1. 高考的數學考點有哪些
高考的數學考點有:
1、【數列】&【解三角形】
數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來,2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。
數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。
2、【立體幾何】
高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。
3、【概率】
高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。
4、【解析幾何】
高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。
5、【導數】
高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。
2. 2016年成人高考高起專數學一般考哪些知識點
2016年成人高考高起專數學一般考的知識點有:
知識點一:集合思想及應用
集合是高中數學的基本知識,為歷年必考內容之一,主要考查對集合基本概念的認識和理解,以及作為工具,考查集合語言和集合思想的運用。本節主要是幫助考生運用集合的觀點,不斷加深對集合概念、集合語言、集合思想的理解與應用。
例題:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求實數m的取值范圍。
知識點二:充要條件的判定
充分條件、必要條件和充要條件是重要的數學概念,主要用來區分命題的條件p和結論q之間的關系。本節主要是通過不同的知識點來剖析充分必要條件的意義,讓考生能准確判定給定的兩個命題的充要關系。
例題:已知關於x的實系數二次方程x2+ax+b=0有兩個實數根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件
知識三:運用向量法解題
平面向量是新教材改革增加的內容之一,近幾年的全國使用新教材的高考試題逐漸加大了對這部分內容的考查力度,本節內容主要是幫助考生運用向量法來分析,解決一些相關問題。
例題:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值。
知識點四:三個「二次」及關系
三個「二次」即一元二次函數、一元二次方程、一元二次不等式是中學數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具。高考試題中近一半的試題與這三個「二次」問題有關。本節主要是幫助考生理解三者之間的區別及聯系,掌握函數、方程及不等式的思想和方法。
例題:已知對於x的所有實數值,二次函數f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關於x的方程=|a-1|+2的根的取值范圍。
知識點五:求解函數解析式
求解函數解析式是高考重點考查內容之一,需引起重視。本節主要幫助考生在深刻理解函數定義的基礎上,掌握求函數解析式的幾種方法,並形成能力,並培養考生的創新能力和解決實際問題的能力。
例題:(1)已知f(2-cosx)=cos2x+cosx,求f(x-1)。
(2)已知函數f(x)滿足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表達式。
(3)已知二次函數f(x)=ax2+bx+c滿足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表達式。