㈠ 高二數學知識點及公式是什麼
高二數學知識點及公式如下:
1、線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
2、萬能公式:令tan(a/2)=t、sina=2t/(1+t^2)、cosa=(1-t^2)/(1+t^2)、tana=2t/(1-t^2)。積化和差:sina*cosb=[sin(a+b)+sin(a-b)]/2、cosa*sinb=[sin(a+b)-sin(a-b)]/2、cosa*cosb=[cos(a+b)+cos(a-b)]/2、sina*sinb=-[cos(a+b)-cos(a-b)]/2。
3、如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
4、函數的單調性、奇偶性、周期性。例如單調性定義:注意定義是相對於某個具體的區間而言。 判定方法有定義法(作差比較和作商比較)。 導數法(適用於多項式函數) 。
5、如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
㈡ 高二數學知識點及公式整理
只有高效的 學習 方法 ,才可以很快的掌握知識的重難點。有效的讀書方式根據規律掌握方法,不要一來就死記硬背,先找規律,再記憶,然後再學習,就能很快的掌握知識。以下是我給大家整理的 高二數學 知識點及公式整理,希望大家能夠喜歡!
高二數學知識點及公式整理1
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即「共同起點,指向被減」
a=(x,y)b=(x',y')則a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:①如果實數λ≠0且λa=λb,那麼a=b。②如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數學知識點及公式整理2
1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)
2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
高二數學知識點及公式整理3
1.計數原理知識點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選後排,先分再排
排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應用問題時,應注意:
(1)把具體問題轉化或歸結為排列或組合問題;
(2)通過分析確定運用分類計數原理還是分步計數原理;
(3)分析題目條件,避免「選取」時重復和遺漏;
(4)列出式子計算和作答.
經常運用的數學思想是:
①分類討論思想;②轉化思想;③對稱思想.
4.二項式定理知識點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質和主要結論:對稱性Cnm=Cnn-m
二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)
所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數項二項式系數的和=偶數項而是系數的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。
5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。
6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。
高二數學知識點及公式整理相關 文章 :
★ 高二數學知識點總結
★ 高二數學知識點及公式2020
★ 高二數學知識點及公式
★ 高中數學知識點總結及公式大全
★ 高二數學知識點總結全
★ 高二數學函數知識點總結
★ 最新高二數學公式知識點匯總
★ 高二數學必背知識點總結
★ 高二數學知識點全總結
㈢ 高二數學知識點
一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關系用符號=表示。
(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:①對應法則 ;②定義域 (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱;
五、反函數:
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要採用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根
注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分布的情況,得出結果,在令 和 檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:
(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
八、導 數
1.求導法則:
(c)/=0 這里c是常數。即常數的導數值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能准確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值 f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用於研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。
2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
九、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。
④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
基本應用:①放縮,變形;
②求函數最值:注意:①一正二定三相等;②積定和最小,和定積最大。
常用的方法為:拆、湊、平方;
三、絕對值不等式:
注意:上述等號「=」成立的條件;
四、常用的基本不等式:
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。
⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因導果。
(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有:
⑴添加或捨去一些項,
⑵將分子或分母放大(或縮小)
⑶利用基本不等式,
(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。
(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;
十、不等式的解法:
(1)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(2)絕對值不等式:若 ,則 ; ;
注意:
(1)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;
(2).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(3).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(4)分式不等式的解法:通解變形為整式不等式;
(5)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(6)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數,要討論。
十一、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列中,若m+n=p+q,則
16、等比數列中,若m+n=p+q,則
17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列與的和差的數列、仍為等差數列。
19、兩個等比數列與的積、商、倒數組成的數列
、 、 仍為等比數列。
20、等差數列的任意等距離的項構成的數列仍為等差數列。
21、等比數列的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、為等差數列,則 (c>0)是等比數列。
25、(bn>0)是等比數列,則 (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數列的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
十二、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 a>0時, 與a的方向相同;當a<0時, 與a的方向相反;當 a=0時,a=0.
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。
十三、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?
㈣ 高二數學知識點及公式有哪些
如下:
一、集合
1、子集的定義與重要性質:任何一個集合是它本身的一個子集,即AA。規定空集是任何集合的子集,即A。如果AB,且BA,則A=B。如果AB且B中至少有一個元素不在A中,則A叫B的真子集,記作AB。空集是任何非空集合的真子集。含n個元素的集合A的子集有2個,非空子集有2-1個,非空真子集有2個。
2、余集(或補集)的定義與重要性質:
3、交集、並集的性質:ANB=AAB,AUB=ABA。
4、常用數集符號:整數集Z,自然數集N,正整數集,有理數Q,實數集R。
二、復合函數常見題型
(1)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(2)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(3)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。
三、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可是任意個。
四、偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反。
五、奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同。
㈤ 高二數學知識點總結歸納
還不清楚高二數學知識點有哪些的小夥伴,趕緊來瞧瞧吧!下面由我為你精心准備了「高二數學知識點總結歸納」,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!
高二數鉛做仔學知識點總結歸納
1.求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成槐汪立。
2.求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過研究函數的單調性求得,基本步驟是:
(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號並由表格判斷極值。
3.求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。
求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。
4.解決不等式的有關問題:
(1)不等式恆成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恆成立的充要條件是f(x)max0,即b0;
不等式f(x)0恆成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。
(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5.導數在實際生活中的應用:
實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。
拓展閱讀:高二數學成績怎麼提高
一、做題之後加強反思
學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。
二、主動復習與總結提高
要把提高當成自己的目標,要把自己的活動合理地系統地組織起來,要總結反思,進行章節總結是非常重要的。初中時是教師替學生做總結,高中是自己給自己做總結,怎樣做章節總結呢?
(1)要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時胡隱的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。
(2)把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求(對「鋸,斧,鑿子…」的使用總結),列進這兩部分中的一部分,不要遺漏。
(3)在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導證明。同時能從正反兩方面對其進行應用。
(4)把重要的,典型的各種問題進行編隊。(怎樣做「板凳,椅子,書架…」)要盡量地把他們分類,找出它們之間的位置關系,總結出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什麼動作。我們一定要居高臨下地看,看全場的結構和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數學水平的關鍵所在。
(5)總結那些尚未歸類的問題,作為備注進行補充說明。
(6)找一份適當的測驗試卷。一定要計時測驗。然後再對照答案,查漏補缺。
三、重視改錯,錯不重犯
一定要重視改錯工作,做到錯不再犯。高中數學課沒有那麼多時間,除了少數幾種典型錯,其它錯誤,不能一一顧及。如果能及時改錯,那麼錯誤就可能轉變為財富,成為不再犯這種錯誤的預防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處「地雷」,遲早要惹禍。有的學生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。打一個比方。比如說,學習開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設計原因,操作規程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習。一兩次能正確地完成任務,並不能說明永遠不出錯。
四、圖是高中數學的生命線
圖是初等數學的生命線,能不能用圖支撐思維活動是能否學好初等數學的關鍵。無論是幾何還是代數,拿到題的第一件事都應該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應該畫圖,圖可以清楚地呈現出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。
大專有哪些就業前景好的專業
一、汽車技術服務與營銷專業
汽車技術服務與營銷專業培養具有專業必須的基礎理論知識和基本技能,能適應汽車產品設計服務、汽車生產服務、汽車銷售服務、汽車技術服務、汽車運輸服務等領域的,面向汽車銷售及售後服務企業所需要的,既熟練操作汽車診斷、檢測與維修技術,又熟練運用銷售與售後服務流程及技巧,獲得國家頒發的汽車行業相關職業資格證書,具有高認知、高技能和高素養的綜合職業能力的應用性人才。
二、計算機應用技術專業
機械電子工程專業俗稱機電一體化,是機械工程與自動化的一種,也是最有前途的一種方向。機械電子工程專業包括基礎理論知識和機械設計製造方法,計算機軟硬體應用能力,能承擔各類機電產品和系統的設計、製造、試驗和開發工作。機械電子系統早已在我們的日常生活中廣泛應用。
三、交通運營管理專業
交通運營管理專業畢業生能在交通運輸企事業單位、軌道交通單位、物流公司、國際運輸管理企業、貨運代理公司、外貿進出口公司、海運公司、集裝箱運輸公司等單位從事:交通運輸企事業生產經營管理崗位、場站運輸組織與管理崗位、軌道交通運輸組織與管理崗位、國際貨運管理崗位、國際商貿管理崗位、運輸企事業統計與會計崗位、物流企業經營管理崗位以及各類一線操作崗位等工作。
四、會計電算化專業
會計電算化專業主要面向企事業單位從事基層會計核算、會計分析、會計事務管理;可從事統計、稅收等方面工作;學生畢業後可在各類企事業單位、會計師事務所、資產評估事務所、會計咨詢公司、稅務代理公司、金融機構等單位,從事出納、會計、審計、稅收、證券、投資、評估等工作,以及從事其他相關崗位的經濟管理工作。
五、學前教育專業
幼兒園語言教育、幼兒園數學教育、幼兒園音樂教育、幼兒園體育教育、幼兒美術教育、幼兒科學教育、幼兒健康教育、學前教育概論、學前心理學、學前衛生學、學前兒童社會性發展與教育、兒童文學、游戲理論與指導、現代教育技術、教學實習、畢業實習等,以及各校的主要特色課程和實踐環節。
六、城市軌道交通工程技術專業
城市軌道交通工程技術專業培養掌握城市軌道交通基礎工程方面的基本知識和技能,能從事城市軌道交通工程的設計、施工、監理及養護的高級技術應用性專門人才薪資最高的10大高職專業文章薪資最高的10大高職專業出自,
七、軟體技術專業
培養具有軟體開發,軟體測試,資料庫管理等能力的高素質技能型專門人才。畢業後主要從事軟體開發工程師、軟體測試工程師、資料庫管理員、技術支持和維護工程師、軟體銷售與推廣人員等崗位。
八、醫葯專業
隨著人們生活水平的提高,人們對葯品質量、品種、數量和醫療技術、醫療條件的要求也越來越高。在科技迅速發展的今天,從行業整體發展的趨勢來看,以高科技開發為依託的醫葯行業屬於」朝陽產業」,將始終表現出良好的成長性。
九、外貿專業
這些年,外貿專業已遠不如前幾年熱門。但隨著我國外貿體制改革的深入,特別是中國入世以後,隨著專業結構的調整,招生規模的控制,外貿人才供需不平衡的狀況是可以得到緩解甚至消除的。
十、鐵道工程技術專業
鐵道工程技術專業隸屬於教育部高職高專專業目錄,培養掌握高速鐵路線路工程專業技能,能從事高速線、橋隧工程的施工、維護保養工作的高級專門應用性人才。畢業生就業面向鐵路和高速鐵路施工、監理、養護及運營管理部門,主要從事鐵道、交通和土建領域從事施工、監理、質檢、管理等工作。
㈥ 高二數學重要知識點歸納
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面給大家分享一些 高二數學 重要知識點,希望對大家有所幫助。
高二數學重要知識點1
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
高二數學重要知識點2
直線、平面、簡單幾何體:
1、學會三視圖的分析:
2、斜二測畫法應注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行於x軸的線段長不變,平行於y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
⑶台體①表面積:S=S側+S上底S下底②側面積:S側=
⑷球體:①表面積:S=;②體積:V=
4、位置關系的證明(主要 方法 ):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數學重要知識點3
復合函數定義域
若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域;
⑵當為偶次根式時,被開方數不小於0(即≥0);
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;
⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。
⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數的定義域是各段上自變數的取值集合的並集。
⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求
⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。
⑼對數函數的真數必須大於零,底數大於零且不等於1。
⑽三角函數中的切割函數要注意對角變數的限制。
復合函數常見題型
(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。
高二數學重要知識點4
1.求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成立。
2.求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過研究函數的單調性求得,基本步驟是:
(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號並由表格判斷極值。
3.求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。
求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。
4.解決不等式的有關問題:
(1)不等式恆成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恆成立的充要條件是f(x)max0,即b0;
不等式f(x)0恆成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。
(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5.導數在實際生活中的應用:
實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。
高二數學重要知識點歸納相關 文章 :
★ 高二數學知識點總結
★ 高二數學知識點總結(人教版)
★ 高二數學常考知識點總結
★ 高二數學會考知識點總結
★ 高二數學知識點總結歸納
★ 職業高中高二數學知識點
★ 高二數學推理知識點大總結
★ 高二數學知識點小結
★ 高二數學知識點總結選修2
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈦ 高二數學知識點及公式是什麼
高二數學知識點及公式如下:
1、橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
2、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
3、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
4、集合中元素的特徵: 確定性、互異性、無序性 。
5、空集是指不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。
6、cosa*cosb=[cos(a+b)+cos(a-b)]/2。
7、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)。
㈧ 高二數學重點知識點總結
1.高二數學重點知識點總結
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、高中數學必修二知識點總結:直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
5、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.
應用:判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
2.高二數學重點知識點總結
一、隨機事件
主要掌握好(三四五)
(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。
(2)四種運算律:交換律、結合律、分配律、德莫根律。
(3)事件跡指判的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。
二、概率定義
(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現逗此的可能性相等,則可以姿改將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.
3.高二數學重點知識點總結
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發生的事件,叫做相對於條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發生的可能性大小能為我們決策提供關鍵性依據.
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA
nA為事件A出現的頻數,稱事件A出現的比例fn(A)=為事件A出現的頻率.
3.對於給定的隨機事件A,由於事件A發生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
4.高二數學重點知識點總結
一、映射與函數:
(1)映射的概念:
(2)一一映射:
(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:
①對應法則;
②定義域(兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):
②換元法:
③待定系數法:
④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。