1. 初二數學上冊知識點總結歸納
期末考試就要到了,我給大家總結歸納了初二數學上冊知識點,接下來分享具體內容,供參考。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。
3、軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
圖形的平移與旋轉
1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
2.平移性質
(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。
(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。
(3)多次連續平移相當於一次平移。
(4)偶數次對稱後的圖形等於平移後的圖形。
(5)平移是由方向和距離決定的。
(6)經過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行(或共線)且相等。
3.旋轉,在平面內,將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角。
4.旋轉的性質:旋轉前後兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等於旋轉角。
全等三角形
1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
2.三角形全等的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
3.角平分線
(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。
(2)性質
①角平分線分得的兩個角相等,都等於該角的一半。
②角平分線上的點到角的兩邊的距離相等。
一元一次不等式
1.一般地,用符號(或),(或)連接的式子叫做不等式。
2.一元一次不等式的解法:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1。
3.不等式的基本性質
不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變;不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
2. 初二數學知識點歸納
對知識點做歸納總結是一種很好的學習方法。下面是我歸納整理的一些初二數學知識點,希望對你有幫助。
初二數學上冊知識點總結
第十一章 三角形
一、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和
性質2:三角形的一個外角大於任何一個和它不相鄰的內角
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形②邊形共有條對角線
第十二章 全等三角形
一、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
⑸對應角:全等三角形中互相重合的角叫做對應角。
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的`形狀、大小就全確定,這個性質叫做三角形的穩定性。
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等。
3.全等三角形的判定定理:
⑴邊邊邊(SSS):三邊對應相等的兩個三角形全等。
⑵邊角邊(SAS):兩邊和它們的夾角對應相等的兩個三角形全等。
⑶角邊角(ASA):兩角和它們的夾邊對應相等的兩個三角形全等。
⑷角角邊(AAS):兩角和其中一個角的對邊對應相等的兩個三角形全等。
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應相等的兩個直角三角形全等。
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等。
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5.證明的基本方法:
⑴明確命題中的已知和求證(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證。
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章 軸對稱
一、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上
⑶關於坐標軸對稱的點的坐標性質
①點P(x,y)關於軸對稱的點的坐標為
②點P(x,y)關於軸對稱的點的坐標為
⑷等腰三角形的性質:
①等腰三角形兩腰相等
②等腰三角形兩底角相等(等邊對等角)
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條
⑸等邊三角形的性質:
①等邊三角形三邊都相等
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形
②三個角都相等的三角形是等邊三角形
③有一個角是60°的等腰三角形是等邊三角形
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
3. 初二數學函數知識點
初二數學《函數》知識點總結
(一)平面直角坐標系
1、定義:平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系
2、已知點的坐標找出該點的方法:
分別以點的橫坐標、縱坐標在數軸上表示的點為垂足,作x軸y軸的的垂線,兩垂線的交點即為要找的點。
3、已知點求出其坐標的方法:
由該點分別向x軸y軸作垂線,垂足在x軸上的坐標是改點的橫坐標,垂足在y軸上的坐標是該點的縱坐標。
4、各個象限內點的特徵:
第一象限:(+,+) 點P(x,y),則x>0,y>0;
第二象限:(-,+) 點P(x,y),則x<0,y>0;
第三象限:(-, -) 點P(x,y),則x<0,y<0;
第四象限:(+,-) 點P(x,y),則x>0,y<0;
5、坐標軸上點的坐標特徵:
x軸上的點,縱坐標為零;y軸上的點,橫坐標為零;原點的坐標為(0 , 0)。兩坐標軸的點不屬於任何象限。
6、點的對稱特徵:已知點P(m,n),
關於x軸的對稱點坐標是(m,-n), 橫坐標相同,縱坐標反號
關於y軸的對稱點坐標是(-m,n) 縱坐標相同,橫坐標反號
關於原點的對稱點坐標是(-m,-n) 橫,縱坐標都反號
7、平行於坐標軸的直線上的點的坐標特徵:
平行於x軸的直線上的任意兩點:縱坐標相等;
平行於y軸的直線上的任意兩點:橫坐標相等。
8、各象限角平分線上的點的坐標特徵:
第一、三象限角平分線上的點橫、縱坐標相等。
點P(a,b)關於第一、三象限坐標軸夾角平分線的對稱點坐標是(b, a)
第二、四象限角平分線上的點橫縱坐標互為相反數。
點P(a,b)關於第二、四象限坐標軸夾角平分線的對稱點坐標是(-b,-a)
9、點P(x,y)的幾何意義:
點P(x,y)到x軸的距離為 |y|,
點P(x,y)到y軸的距離為 |x|。
點P(x,y)到坐標原點的距離為
10、兩點之間的距離:
X軸上兩點為A 、B |AB|
Y軸上兩點為C 、D |CD|
已知A 、B AB|=
11、中點坐標公式:已知A 、B M為AB的中點
則:M=( , )
12、點的平移特徵: 在平面直角坐標系中,
將點(x,y)向右平移a個單位長度,可以得到對應點( x-a,y);
將點(x,y)向左平移a個單位長度,可以得到對應點(x+a ,y);
將點(x,y)向上平移b個單位長度,可以得到對應點(x,y+b);
將點(x,y)向下平移b個單位長度,可以得到對應點(x,y-b)。
注意:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上點的坐標的加減變化,我們也可以看出對這個圖形進行了怎樣的平移。
(二)函數的基本知識:
知識網路圖
基本概念
1、變數:在一個變化過程中可以取不同數值的量。
常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變數x和y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼我們就把x稱為自變數,把y稱為因變數,y是x的函數。
*判斷A是否為B的函數,只要看B取值確定的時候,A是否有唯一確定的值與之對應
3、定義域:一般的,一個函數的自變數允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;
(2)關系式含有分式時,分式的分母不等於零;
(3)關系式含有二次根式時,被開放方數大於等於零;
(4)關系式中含有指數為零的式子時,底數不等於零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。
5、函數的圖像
一般來說,對於一個函數,如果把自變數與函數的每對對應值分別作為點的橫、縱坐標,那麼坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變數的字母的代數式表示因變數的式子叫做解析式。
7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變數的值及其對應的函數值);
第二步:描點(在直角坐標系中,以自變數的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);
第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。
(三)正比例函數和一次函數
1、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.
註:正比例函數一般形式 y=kx (k不為零) ① k不為零 ② x指數為1 ③ b取零
當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數,k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
2、一次函數及性質
一般地,形如y=kx+b(k,b是常數,k≠0),那麼y叫做x的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.
註:一次函數一般形式 y=kx+b (k不為零) ① k不為零 ②x指數為1 ③ b取任意實數
一次函數y=kx+b的圖象是經過(0,b)和(- ,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k 0)
(2)必過點:(0,b)和(- ,0)
(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限
b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限
直線經過第一、二、三象限 直線經過第一、三、四象限
直線經過第一、二、四象限 直線經過第二、三、四象限
註:y=kx+b中的k,b的作用:
1、k決定著直線的變化趨勢
① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的
2、b決定著直線與y軸的交點位置
① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負半軸相交
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近於y軸;|k|越小,圖象越接近於x軸.
(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
3、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,並且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b), .即橫坐標或縱坐標為0的點.
註:對於y=kx+b 而言,圖象共有以下四種情況:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0
b>0 b<0 b=0
k>0 經過第一、二、三象限 經過第一、三、四象限 經過第一、三象限
圖象從左到右上升,y隨x的增大而增大
k<0 經過第一、二、四象限 經過第二、三、四象限 經過第二、四象限
圖象從左到右下降,y隨x的增大而減小
4、直線y=kx+b(k≠0)與坐標軸的交點.
(1)直線y=kx與x軸、y軸的交點都是(0,0);
(2)直線y=kx+b與x軸交點坐標為 與 y軸交點坐標為(0,b).
5、用待定系數法確定函數解析式的一般步驟:
(1)根據已知條件寫出含有待定系數的函數關系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式.
6、兩條直線交點坐標的求法:
方法:聯立方程組求x、y
例題:已知兩直線y=x+6 與y=2x-4交於點P,求P點的坐標?
7、直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1 k2
(3)兩直線重合:k1=k2且b1=b2
8、正比例函數與一次函數圖象之間的關系
一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).
9、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值. 從圖象上看,相當於已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
10、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數的取值范圍.
11、一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y= 的圖象相同.
(2)二元一次方程組 的解可以看作是兩個一次函數y= 和y= 的圖象交點.
12、函數應用問題 (理論應用 實際應用)
(1)利用圖象解題 通過函數圖象獲取信息,並利用所獲取的信息解決簡單的實際問題.
(2)經營決策問題 函數建模的關鍵是將實際問題數學化,從而解決最佳方案,最佳策略等問題.建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變數,再尋求出兩個變數之間的關系,構建函數模型,從而利用數學知識解決實際問題.
4. 初二數學部編版知識點總結
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
3、軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
八年級 上冊數學知識點
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
初二數學 復習 方法
(一)、整理本學期學過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應用以及平行線的性質與判別還有三角形內角和定理及其應用。所以記住性質是關鍵,學會判定是重點,靈活應用是目的。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,形成一個有機整體。對常見的證明題要多練多 總結 。2.第四五六章主要是概念的教學,對這幾章的考試題型學生可能都不熟悉,所以要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質、方法綜合復習,加入適當的練習,在練習計算。課堂上逐一對易錯題的講解,多強調解題方法的針對性。最後針對平時練習中存在的問題,查漏補缺。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、通過本學期的數學學習,讓同學們總結自己有哪些收獲;有哪些需要改進的地方。
初二數學部編版知識點總結相關 文章 :
★ 八年級學習方法指導
★ 部編版二年級數學下冊知識點
★ 八年級上冊數學復習知識提綱滬科版
★ 部編版八年級下冊第八課知識點整理
★ 部編版八年級下冊第七課知識點整理
★ 學習方法指導
★ 最好的學習方法推薦
★ 七年級數學知識點大全
5. 八年級上冊數學知識點總結
學習 八年級 數學知識點的來源於勤奮好學,只有好學者,才能在無邊的知識海洋里獵取到真智才學,為大家整理了八年級上冊數學知識點 總結 人教版,歡迎大家閱讀!
八年級上冊數學知識點總結人教版第11-12章
第十一章 全等三角形
知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本 方法 步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章 軸對稱
知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
八年級上冊數學知識點總結人教版第13-14章
第十三章 實數
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章 一次函數
知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
八年級上冊數學知識點總結人教版第15章
第十五章 整式的乘除與分解因式
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則:(m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級上冊數學知識點總結相關 文章 :
1. 人教版八年級數學上冊知識點總結
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級數學上冊知識點歸納
5. 八年級上冊數學知識點總結
6. 新人教版八年級數學上冊知識點歸納
7. 八年級上冊數學知識點總結與八年級數學學習技巧
8. 八年級數學知識點整理歸納
9. 八年級數學知識點總結
10. 2017人教版八年級上冊數學知識點總結
6. 初二數學知識點歸納
臨近考試了,各科都會整理好知識點復習。接下來是我為大家整理的初二數學知識點歸納,希望大家喜歡!
初二數學知識點歸納一
第十一章 三角形
一、知識框架:
二、知識概念:
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角
線,把多邊形分成個三角形。②邊形共有條對角線。
第十二章 全等三角形
一、知識框架:
二、知識概念:
1、基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
⑸對應角:全等三角形中互相重合的角叫做對應角。
2、基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性。
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等。
3、全等三角形的判定定理:
⑴邊邊邊():三邊對應相等的兩個三角形全等。
⑵邊角邊():兩邊和它們的夾角對應相等的兩個三角形全等。
⑶角邊角():兩角和它們的夾邊對應相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等。
⑸斜邊、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等。
4、角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等。
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5、證明的基本 方法 :
⑴明確命題中的已知和求證。(包括隱含條件,如公共邊、公共角、對頂
角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證。
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章 軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一
個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2、基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等。
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關於坐標軸對稱的點的坐標性質
⑷等腰三角形的性質:
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
⑸等邊三角形的性質:
①等邊三角形三邊都相等。
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。
3、基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對
等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個角都相等的三角形是等邊三角形。
③有一個角是60°的等腰三角形是等邊三角形。
4、基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
初二數學知識點歸納二
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:
(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)。
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°。
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
初二數學知識點歸納三
數據的收集、整理與描述
一.知識框架
二.知識概念
1.全面調查:考察全體對象的調查方式叫做全面調查.
2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.
3.總體:要考察的全體對象稱為總體.
4.個體:組成總體的每一個考察對象稱為個體.
5.樣本:被抽取的所有個體組成一個樣本.
6.樣本容量:樣本中個體的數目稱為樣本容量.
7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.
8.頻率:頻數與數據總數的比為頻率.
9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.
初二數學知識點歸納四
數的開方
1.平方根的定義:若x2=a,那麼x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數,(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質:
(1)正數的平方根是一對相反數;
(2)0的平方根還是0;
(3)負數沒有平方根.
3.平方根的表示方法:a的平方根表示為 和 .注意: 可以看作是一個數,也可以認為是一個數開二次方的運算.
4.算術平方根:正數a的正的平方根叫a的算術平方根,表示為 .注意:0的算術平方根還是0.
5.三個重要非負數: a2≥0 ,|a|≥0 , ≥0 .注意:非負數之和為0,說明它們都是0.
6.兩個重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定義:若x3=a,那麼x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數;(2)a的立方根表示為 ;即把a開三次方.
8.立方根的性質:
(1)正數的立方根是一個正數;
(2)0的立方根還是0;
(3)負數的立方根是一個負數.
9.立方根的特性: .
10.無理數:無限不循環小數叫做無理數.注意:?和開方開不盡的數是無理數.
11.實數:有理數和無理數統稱實數.
12.實數的分類:(1) (2) .
13.數軸的性質:數軸上的點與實數一一對應.
14.無理數的近似值:實數計算的結果中若含有無理數且題目無近似要求,則結果應該用無理數表示;如果題目有近似要求,則結果應該用無理數的近似值表示.注意:(1)近似計算時,中間過程要多保留一位;(2)要求記憶: .
三角形
幾何A級概念:(要求深刻理解、熟練運用、主要用於幾何證明)
1.三角形的角平分線定義:
三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖) 幾何表達式舉例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分線
2.三角形的中線定義:
在三角形中,連結一個頂點和它的對邊的中點的線段叫做三角形的中線.(如圖)
幾何表達式舉例:
(1) ∵AD是三角形的中線
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中線
3.三角形的高線定義:
從三角形的一個頂點向它的對邊畫垂線,頂點和垂足間的線段叫做三角形的高線.
(如圖)
幾何表達式舉例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三邊關系定理:
三角形的兩邊之和大於第三邊,三角形的兩邊之差小於第三邊.(如圖)
幾何表達式舉例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC
∴……………
5.等腰三角形的定義:
有兩條邊相等的三角形叫做等腰三角形. (如圖)
幾何表達式舉例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等邊三角形的定義:
有三條邊相等的三角形叫做等邊三角形. (如圖)
幾何表達式舉例:
(1)∵ΔABC是等邊三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等邊三角形
7.三角形的內角和定理及推論:
(1)三角形的內角和180°;(如圖)
(2)直角三角形的兩個銳角互余;(如圖)
(3)三角形的一個外角等於和它不相鄰的兩個內角的和;(如圖)
※(4)三角形的一個外角大於任何一個和它不相鄰的內角.
(1) (2) (3)(4) 幾何表達式舉例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
初二數學知識點歸納五
一次函數
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;
(2)正比例函數圖像特徵:一些過原點的直線;
(3)圖像性質:
①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小;
(4)求正比例函數的解析式:已知一個非原點即可;
(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;
(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)
(8)一次函數圖像特徵:一些直線;
(9)性質:
①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)
②當k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;
③當k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;
④當b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);
⑤當b<0時,直線y=kx+b與y軸負半軸有交點為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫一次函數的圖像:已知兩點;
用函數觀點看方程(組)與不等式
(1)解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值;從圖像上看,這相當於已知直線y=kx+b,確定它與x軸交點的橫坐標的值;
(2)解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數相應的取值范圍;
(3)每個二元一次方程都對應一個一元一次函數,於是也對應一條直線;
(4)一般地,每個二元一次方程組都對應兩個一次函數,於是也對應兩條直線。從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數的值相等,以及這個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線交點的坐標;
初二數學知識點歸納相關 文章 :
1.
2. 初二數學上冊知識點總結
3. 初二數學知識點總結
4. 初二數學上知識點總結
5. 八年級數學上知識點歸納
6. 初二數學上冊知識點全總結
7. 人教版初二上數學知識點歸納
8. 初中數學知識點整理:
9. 初二數學上冊知識點梳理
7. 初二數學知識點總結歸納大全
很多同學在復習初二數學時,因為之前沒有做過系統的總結,導致復習知識點分散,復習效率低下。下面是由我為大家整理的「初二數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。
初二數學知識點總結歸納大全
第一章 勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a +b = c ,那麼這個三角形是直角三角形。 定義:滿足a +b =c 的三個正整數,稱為勾股數。
第二章 實數
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可鉛沒慧以用有限小數或無限循環小數表示)
一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。 特別地,我們規定0的算術平方根是0。
一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根) 一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。 求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。 有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
第三章 圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。
任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
第四章 四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形: 兩組對邊分別平行的四邊形.。 對邊相等,對角相等,對角線互相平分。 兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形 :一組鄰邊相等的平行四邊形 „„(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。 一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形: 有一個內角是直角的平行四邊形 „„(平行四邊形的性質)。對角線相等,四個角都是直角。 有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形: 一組鄰邊相等的矩形。 正方形具有平行四邊形、菱形、矩形的一切性質。 一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形: 一組對邊平行而另一組對邊不平行的四邊形。 一組對邊平行而另一組對邊不平行的四邊形是梯形 。 等腰梯形 :兩條腰相等的梯形。 同一底上的兩個內角相等,對角線相等。 兩腰相等的梯形是等腰梯形,
同一底上兩個內角相等的梯形是等腰梯形 。
直角梯形 :一條腰和底垂直的梯形。 一條腰和底垂直的梯形是直角梯形。
察盯多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)×180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。 多邊形的外角和都等槐答於360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
第五章 位置的確定
位置表示方法:方位角加距離;坐標;經緯度„„
定義:在平面內,兩條互相垂直且有公共原點的書軸組成平面直角坐標系。
通常,兩條數軸分別至於水平位置與鉛直位置,取向右與向上方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸和y統稱坐標軸,它們的公共原點O稱為直角坐標系的原點。
圖形隨坐標變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關於x/y軸成軸對稱、關於原點O成中心對稱„„
第六章 一次函數
定義:一般地,在某個變化過程中,有兩個變數x和y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中是x自變數,y是因變數。
若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系中描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。 正比例函數y=kx的圖象是經過原點(0,0)的一條直線。 在一次函數y=kx+b中,
當k>0時,的值隨值的增大而增大; 當k<0時,的值隨值的增大而減小。
第七章 二元一次方程組
定義:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。 適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。 解二元一次方程組的基本思路是「消元」——把「二元」變為「一元」。 以一個未知數代另一個未知數的解法稱為代入消元法,簡稱代入法。 通過兩式加減消去其中一個未知數的解法稱做加減消元法,簡稱加減法。
第八章 數據的代表
定義:一般地,對於n個數X1,X2,„Xn,我們把1/n(X1+X2+„+Xn)叫做這個數的算術平均數,簡稱平均數,記為X。
為A的三項測試成績的加權平均數。
一般地,個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數,一組數據出現次數最多的那個數據叫做這組數據的眾數。
拓展閱讀:初中數學提升方法
1、課前預習,認真聽講
為什麼要預習,你要知道這一講哪些內容你一開始看不懂,那上課的時候對於這個問題就要認真聽,這樣聽講更有針對性,比坐在教室里純被動的聽講效率高太多,自然,最終的效果也要好太多。
2、課後刷題,總結歸納
提高數學成績必須要刷題,在刷題量沒有達到一定程度之前,是沒有談方法和技巧的必要的。怎麼刷題?其實每天的家庭作業就是刷題,一定要認真完成,如果還有多的時間,那麼可以刷往年的真題試卷,注意!一定是刷真題,刷真題不是說整套整套刷,你就刷平時經常扣分的那幾題。等你把刷過的題都歸納清楚,你的水平肯定會得到大幅度提升。
3、不懂就問,消除盲區
不少同學會發現一個問題,就是聽講也聽懂了,做題也不少,但是遇到新題還是不會。遇到新題不會的根本原因還是因為對原有知識點的理解不夠深入,不能舉一反三,那怎麼辦,遇到不懂的問題要第一時間解決,可以問老師、問同學、問搜題軟體等等,核心宗旨就是不能留下知識盲區,一點疑惑都不能留,並且要第一時間解決,不能拖,一拖就忘了。
8. 部編版初二數學知識點歸納
課堂臨時報佛腳,不如 課前預習 好。課堂臨時報佛腳,不如課前預習好。其實任何學科都是一樣的,學習任何一門學科,勤奮是最好的 學習 方法 ,沒有之一。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
3、軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
八年級 上冊數學知識點
1、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底岩棚笑邊並且垂直於底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,並且每一粗含個角都等於60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等於60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
18、直角三角形斜邊上的中線等於斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關於某條直線對稱的兩個圖形是全等形
23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
25、逆定理如果兩個圖形的對應點連線被同和核一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形
28、定理四邊形的內角和等於360°
29、四邊形的外角和等於360°
30、多邊形內角和定理n邊形的內角的和等於(n-2)×180°
31、推論任意多邊的外角和等於360°
32、平行四邊形性質定理1平行四邊形的對角相等
33、平行四邊形性質定理2平行四邊形的對邊相等
初二 數學學習方法
按部就班
數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。
強調理解
概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓練
學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
平時的數學學習:
○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的 總結 和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
部編版初二數學知識點歸納相關 文章 :
★ 八年級部編版數學知識點
★ 八年級數學學習方法指導
★ 部編版九年級數學知識點梳理
★ 部編版八年級下冊第八課知識點整理
★ 部編版二年級數學知識點總結
★ 二年級部編版數學的知識點
★ 初一數學部編版知識點歸納
★ 部編版一年級數學知識點總結
★ 最好的學習方法推薦