『壹』 初一數學知識點總結
第一冊
第一章 有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。
括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。
括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a• (b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同級運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0 數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
第二章 一元一次方程
2.1從算式到方程
2.1.1一元一次方程
含有未知數的等式叫做方程。
只含有一個未知數(元),未知數的指數都是1(次),這樣的方程叫做一元一次方程。
分析實際問題中的數量關系,利用其中的相等關系列出方程,是數學解決實際問題的一種方法。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2.1.2等式的性質
等式的性質1 等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式的性質2 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2從古老的代數書說起——一元一次方程的討論⑴
把等式一邊的某項變號後移到另一邊,叫做移項。
2.3從「買布問題」說起——一元一次方程的討論⑵
方程中有帶括弧的式子時,去括弧的方法與有理數運算中括弧類似。
解方程就是要求出其中的未知數(例如x),通過去分母、去括弧、移項、合並、系數化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉化,這個過程主要依據等式的性質和運算律等。
去分母:
⑴具體做法:方程兩邊都乘各分母的最小公倍數
⑵依據:等式性質2
⑶注意事項:①分子打上括弧
②不含分母的項也要乘
2.4再探實際問題與一元一次方程
第三章 圖形認識初步
3.1多姿多彩的圖形
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。
3.1.1立體圖形與平面圖形
長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
長方形、正方形、三角形、圓等都是平面圖形。
許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
3.1.2點、線、面、體
幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。
面和面相交的地方形成線。
線和線相交的地方是點。
幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。
3.2直線、射線、線段
經過兩點有一條直線,並且只有一條直線。
兩點確定一條直線。
點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
直線桑一點和它一旁的部分叫做射線。
兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。
3.3角的度量
角也是一種基本的幾何圖形。
度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。
3.4角的比較與運算
3.4.1角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
3.4.2餘角和補角
如果兩個角的和等於90(直角),就說這兩個角互為餘角。
如果兩個角的和等於180(平角),就說這兩個角互為補角。
等角的補角相等。
等角的餘角相等。
本章知識結構圖
第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
4.1喜愛哪種動物的同學最多——全面調查舉例
用劃記法記錄數據,「正」字的每一劃(筆畫)代表一個數據。
考察全體對象的調查屬於全面調查。
4.2調查中小學生的視力情況——抽樣調查舉例
抽樣調查是從總體中抽取樣本進行調查,根據樣本來估計總體的一種調查。
統計調查是收集數據常用的方法,一般有全面調查和抽樣調查兩種,實際中常常採用抽樣調查的方式。調查時,可用不同的方法獲得數據。除問卷調查、訪問調查等外,查閱文獻資料和實驗也是獲得數據的有效方法。
利用表格整理數據,可以幫助我們找到數據的分布規律。利用統計圖表示經過整理的數據,能更直觀地反映數據規律。
4.3課題學習 調查「你怎樣處理廢電池?」
調查活動主要包括以下五項步驟:
一、 設計調查問卷
⑴設計調查問卷的步驟
①確定調查目的;
②選擇調查對象;
③設計調查問題
⑵設計調查問卷時要注意:
①提問不能涉及提問者的個人觀點;
②不要提問人們不願意回答的問題;
③提供的選擇答案要盡可能全面;
④問題應簡明;
⑤問卷應簡短。
二、實施調查
將調查問卷復制足夠的份數,發給被調查對象。
實施調查時要注意:
⑴向被調查者講明哪些人是被調查的對象,以及他為什麼成為被調查者;
⑵告訴被調查者你收集數據的目的。
三、處理數據
根據收回的調查問卷,整理、描述和分析收集到的數據。
四、交流
根據調查結果,討論你們小組有哪些發現和建議?
五、寫一份簡單的調查報告
第二冊
第五章 相交線與平行線
5.1相交線
5.1.1相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
5.1.2
兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
畫已知直線的垂線有無數條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
5.2平行線
5.2.1平行線
在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
在同一平面內兩條直線的關系只有兩種:相交或平行。
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。
判定兩條直線平行的方法:
方法1 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
方法3 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5.3平行線的性質
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直於兩條平行線,並且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。
5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章 平面直角坐標系
6.1平面直角坐標系
6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。
6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
6.2坐標方法的簡單應用
6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區域內一些地點分布情況平面圖的過程如下:
⑴建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;
⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;
⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
6.2.2用坐標表示平移
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章 三角形
7.1與三角形有關的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。
頂點是A、B、C的三角形,記作「△ABC」,讀作「三角形ABC」。
三角形兩邊的和大於第三邊。
7.1.2三角形的高、中線和角平分線
7.1.3三角形的穩定性
三角形具有穩定性。
7.2與三角形有關的角
7.2.1三角形的內角
三角形的內角和等於180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角。
7.3多邊形及其內角和
7.3.1多邊形
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內角和
n邊形的內角和公式:180(n-2)
多邊形的外角和等於360。
7.4課題學習 鑲嵌
第八章 二元一次方程組
8.1二元一次方程組
含有兩個未知數,並且未知數的指數都是1的方程叫做二元一次方程
把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2消元
由二元一次方程組中的一個方程,將一個未知數用含有另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。
8.3再探實際問題與二元一次方程組
第九章 不等式與不等式組
9.1不等式
9.1.1不等式及其解集
用「<」或「>」號表示大小關系的式子叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。
9.1.2不等式的性質
不等式有以下性質:
不等式的性質1 不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式的性質2 不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式的性質3 不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
9.2實際問題與一元一次不等式
解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x<a(或x>a)的形式。
9.3一元一次不等式組
把兩個不等式合起來,就組成了一個一元一次不等式組。
幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對於具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。
9.4課題學習 利用不等關系分析比賽
『貳』 初一數學全部知識點有哪些
一、正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、正數大於0,負數小於0,正數大於負數。
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
二、有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
三、數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
相反數的和為0 a+b=0 a、b互為相反數。
四、有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
五、有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
『叄』 初一數學必考的知識點
初一數學必考的知識點1
一、數軸
(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.
數軸的三要素:原點,單位長度,正方向。
(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。)
(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。
二、相反數
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。
三、絕對值
1.概念:數軸上某個數與原點的距離叫做這個數的絕對值。
①互為相反數的兩個數絕對值相等;
②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數.
③有理數的絕對值都是非負數.
2.如果用字母a表示有理數,則數a絕對值要由字母a本身的取值來確定:
①當a是正有理數時,a的絕對值是它本身a;
②當a是負有理數時,a的絕對值是它的相反數﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
初一數學必考知識點:有理數大小比較
1.有理數的大小比較
比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的.數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小。
2.有理數大小比較的法則:
①正數都大於0;
②負數都小於0;
③正數大於一切負數;
④兩個負數,絕對值大的其值反而小。
規律方法·有理數大小比較的三種方法:
(1)法則比較:正數都大於0,負數都小於0,正數大於一切負數.兩個負數比較大小,絕對值大的反而小.
(2)數軸比較:在數軸上右邊的點表示的數大於左邊的點表示的數.
(3)作差比較:
若a﹣b>0,則a>b;
若a﹣b<0,則a<b; p=""> </b;>
若a﹣b=0,則a=b.
初一數學必考知識點:相反數
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。
初一數學必考的知識點2
第一章 有理數
1.正數和負數
2.有理數
3.有理數的加減
4.有理數的乘除
5.有理數的乘方
重點:數軸、相反數、絕對值、有理數計算、科學計數法、有效數字
難點:絕對值
易錯點:絕對值、有理數計算
中考必考:科學計數法、相反數(選擇題)
第二章 整式的加減
1.整式
2.整式的加減
重點:單項式與多項式的概念及系數和次數的確定、同類項、整式加減
難點:單項式與多項式的系數和次數的確定、合並同類項
易錯點:合並同類項、計算失誤、整數次數的確定
中考必考:同類項、整數系數次數的確定、整式加減
第三章 一元一次方程
1.從算式到方程
2.解一元一次方程----合並同類項與移項
3.解一元一次方程----去括弧去分母
4.實際問題與一元一次方程
重點:一元一次方程(定義、解法、應用)
難點:一元一次方程的解法(步驟)
易錯點:去分母時,不含有分母項易漏乘、解應用題時,不知道如何找等量關系
第四章 圖形認識實步
1.多姿多彩的圖形
2.直線、射線、線段
3.角
4.課題實習----設計製作長方形形狀的包裝紙盒
重點:直線、射線、線段、角的認識、中點和角平分線的相關計算、餘角和補角,方位角等
難點:中點和角平分線的相關計算、餘角和補角的應用
易錯點:等量關系不會轉化、審題不清
『肆』 初一數學知識點總結歸納大全
很多同學蠢局在復習初一數學時找不到重點,因為沒有做過系統的總結,導致復習效率不高。下面是由我為大家整理的「初一數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。
七年級數學知識點總結
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
(2)注意:有理數中,1、0、-1是三個槐檔蘆特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反鉛帶數是b-a;a+b的相反數是-a-b;
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經常分類討論;
(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
七年級數學知識點總結
二元一次方程組
1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
七年級數學知識點總結
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
拓展閱讀:初一數學考試答題技巧
選擇題的答題技巧
掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。
首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
填空題答題技巧
要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。
對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。
解答題答題技巧
(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。
(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。
(3)給出結論。注意分類討論的問題,最後要歸納結論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。
『伍』 初一數學的知識點
不同版本學的內容不同,你學的什麼版本?至於學的哪些知識點,你看一下目錄就明白了。
『陸』 初一數學知識點有哪些
第一節整數和整除
1、整數和整除的意義。
2、因數和倍數。
3、能被2、5整除的數。
第二節分解素因數
1、素數、合數與分解素因數。
2、公因數與最大公因數。
3、公倍數與最小公倍數。
第三節分數的意義和性質
1、分數與除法。
2、分數的基本性質。
3、分數的大小比較。
第四節分數的運算
1、分數的加法。
2、分數的乘法。
3、分數的除法。
4、分數與小數的互化。
第五節比和比例
1、比的意義。
2、比的基本性質。
3、比例。
第六節百分比
1、百分比的意義。
2、百分比的應用。
3、等可能事件。
第七節圓的周長和弧長
1、圓的周長。
2、弧長。
第八節圓和扇形面積
1、圓的面積。
2、扇形的面積。
『柒』 初一數學全部知識點有哪些
1、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數。
與負數具有相反意義,即以前學過的0以外的數叫做正數。
2、一元一次方程
只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數 不是零的整式方程是一元一次方程。
3、一元一次方程的標准形式:ax+b=0(x 是未知數,a、b 是已知數,且 a≠0)。
4、等式的性質
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
5、角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。