當前位置:首頁 » 基礎知識 » 初一知識點大全集
擴展閱讀
二小姐來自哪個動漫 2024-11-26 07:02:42

初一知識點大全集

發布時間: 2024-08-09 05:34:30

❶ 初一數學的知識點歸納

學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

初一下冊數學知識

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

初一下學期數學知識點

相交線與平行線

一、知識網路結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,

與互為鄰補角。+=180°;+=180°;+=180°;

+=180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;

=。

5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質3:如圖2所示,當a⊥b時,====90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣

的兩個角叫同位角。圖3中,共有對同位角:與是同位角;

與是同位角;與是同位角;與是同位角。

②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。


初一數學第一章知識點相關 文章 :

★ 初一數學上冊第一章知識點歸納

★ 初一數學上冊第一章知識點總結

★ 初一數學第一章知識點總結

★ 初一數學第一章知識點總結歸納

★ 初一數學重要知識點總結

★ 初一數學上冊知識點歸納

★ 初一數學第1章有理數知識點總結

★ 七年級數學上冊知識點總結第一章

★ 初一數學第一單元知識點歸納

★ 初一數學上知識點

❷ 初一數學全部知識點有哪些

一、正負數

1、正數:大於0的數。

2、負數:小於0的數。

3、正數大於0,負數小於0,正數大於負數。

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

二、有理數

1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

三、數軸

1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2、數軸的三要素:原點、正方向、單位長度。

3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

相反數的和為0 a+b=0 a、b互為相反數。

四、有理數的加減法

1、先定符號,再算絕對值。

2、加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

五、有理數乘法(先定積的符號,再定積的大小)

1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2、乘積是1的兩個數互為倒數。

❸ 初一數學知識點有哪些

初一數學知識點:

一、有理數。

1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

二、整式的加減

1.整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2.同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

❹ 數學初一全部重要知識點

數學初一全部重要知識點如下:

1、條件:一元一次方程必需同時滿意4個條件:

(1)它是等式。

(2)分母中不含有未知數。

(3)未知數最高次項為1。

(4)含未知數的項的系數不為0。


5、一元一次方程解法的一般步驟:

使方程左右兩邊相等的未知數的值叫做方程的解。

一般解法:

(1)去分母:在方程兩邊都乘以各分母的最小公倍數。

(2)去括弧:先去小括弧,再去中括弧,最終去大括弧。

(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號。

(4)合並同類項:把方程化成ax=b(a≠0)的形式。

(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a。

❺ 初一數學知識點總結

第一冊

第一章 有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義

1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。

1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。
括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。
括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a• (b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。

1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同級運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0 數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。

第二章 一元一次方程
2.1從算式到方程
2.1.1一元一次方程
含有未知數的等式叫做方程。
只含有一個未知數(元),未知數的指數都是1(次),這樣的方程叫做一元一次方程。
分析實際問題中的數量關系,利用其中的相等關系列出方程,是數學解決實際問題的一種方法。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2.1.2等式的性質
等式的性質1 等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式的性質2 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2從古老的代數書說起——一元一次方程的討論⑴
把等式一邊的某項變號後移到另一邊,叫做移項。

2.3從「買布問題」說起——一元一次方程的討論⑵
方程中有帶括弧的式子時,去括弧的方法與有理數運算中括弧類似。
解方程就是要求出其中的未知數(例如x),通過去分母、去括弧、移項、合並、系數化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉化,這個過程主要依據等式的性質和運算律等。
去分母:
⑴具體做法:方程兩邊都乘各分母的最小公倍數
⑵依據:等式性質2
⑶注意事項:①分子打上括弧
②不含分母的項也要乘

2.4再探實際問題與一元一次方程

第三章 圖形認識初步
3.1多姿多彩的圖形
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。
3.1.1立體圖形與平面圖形
長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
長方形、正方形、三角形、圓等都是平面圖形。
許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
3.1.2點、線、面、體
幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。
面和面相交的地方形成線。
線和線相交的地方是點。
幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

3.2直線、射線、線段
經過兩點有一條直線,並且只有一條直線。
兩點確定一條直線。
點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
直線桑一點和它一旁的部分叫做射線。
兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

3.3角的度量
角也是一種基本的幾何圖形。
度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。
3.4角的比較與運算
3.4.1角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
3.4.2餘角和補角
如果兩個角的和等於90(直角),就說這兩個角互為餘角。
如果兩個角的和等於180(平角),就說這兩個角互為補角。
等角的補角相等。
等角的餘角相等。
本章知識結構圖

第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
4.1喜愛哪種動物的同學最多——全面調查舉例
用劃記法記錄數據,「正」字的每一劃(筆畫)代表一個數據。
考察全體對象的調查屬於全面調查。
4.2調查中小學生的視力情況——抽樣調查舉例
抽樣調查是從總體中抽取樣本進行調查,根據樣本來估計總體的一種調查。
統計調查是收集數據常用的方法,一般有全面調查和抽樣調查兩種,實際中常常採用抽樣調查的方式。調查時,可用不同的方法獲得數據。除問卷調查、訪問調查等外,查閱文獻資料和實驗也是獲得數據的有效方法。
利用表格整理數據,可以幫助我們找到數據的分布規律。利用統計圖表示經過整理的數據,能更直觀地反映數據規律。
4.3課題學習 調查「你怎樣處理廢電池?」
調查活動主要包括以下五項步驟:
一、 設計調查問卷
⑴設計調查問卷的步驟
①確定調查目的;
②選擇調查對象;
③設計調查問題
⑵設計調查問卷時要注意:
①提問不能涉及提問者的個人觀點;
②不要提問人們不願意回答的問題;
③提供的選擇答案要盡可能全面;
④問題應簡明;
⑤問卷應簡短。
二、實施調查
將調查問卷復制足夠的份數,發給被調查對象。
實施調查時要注意:
⑴向被調查者講明哪些人是被調查的對象,以及他為什麼成為被調查者;
⑵告訴被調查者你收集數據的目的。
三、處理數據
根據收回的調查問卷,整理、描述和分析收集到的數據。
四、交流
根據調查結果,討論你們小組有哪些發現和建議?
五、寫一份簡單的調查報告

第二冊

第五章 相交線與平行線
5.1相交線
5.1.1相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
5.1.2
兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
畫已知直線的垂線有無數條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

5.2平行線
5.2.1平行線
在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
在同一平面內兩條直線的關系只有兩種:相交或平行。
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。
判定兩條直線平行的方法:
方法1 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
方法3 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5.3平行線的性質
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直於兩條平行線,並且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。
5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。

第六章 平面直角坐標系
6.1平面直角坐標系
6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。
6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
6.2坐標方法的簡單應用
6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區域內一些地點分布情況平面圖的過程如下:
⑴建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;
⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;
⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
6.2.2用坐標表示平移
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。

第七章 三角形
7.1與三角形有關的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。
頂點是A、B、C的三角形,記作「△ABC」,讀作「三角形ABC」。
三角形兩邊的和大於第三邊。
7.1.2三角形的高、中線和角平分線
7.1.3三角形的穩定性
三角形具有穩定性。
7.2與三角形有關的角
7.2.1三角形的內角
三角形的內角和等於180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角。
7.3多邊形及其內角和
7.3.1多邊形
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內角和
n邊形的內角和公式:180(n-2)
多邊形的外角和等於360。
7.4課題學習 鑲嵌

第八章 二元一次方程組
8.1二元一次方程組
含有兩個未知數,並且未知數的指數都是1的方程叫做二元一次方程
把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2消元
由二元一次方程組中的一個方程,將一個未知數用含有另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。
8.3再探實際問題與二元一次方程組

第九章 不等式與不等式組
9.1不等式
9.1.1不等式及其解集
用「<」或「>」號表示大小關系的式子叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。
9.1.2不等式的性質
不等式有以下性質:
不等式的性質1 不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式的性質2 不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式的性質3 不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
9.2實際問題與一元一次不等式
解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x<a(或x>a)的形式。
9.3一元一次不等式組
把兩個不等式合起來,就組成了一個一元一次不等式組。
幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對於具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。
9.4課題學習 利用不等關系分析比賽

❻ 初一數學知識點總結

初一數學知識點總結1

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

19.公式與性質

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

20.多邊形外角和定理:

(1)n邊形外角和等於n·180°-(n-2)·180°=360°

(2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°

21.多邊形對角線的條數:

(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有n(n-3)/2條對角線。

初一數學知識點總結2

平面直角坐標系

1.定義:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。

2.平面上的任意一點都可以用一個有序數對來表示,記為(a,b),a是橫坐標,b是縱坐標。

3.原點的坐標是(0,0);

縱坐標相同的點的連線平行於x軸;

橫坐標相同的點的連線平行於y軸;

x軸上的點的縱坐標為0,表示為(x,0);

y軸上的點的橫坐標為0,表示為(0,y)。

4.建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。

5.幾個象限內點的特點:

第一象限(+,+);第二象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)關於原點對稱的點是(—x,—y);

(x,y)關於x軸對稱的點是(x,—y);

(x,y)關於y軸對稱的點是(—x,y)。

7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;

點P(x,y)到y軸的距離是︱x︳。

8.在第一、三象限角平分線上的點的坐標是(m,m);

在第二、四象限叫平分線上的點的坐標是(m,—m)。

不等式與不等式組

(1)不等式

用不等號(,≥,≤,≠)連接的式子叫做不等式。

(2)不等式的性質

①對稱性;

②傳遞性;

③加法單調性,即同向不等式可加性;

④乘法單調性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可開方;

(3)一元一次不等式

用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。

(4)一元一次不等式組

一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。

點、線、面、體知識點

1.幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

2.點動成線,線動成面,面動成體。

點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示。

一條射線可以用端點和射線上另一點來表示。

一條線段可用它的端點的兩個大寫字母來表示。

注意:

(1)表示點、直線、射線、線段時,都要在字母前面註明點、直線、射線、線段。

(2)直線和射線無長度,線段有長度。

(3)直線無端點,射線有一個端點,線段有兩個端點。

(4)點和直線的位置關系有線面兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

角的種類

銳角:大於0°,小於90°的角叫做銳角。

直角:等於90°的角叫做直角。

鈍角:大於90°而小於180°的角叫做鈍角。

平角:等於180°的角叫做平角。

優角:大於180°小於360°叫優角。

劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。

周角:等於360°的角叫做周角。

負角:按照順時針方向旋轉而成的角叫做負角。

正角:逆時針旋轉的角為正角。

0角:等於零度的角。

餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。

對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。

還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)。

初一數學知識點總結3

正數和負數

⒈、正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2、具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;

(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1、有理數的概念

(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

(2)正分數和負分數統稱為分數

(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。

①π是無限不循環小數,不能寫成分數形式,不是有理數。

②有限小數和無限循環小數都可化成分數,都是有理數。

③整數也能化成分數,也是有理數

注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

初一數學知識點總結4

一、一元一次不等式的解法:

一元一次不等式的解法與一元一次方程的解法類似,其步驟為:

1、去分母;

2、去括弧;

3、移項;

4、合並同類項;

5、系數化為1

二、不等式的基本性質:

1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;

2、不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變;

3、不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

三、不等式的解:

能使不等式成立的未知數的值,叫做不等式的解。

四、不等式的解集:

一個含有未知數的不等式的所有解,組成這個不等式的解集。

五、解不等式的依據不等式的基本性質:

性質1:不等式兩邊加上(或減去)同一個數(或式子),不等號的方向不變,

性質2:不等式兩邊乘以(或除以)同一個正數,不等號的方向不變,

性質3:不等式兩邊乘以(或除以)同一個負數,不等號的方向改變,

常見考法

(1)考查一元一次不等式的解法;

(2)考查不等式的性質。

誤區提醒

忽略不等號變向問題。

初中數學重點知識點歸納

有理數乘法的運算律

1、乘法的交換律:ab=ba;

2、乘法的結合律:(ab)c=a(bc);

3、乘法的分配律:a(b+c)=ab+ac

單項式

只含有數字與字母的積的代數式叫做單項式。

注意:單項式是由系數、字母、字母的'指數構成的。

多項式

1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。

2、同類項所有字母相同,並且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。

提高數學思維的方法

轉化思維

轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。

創新思維

創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,得出與眾不同的解

要培養質疑的習慣

在家庭教育中,家長要經常引導孩子主動提問,學會質疑、反省,並逐步養成習慣。

在孩子放學回家後,讓孩子回顧當天所學的知識:老師如何講解的,同學是如何回答的?當孩子回答出來之後,接著追問:「為什麼?」「你是怎樣想的?」啟發孩子講出思維的過程並盡量讓他自己作出評價。

有時,可以故意製造一些錯誤讓孩子去發現、評價、思考。通過這樣的訓練,孩子會在思維上逐步形成獨立見解,養成一種質疑的習慣。

初一數學知識點總結5

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類:①整數②分數

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數0和正整數;a>0a是正數;a<0a是負數;

a≥0a是正數或0a是非負數;a≤0?a是負數或0a是非正數.

有理數比大小:

(1)正數的絕對值越大,這個數越大;

(2)正數永遠比0大,負數永遠比0小;

(3)正數大於一切負數;

(4)兩個負數比大小,絕對值大的反而小;

(5)數軸上的兩個數,右邊的數總比左邊的數大;

(6)大數-小數>0,小數-大數<0.

初一數學知識點總結6

一、方程的有關概念

1.方程:含有未知數的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.

註:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.

二、等式的性質

等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.

等式的性質(1)用式子形式表示為:如果a=b,那麼a±c=b±c

等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,等式的性質(2)用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c≠0),那麼ca=cb

三、移項法則: 把等式一邊的某項變號後移到另一邊,叫做移項.

四、去括弧法則

1. 括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.

2. 括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數)

2. 去括弧(按去括弧法則和分配律)

3. 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合並(把方程化成ax = b (a≠0)形式)

5. 系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=a(b).

六、用方程思想解決實際問題的一般步驟

1. 審:審題,分析題中已知什麼,求什麼,明確各數量之間的關系.

2. 設:設未知數(可分直接設法,間接設法)

3. 列:根據題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗所求的解是否符合題意.

6. 答:寫出答案(有單位要註明答案)

初一數學知識點總結7

一、知識梳理

知識點1 :正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2 :有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3 :數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4 :絕對值的概念:

(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;

(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。

註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5 :相反數的概念:

(1)幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;

(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。

知識點6 :有理數大小的比較:

有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。

數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。

用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7 :有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

知識點8 :有理數加法運算律:

加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9 :有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10 :有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

❼ 初一數學知識點總結歸納大全

很多同學蠢局在復習初一數學時找不到重點,因為沒有做過系統的總結,導致復習效率不高。下面是由我為大家整理的「初一數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

七年級數學知識點總結

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個槐檔蘆特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反鉛帶數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

拓展閱讀:初一數學考試答題技巧

選擇題的答題技巧

掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。

首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

填空題答題技巧

要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。

對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

❽ 初一數學必考知識點總結

初一數學必考知識點總結1

正數和負數

⒈、正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2、具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;

(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1、有理數的概念

(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

(2)正分數和負分數統稱為分數

(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數

注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

初一數學必考知識點總結2

有理數

1.1 正數與負數

在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rational number)。

通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

平面直角坐標系:

在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

因式分解

因式分解定義 :把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素 :①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式: 一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

初一數學必考知識點總結3

第一章有理數

1、大於0的數是正數。

2、有理數分類:正有理數、0、負有理數。

3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)

4、規定了原點,單位長度,正方向的直線稱為數軸。

5、數的大小比較:

①正數大於0,0大於負數,正數大於負數。

②兩個負數比較,絕對值大的反而小。

6、只有符號不同的兩個數稱互為相反數。

7、若a+b=0,則a,b互為相反數

8、表示數a的點到原點的距離稱為數a的絕對值

9、絕對值的三句:正數的絕對值是它本身,

負數的絕對值是它的相反數,0的絕對值是0。

10、有理數的計算:先算符號、再算數值。

11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同號得正,異號的負

13、乘方:表示n個相同因數的乘積。

14、負數的奇次冪是負數,負數的偶次冪是正數。

15、混合運算:先乘方,再乘除,後加減,同級運算從左到右,有括弧的先算括弧。

16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)

17、左邊第一個非零的數字起,所有的數字都是有效數字。

【知識梳理】

1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。

2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。

3.倒數:若兩個數的積等於1,則這兩個數互為倒數。

4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;

幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.

5.科學記數法:,其中。

6.實數大小的比較:利用法則比較大小;利用數軸比較大小。

7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。

一元一次方程知識點

知識點1:等式的概念:用等號表示相等關系的式子叫做等式.

知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.

說明:代數式不含等號,方程是用等號把代數式連接而成的式子,且其中一定要含有未知數.

知識點3:一元一次方程的概念:只含有一個未知數,並且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形後,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.

例2:如果(a+1) +45=0是一元一次方程,則a________,b________.

分析:一元一次方程需要滿足的條件:未知數系數不等於0,次數為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.

(2) 等式兩邊乘以(或除以)同一個不為0的數或代數式, 所得的結果仍是等式.

即若a=b,則am=bm.或. 此外等式還有其它性質: 若a=b,則b=a.若a=b,b=c,則a=c.

說明:等式的性質是解方程的重要依據.

例3:下列變形正確的是( )

A.如果ax=bx,那麼a=b B.如果(a+1)x=a+1, 那麼x=1

C.如果x=y,則x-5=5-y D.如果則

分析:利用等式的性質解題.應選D.

說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.

知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.

知識點6:關於移項:⑴移項實質是等式的基本性質1的運用.

⑵移項時,一定記住要改變所移項的符號.

知識點7:解一元一次方程的一般步驟:去分母、去括弧、移項、合並同類項、將未知數的系數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.

例4:解方程 .

分析:靈活運用一元一次方程的步驟解答本題.

解答:去分母,得9x-6=2x,移項,得9x-2x=6,合並同類項,得7x=6,系數化為1,得x=.

說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.

知識點8:方程的檢驗

檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.

注意:應代入原方程的左、右兩邊分別計算,不能代入變形後的方程的左邊和右邊.

初一數學必考知識點總結4

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

初一數學必考知識點總結5

盡快地掌握科學知識,迅速提高學習能力,由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!

一、目標與要求

1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;

2.初步學會如何尋找問題中的相等關系,列出方程,了解方程的概念;

3.培養學生獲取信息,分析問題,處理問題的能力。

二、重點

從實際問題中尋找相等關系;

建立列方程解決實際問題的思想方法,學會合並同類項,會解ax+bx=c類型的一元一次方程。

三、難點

從實際問題中尋找相等關系;

分析實際問題中的已經量和未知量,找出相等關系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。

四、知識點、概念總結

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a0)。

3.條件:一元一次方程必須同時滿足4個條件:

(1)它是等式;

(2)分母中不含有未知數;

(3)未知數最高次項為1;

(4)含未知數的項的系數不為0.

4.等式的性質:

等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。

等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。

等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。

解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。

5.合並同類項

(1)依據:乘法分配律

(2)把未知數相同且其次數也相同的相合並成一項;常數計算後合並成一項

(3)合並時次數不變,只是系數相加減。

6.移項

(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。

(2)依據:等式的性質

(3)把方程一邊某項移到另一邊時,一定要變號。

7.一元一次方程解法的一般步驟:

使方程左右兩邊相等的未知數的值叫做方程的解。

一般解法:

(1)去分母:在方程兩邊都乘以各分母的最小公倍數;

(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)

(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號

(4)合並同類項:把方程化成ax=b(a0)的形式;

(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.

8.同解方程

如果兩個方程的解相同,那麼這兩個方程叫做同解方程。

9.方程的同解原理:

(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。

(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。

由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!

初一數學必考知識點總結6

一、方程的有關概念

1.方程:含有未知數的`等式就叫做方程。

2.一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解。

註:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。

二、等式的性質

(1)等式兩邊都加上(或減去)同個數(或式子),結果仍相等。用式子形式表示為:如果a=b,那麼ac=bc

(2)等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c0),那麼ac=bc

三、移項法則:

把等式一邊的某項變號後移到另一邊,叫做移項。

四、去括弧法則

1.括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.

2.括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.

五、解方程的一般步驟

1.去分母(方程兩邊同乘各分母的最小公倍數)

2.去括弧(按去括弧法則和分配律)

3.移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4.合並(把方程化成ax=b(a0)形式)

5.系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=ba)。

六、用方程思想解決實際問題的一般步驟

1.審:審題,分析題中已知什麼,求什麼,明確各數量之間的關系。

2.設:設未知數(可分直接設法,間接設法)。

3.列:根據題意列方程。

4.解:解出所列方程。

5.檢:檢驗所求的解是否符合題意。

6.答:寫出答案(有單位要註明答案)。

七、有關常用應用類型題及各量之間的關系

1、和、差、倍、分問題:

(1)倍數關系:通過關鍵詞語「是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……」來體現。

(2)多少關系:通過關鍵詞語「多、少、和、差、不足、剩餘……」來體現。

2、等積變形問題:

「等積變形」是以形狀改變而體積不變為前提。常用等量關系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積。

3、勞力調配問題:

這類問題要搞清人數的變化,常見題型有:

(1)既有調入又有調出。

(2)只有調入沒有調出,調入部分變化,其餘不變。

(3)只有調出沒有調入,調出部分變化,其餘不變。

4、數字問題

(1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且19,09,09)則這個三位數表示為:100a+10b+c

(2)數字問題中一些表示:兩個連續整數之間的關系,較大的比較小的大1;偶數用2n表示,連續的偶數用2n+2或2n2表示;奇數用2n+1或2n1表示。

5、工程問題:

工程問題中的三個量及其關系為:工作總量=工作效率工作時間

6、行程問題:

(1)行程問題中的三個基本量及其關系:路程=速度時間。

(2)基本類型有

①相遇問題;

②追及問題;常見的還有:相背而行;行船問題;環形跑道問題。

7、商品銷售問題

有關關系式:

商品利潤=商品售價商品進價=商品標價折扣率商品進價

商品利潤率=商品利潤/商品進價

商品售價=商品標價折扣率

8、儲蓄問題

(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率。利息的20%付利息稅

(2)利息=本金利率期數

本息和=本金+利息

利息稅=利息稅率(20%)

今天的內容就介紹這里了。

初一數學必考知識點總結7

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:

(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;

(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。

註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:

(1)幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;

(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。

知識點6:有理數大小的比較:

有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。

數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。

用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:

加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。