨勪綅緗錛岀Н涓嶅彉銆俛脳b=b脳a
2. 涔樻硶緇撳悎寰嬶細涓変釜鏁扮浉涔橈紝鍙浠ュ厛鎶婂墠涓や釜鏁扮浉涔橈紝鍐嶄箻浠ョ涓変釜鏁幫紝涔熷彲浠ュ厛鎶婂悗涓や釜鏁扮浉涔橈紝鍐嶄箻浠ョ涓涓鏁幫紝縐涓嶅彉銆(a脳b)脳c=a脳(b脳c)
3. 涔樻硶鍒嗛厤寰嬶細涓や釜鏁扮殑鍜屼笌涓涓鏁扮浉涔橈紝鍙浠ュ厛鎶婅繖涓や釜鏁板垎鍒涓庤繖涓鏁扮浉涔橈紝鍐嶆妸縐鐩稿姞銆(a+b)脳c=a脳c+b脳c (a-b)脳c=a脳c-b脳c
涓夈侀浮鍏斿悓絎奸棶棰
1. 楦″厰鍚岀煎睘浜庡亣璁鵑棶棰橈紝鍋囪劇殑鍜屾渶鍚庣粨鏋滅浉鍙嶃
2. 瑙i樻柟娉曪細鍋囪炬硶銆佸彜浜衡滄姮鑴氭硶鈥
3. 鍏寮忥細楦″厰鎬昏剼鏁懊2-楦″厰鎬繪暟=鍏旂殑鍙鏁幫紱楦″厰鎬繪暟-鍏旂殑鍙鏁=楦$殑鍙鏁般
鍥涖佸洓鍒欒繍綆
1. 鍔犳硶銆佸噺娉曘佷箻娉曞拰闄ゆ硶緇熺О鍥涘垯榪愮畻銆
2. 璁$畻欏哄簭錛氬彧鏈夊姞銆佸噺娉曟垨鑰呭彧鏈変箻銆侀櫎娉曪紝浠庡乏寰鍙蟲寜欏哄簭璁$畻錛涙湁涔樸侀櫎娉曞拰鍔犮佸噺娉曪紝鍏堢畻涔橀櫎娉曪紝鍐嶇畻鍔犲噺娉曪紱鏈夋嫭鍙風殑綆楀紡錛屽厛綆楁嫭鍙烽噷闈㈢殑錛屽啀綆楁嫭鍙峰栭潰鐨勩
浜斻佸叧浜庘0鈥濈殑榪愮畻
1. 鈥0鈥濅笉鑳藉仛闄ゆ暟
2. 涓涓鏁板姞涓0榪樺緱鍘熸暟
3. 涓涓鏁板噺鍘0榪樺緱鍘熸暟
4. 琚鍑忔暟絳変簬鍑忔暟錛屽樊鏄0
5. 涓涓鏁板拰0鐩鎬箻錛屼粛寰0
6. 0闄や互浠諱綍闈0鐨勬暟錛岃繕寰0
7. 0梅0寰椾笉鍒板滻瀹氱殑鍟嗭紱5梅0寰椾笉鍒板晢(鏃犳剰涔)
鍏銆佸洓騫寸駭鏁板︿笅鍐岀煡璇嗙偣鐩稿叧鏂囩珷
1. 鍥涘勾綰т笅鍐屾暟瀛︾煡璇嗙偣褰掔撼鎬葷粨
2. 鍥涘勾綰т笅鍐屾暟瀛︾煡璇嗙偣褰掔撼鎬葷粨(2)
3. 灝忓﹀洓騫寸駭涓嬪唽鏁板︾煡璇嗙偣澶嶄範璧勬枡鏁寸悊
4. 鍥涘勾綰ф暟瀛︿笁瑙掑艦鐭ヨ瘑鐐瑰綊綰
5. 鍥涘勾綰ф暟瀛︿笅鍐岀煡璇嗙偣
6. 鍥涘勾綰ф暟瀛︿笅鍐岀煡璇嗙偣奼囨
7. 灝忓﹀洓騫寸駭涓嬪唽鏁板﹀嶄範璧勬枡鏁寸悊
8. 鍥涘勾綰ф暟瀛︿笅鍐屽嶄範璁″垝鎬葷粨
9. 灝忓﹀洓騫寸駭浜烘暀鐗堟暟瀛︿笅鍐屽嶄範璧勬枡鏁寸悊
10. 鍥涘勾綰ф暟瀛︿笅鍐岀煡璇嗙偣奼囨(2)

③ 四年級數學基礎重要知識點

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些 四年級數學 的知識點,希望對大家有所幫助。

四年級上冊數學基礎知識

1、自然數整數的意義

用來表示物體個數的1,2,3……叫做自然數。一個物體也沒有,用0表示。0也是自然數它們都是整數。

最小的自然數是0,沒有的自然數。自然數的個數是無限的。

2、計數單位一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。其中"一"是計數的基本單位。

3、十進制計數法10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個"億"或"萬"字。每一級末尾的0都不讀出來, 其它 數位連續有幾個0都只讀一個零。

6、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。

7、萬以上數的寫法:

(1)一個數含有萬級和億級,應從位寫起,一級一級地往下寫。

(2)寫數時哪一位上是幾就在那一位上寫幾,遇到哪一位上一個單位也沒有,就在那一位上寫0佔位。

8、比較兩個數的大小:

(1)如果位數不同,位數多的那個數就大,位數少的那個數就小;

(2)如果位數相同,就從位開始比較,位數大的那個數就大;如果第一位相同就看下一位,以此類推。

9、整萬、整億數的改寫:

(1)改寫成以"萬"為單位的數,把萬位後面的4個0去掉,加上一個"萬"字即可。

(2)改寫成以"億"為單位的數,把億位後面的8個0去掉,加上一個"億"字即可。

10、近似數與准確數:

有些數的前面有"約"字,都不是准確數,像這樣的數我們稱做為"近似數"。

"四捨五入法":在取近似數的時候,按要求保留到哪一位,這一位後面的數稱為"尾數"。如果尾數的位數字小於5,就把尾數去掉。如果尾數的位數字大於或等於5,就把尾數捨去並向它的前一位進"1",這種取近似數的 方法 叫做四捨五入法。

"省略萬位或億位後面的尾數求近似數",就是用"四捨五入"法,把一個數精確(保留)到萬位或億位,求它的近似數。

(1)用"萬"作單位的近似數,應看千位上的數是幾,再決定是"四舍"還是"五入"。

(2)用"億"作單位的近似數,就看千萬位上的數是幾,再決定是"四舍"還是"五入"。

(3)不管是用"萬"還是用"億"作單位,寫近似數時都要用約等號(≈)連接,末尾還要寫上"萬"字或"億"字。

11、求近似數和數的改寫的相同點:求近似數和數的改寫都是把一個較大的數表示成整"萬"或整"億"的數,後面都要加一個"萬"字或"億"字。

不同點:求近似數是把一個數變成一個近似數,數的大小發生了變化;而數的改寫只是把一個大數寫成了以"萬"或"億"為單位的數,大小沒有發生變化。

12、數字編碼。數不僅可以用來表示數量和順序,還可以用來編碼。編碼中的數字代表著一定的意義。編碼具有有序性。

四年級數學知識點

運算定律及簡便運算

一、加法運算定律:

1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a

2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+(b+c)

加法的這兩個定律往往結合起來一起使用。

如:165+93+35=93+(165+35)依據是什麼?

3、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。a-b-c=a-(b+c)

二、乘法運算定律:

1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a

2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。(a×b)×c=a×(b×c)

乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算

3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再把積相加。

(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

四年級上冊數學《近似數》知識點

近似數知識點

1、 精確數與近似數的特點。

精確數一般都以「一」為單位,近似數都是省略尾數,以「萬」或「億」為單位。

2、 用四捨五入法保留近似數的方法。

根據題中要求,看到所要保留位數的下一位,如果這一位滿5,則向前一位進一;如果不夠5則捨去。而不管尾數的後幾位是多少。如精確到萬位,只看千位,精確到億位,只看到千萬位。最後一定要寫出單位名稱。

典型練習題

一、填空

1、一個數是由7個千、3個百和5個十組成的,這個數是( )。

2、一個數從右邊起,百位是第( )位,第五位是( )位。

3、3465的位是( )位,是( )位數。「6」在( )位上,表示( )。「3」在( )位上,表示( )。

4、100裡面有( )十,一千裡面有( )百,10個一是( )。

5、的四位數是( ),的三位數是( ),它們的和( ),差是( )。由( )個千、( )個百、( )個一組成3207。

6、萬以內數的讀法是從( )位起,按照數位順序讀;( )位上是幾就讀( )千;百位上是幾就讀( )……;中間有一個或兩個0,只讀( )個零;末尾不管有幾個零都( )。

二、寫出下面各數的近似數。

698的近似數是: 2956的近似數是:

3120的近似數是: 2802的近似數是:

1004的近似數是: 5023的近似數是:


四年級數學基礎重要知識點相關 文章 :

★ 四年級上冊數學基礎知識點

★ 小學四年級數學基礎知識點

★ 四年級數學基礎復習知識點

★ 四年級數學基礎知識點總結

★ 小學四年級數學上冊重要知識點

★ 四年級數學基礎知識點

★ 四年級數學重要知識點

★ 小學四年級數學基本知識點

★ 小學四年級數學重要知識點

★ 四年級數學基本知識點總結

④ 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4