⑴ 初中數學知識有哪些簡單概括
知識點1:一元二次方程的基本概念
知識點2:直角坐標系與點的位置
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數.
2.函數y=4x+1是正比例函數.
4.拋物線y=-3(x-2)2-5的開口向下.
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2).
7.反比例函數的圖象在第一、三象限.
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3
知識點6:特殊三角函數值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角.
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓.
4.在同圓或等圓中,相等的圓心角所對的弧相等.
5.同弧所對的圓周角等於圓心角的一半.
6.同圓或等圓的半徑相等.
7.過三個點一定可以作一個圓.
8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等.
10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切.
2.三角形的外接圓的圓心叫做三角形的外心.
3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心.
5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線.
7.垂直於半徑的直線是圓的切線.
8.圓的切線垂直於過切點的半徑.
⑵ 初二數學知識點總結歸納大全
很多同學在復習初二數學時,因為之前沒有做過系統的總結,導致復習知識點分散,復習效率低下。下面是由我為大家整理的「初二數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。
初二數學知識點總結歸納大全
第一章 勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a +b = c ,那麼這個三角形是直角三角形。 定義:滿足a +b =c 的三個正整數,稱為勾股數。
第二章 實數
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可鉛沒慧以用有限小數或無限循環小數表示)
一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。 特別地,我們規定0的算術平方根是0。
一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根) 一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。 求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。 有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
第三章 圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。
任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
第四章 四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形: 兩組對邊分別平行的四邊形.。 對邊相等,對角相等,對角線互相平分。 兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形 :一組鄰邊相等的平行四邊形 „„(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。 一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形: 有一個內角是直角的平行四邊形 „„(平行四邊形的性質)。對角線相等,四個角都是直角。 有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形: 一組鄰邊相等的矩形。 正方形具有平行四邊形、菱形、矩形的一切性質。 一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形: 一組對邊平行而另一組對邊不平行的四邊形。 一組對邊平行而另一組對邊不平行的四邊形是梯形 。 等腰梯形 :兩條腰相等的梯形。 同一底上的兩個內角相等,對角線相等。 兩腰相等的梯形是等腰梯形,
同一底上兩個內角相等的梯形是等腰梯形 。
直角梯形 :一條腰和底垂直的梯形。 一條腰和底垂直的梯形是直角梯形。
察盯多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)×180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。 多邊形的外角和都等槐答於360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
第五章 位置的確定
位置表示方法:方位角加距離;坐標;經緯度„„
定義:在平面內,兩條互相垂直且有公共原點的書軸組成平面直角坐標系。
通常,兩條數軸分別至於水平位置與鉛直位置,取向右與向上方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸和y統稱坐標軸,它們的公共原點O稱為直角坐標系的原點。
圖形隨坐標變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關於x/y軸成軸對稱、關於原點O成中心對稱„„
第六章 一次函數
定義:一般地,在某個變化過程中,有兩個變數x和y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中是x自變數,y是因變數。
若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系中描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。 正比例函數y=kx的圖象是經過原點(0,0)的一條直線。 在一次函數y=kx+b中,
當k>0時,的值隨值的增大而增大; 當k<0時,的值隨值的增大而減小。
第七章 二元一次方程組
定義:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。 適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。 解二元一次方程組的基本思路是「消元」——把「二元」變為「一元」。 以一個未知數代另一個未知數的解法稱為代入消元法,簡稱代入法。 通過兩式加減消去其中一個未知數的解法稱做加減消元法,簡稱加減法。
第八章 數據的代表
定義:一般地,對於n個數X1,X2,„Xn,我們把1/n(X1+X2+„+Xn)叫做這個數的算術平均數,簡稱平均數,記為X。
為A的三項測試成績的加權平均數。
一般地,個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數,一組數據出現次數最多的那個數據叫做這組數據的眾數。
拓展閱讀:初中數學提升方法
1、課前預習,認真聽講
為什麼要預習,你要知道這一講哪些內容你一開始看不懂,那上課的時候對於這個問題就要認真聽,這樣聽講更有針對性,比坐在教室里純被動的聽講效率高太多,自然,最終的效果也要好太多。
2、課後刷題,總結歸納
提高數學成績必須要刷題,在刷題量沒有達到一定程度之前,是沒有談方法和技巧的必要的。怎麼刷題?其實每天的家庭作業就是刷題,一定要認真完成,如果還有多的時間,那麼可以刷往年的真題試卷,注意!一定是刷真題,刷真題不是說整套整套刷,你就刷平時經常扣分的那幾題。等你把刷過的題都歸納清楚,你的水平肯定會得到大幅度提升。
3、不懂就問,消除盲區
不少同學會發現一個問題,就是聽講也聽懂了,做題也不少,但是遇到新題還是不會。遇到新題不會的根本原因還是因為對原有知識點的理解不夠深入,不能舉一反三,那怎麼辦,遇到不懂的問題要第一時間解決,可以問老師、問同學、問搜題軟體等等,核心宗旨就是不能留下知識盲區,一點疑惑都不能留,並且要第一時間解決,不能拖,一拖就忘了。
⑶ 初一上下數學知識點
第一單元 位置
1、能在具體的情景中,確定位置的方法,說出某一物體的位置。
2、用「數對」表示位置,對應列上的數字在前,行上的數字在後,記為(x,y)。
3、「數對」表示位置,易錯的是(x,0),(0,y)。
4、 認識方位,上北下南左西右東,兩個事物一個在另一個的方向。
第二單元 分數乘法
一、分數乘整數
1、意義:表示幾個相同分數相加。
2、計算方法:(1)、分母不變,分子和整數相乘。
(2)、當分母和整數可以約分時,要先約分。
二、分數乘分數
1、意義:就是一個分數的幾分之幾。
2、計算方法:(1)、分子乘分子,分母乘分母。。
(2)、分子和分母有能約分的要約分,再計算。
三、運算律的運用
1、整數乘法的運算律對於分數乘法同樣適用。
2、應用運算律簡便計算。
四、倒數
1、乘積是1的兩個數互為倒數。
2、求法:把數的分子和分母的位置顛倒。
3、1的倒數就是1本身,0沒有倒數。
五、解決問題
1、求一個數的幾分之幾。列式:標准量×幾分之幾
2、求一個數多(或少)幾分之幾。列式:標准量×(1±幾分之幾)
標准量土標准量×幾分之幾
3、求一個數占另一個數的幾分之幾。列式:幾分之幾
4、用畫線段圖分析分數乘法應用題的數量關系。
第三單元 分數除法
一、 類型
1、分數除以整數,表示把分數平均分成整數份。
2、分數除以分數,表示b/a中有多少個d/c。
3、整數除以分數,表示a中有多少個c/d。
二、計算方法:除以一個數等於乘這個數的倒數(0除外)。
三、分數除法的意義與整數除法相同,都是乘法的逆運算。
四、分數混合運算順序,簡便演算法。
五、 解決問題
1、甲數是乙數的幾分之幾。列式:甲/乙。
2、乙數的幾分之幾等於甲數。列式:甲數=乙數×幾分之幾。
乙數=甲數÷幾分之幾。
3、甲數比乙數多(或少)幾分之幾。
列式:甲數=乙數×(1土幾分之幾)
甲數=乙數土乙數×幾分之幾。
標准量:「比」字後面的為標准量。
4、若求長方形的長是寬的幾倍:就是求長和寬的比:長/寬。
若求長方形的寬是長的幾分之幾,就是求長和寬的比:長/寬。
六、 比的意義:用兩個數相除,又叫兩個數的比,符號「:」比的結果叫做比值。
1、在a:b中,a叫比的前項,b叫比的後項。
2、 比與除法和分數的關系。a:b=a÷b=a/b。
3、 求比值兩項的單位名稱要統一,比值是一個數,沒有單位。
4、 比的基本性質 a:b=am:bm
a:b=a÷m:b÷m
5、 比化成最簡整數比:
(1) 有分數,前項和後項都乘分母的最小公倍數。
(2) 無分數,前項和後項都除以最大公約數。
(3) 有小數,可先化為整數或分數。
6、解決問題 總量×被分份數/總份數=要求的量
第四單元 圓
一、 圓的認識,由曲線圍成,外形美,易滾動。
1、 圓心,用o表示。
2、 半徑,連接圓心和圓上任意一點的線段叫半徑,用r表示。
3、 直徑,通過圓心並且兩端都在圓上的線段叫直徑,用d表示。
4、 半徑和直徑的關系。
5、 軸對稱圖形及對稱軸,圓又無數條對稱軸,是直徑所在的直線。
二、 圓的周長
1、 圓周率,是周長與直徑的比,是無限不循環小數。
2、 公式:c=πd或c=2πr
3、 已知圓的周長求半徑和直徑。
三、 圓的面積
1、公式 S=πR2
2、已知圓的半徑、直徑或周長能分別求圓的面積。
3、環形面積公式 S=πR2-πr2
4、扇形、弧、圓心角。
5、在周長一定的情況下,圓的面積最大。
在面積一定的情況下,圓的周長最短。
6、 確定起跑線的位置。
第五單元 百分數
1、 百分數的寫法。百分號「%」
2、 百分數的意義:表示一個數是另一個數的百分之幾。
3、 百分數與分數的區別:分數既可以表示一個具體的數,又可以表示兩個數之間的關系。百分數表示一個數是另一個數的百分之幾,只表示兩個數的關系,不是具體的數,不能寫單位名稱。另外百分數的分子可以是小數和大於一百的數。
4、 百分數與分數、小數的互化。
百分數化為小數:去掉百分號,小數點向左移動兩位;
小數化為百分數:小數點向右移動兩位,添上百分號;
百分數化為分數:可先化為分母是一百的分數,能約分的要約分;
分數化為百分數:先把分數化為小數,再化為百分數。
5、解決問題
①、達標率,發芽率的公式。(甲占乙的百分之幾。)
達標率=達標的人數/總人數×100%
發芽率=發芽的數量/種子的總數×100%
②、甲比乙少(或多)百分之幾。確定單位「1」。
③、甲增加了百分之幾是多少?增加了多少?
6、折扣,表示十分之幾,也就是百分之幾十。
折扣問題求實求一個數的百分之幾是多少的問題。
7、納稅。
①、根據國家各種稅法的規定,按照一定的比率,把集體或個人的收入的一部分繳納給國家叫做納稅。
②、繳納的稅款叫做應納稅額。按一定的比率納稅叫做稅率。
③、稅率=應納稅款/各種收入×100%
應納稅款=稅率×各種收入。
8、利率。
①、存款的好處。
②、利息=本金×利率×時間
③、取款=本金+利息-利息稅(本金+稅後利息)。
第六單元 統計
一、 扇形統計圖
1、 能反映部分量同總量之間的關系
2、 用整個圓表示總量,用各個扇形表示各部分數量占總量的百分之幾。
3、 利用扇形統計圖計算分析。
二、 合理存款
1、 教育儲蓄。
2、 國債利率
3、 設計存款方案
4、 合理存款
就這些拉
⑷ 初中數學重要知識點
學習初中數學那些重要知識的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。這是我整理的初中數學的重要知識點,希望你能從中得到感悟!
第一部分一、數與代數
A、數與式:
1、有理數
有理數:①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0原點,選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數
無理數:無限不迴圈小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=AM+N
AMN=AMN
A/BN=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以不為0一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1一元二次方程的二次函式的關系
大家已經學過二次函式即拋物線了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函式來表示,其實一元二次方程也是二次函式的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角座標系中表示出來,一元二次方程就是二次函式中,圖象與X軸的交點。也就是該方程的解了
2一元二次方程的解法
大家知道,二次函式有頂點式-b/2a,4ac-b2/4a,這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函式的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
1配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
2分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
3公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac]}/2a,X2={-b-√[b2-4ac]}/2a
3解一元二次方程的步驟:
1配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
2分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法這里指的是分解因式中的公式法或十字相乘,如果可以,就可以化為乘積的形式
3公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根在這里,學到高中就會知道,這里有2個虛數根
2、不等式與不等式組
不等式:①用符號〉,=,〈號連線的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數或加上一個正數,不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數或加上一個負數,不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*CC>0
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*CC<0
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函式
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函式:①若兩個變數X,Y間的關系式可以表示成Y=KX+BB為常數,K不等於0的形式,則稱Y是X的一次函式。②當B=0時,稱Y是X的正比例函式。
一次函式的圖象:①把一個函式的自變數X與對應的因變數Y的值分別作為點的橫座標與縱座標,在直角座標系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖象。②正比例函式Y=KX的圖象是經過原點的一條直線。③在一次函式中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
第二部分空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與摺疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
檢視:主檢視,左檢視,俯檢視。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後關於畫法,後面會講一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
>>>下一頁更多精彩「」
⑸ 初一數學單元知識點歸納5篇(精選)
每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初一數學第一單元知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運演算法則:先乘方,後乘除,最後加減。
2數學常用計算公式表(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
初一下冊數學知識點 總結
1.1正數與負數
在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。
1.2有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
初中 一年級數學 上冊知識
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
初一數學上冊知識點歸納
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「? 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「? 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a× 應寫成 a;
(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成 的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
初一數學 復習方法
考試與作業邏輯不同:
我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:
復習方法總結
1回歸書本,梳理章節概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節常見的 熱點 問題歸納練習。
我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
初一數學單元知識點歸納相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一數學第一單元知識點歸納
★ 初一上冊數學知識點歸納整理
★ 初一數學上冊知識點匯總歸納
★ 初一數學知識點小歸納
★ 初中七年級數學知識點歸納整理
★ 初一數學知識點梳理歸納
★ 初一數學的知識點歸納
★ 初一數學知識點歸納
★ 初一數學知識點歸納與學習方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑹ 初中一年級數學知識點總結(上冊)
第一章 有理數
一、知識框架
二.知識概念
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反肆鄭數的和為0 ? a+b=0 ? a、b互為相反數.
裂塌頌4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方衫如的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.
體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
第二章 整式的加減
一.知識框架
二.知識概念
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。
通過本章學習,應使學生達到以下學習目標:
1. 理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。
2. 理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。
3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。
4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
第三章 一元一次方程
一.知識框架
二.知識概念
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
2.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
4.列一元一次方程解應用題:
(1)讀題分析法:………… 多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: ………… 多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間 ;
(2)工程問題: 工作量=工效·工時 ;
(3)比率問題: 部分=全體·比率 ;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
⑺ 八年級上冊數學第一單元知識點
知識改變命運,知識是人類進步的階梯,知識是智慧的源泉,知識可以使人明智,陶冶人們的靈魂。下面我給大家分享一些 八年級 上冊數學第一單元知識點,希望能夠幫助大家,歡迎閱讀!
八年級上冊數學第一單元知識1
全等三角形
1.全等三角形概念 能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。一個三角形經過平移、翻折、旋轉可以得到它的全等形。
2、全等三角形的表示全等用符號「≌」表示,讀作「全等於」。如△ABC≌△DEF,讀作「三角形ABC全等於三角形DEF」。註:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。
3、全等三角形有哪些性質
(1)全等三角形的對應邊相等、對應角相等。
(2)全等三角形的周長相等、面積相等。
(3)全等三角形的對應邊上的對應中線、角平分線、高線分別相等。
4、學習全等三角形應注意以下幾個問題:
(1)要正確區分「對應邊」與「對邊」,「對應角」與 「對角」的不同含義;
(2)表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;
(3)「有三個角對應相等」或「有兩邊及其中一邊的對角對應相等」的兩個三角形不一定全等;
(4)時刻注意圖形中的隱含條件,如 「公共角」 、「公共邊」、「對頂角」
5、全等三角形的判定 邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成「SSS」) 。邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成「SAS」)。角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成「ASA」)。角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成「AAS」)。直角三角形全等的判定:對於特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理),有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成「斜邊、直角邊」或「HL」)。
6、全等變換 只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:
(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。
(2)對稱變換:將圖形沿某直線翻折180°,這種變換叫做對稱變換。
(3)旋轉變換:將圖形繞某點旋轉一定的角度到另一個位置,這種變換叫做旋轉變換。證明兩個三角形全等的基本思路:一般來講,應根據題設並結合圖形,先確定兩個三角形已知相等的邊或角,然後按照判定公理或定理,尋找並證明還缺少的條件,其基本思路是:
a.有兩邊對應相等,找夾角對應相等,或第三邊對應相等.前者利用SAS判定,後者利用SSS判定.
b.有兩角對應相等,找夾邊對應相等,或任一等角的對邊對應相等,前者利用ASA判定,後者利用AAS判定。
c.有一邊和該邊的對角對應相等,找另一角對應相等,利用AAS判定。
d.有一邊和該邊的鄰角對應相等,找夾等角的另一邊對應相等,或另一角對應相等,前者利用SAS判定,後者利用AAS判定。
八年級上冊數學第一單元知識2
角的平分線1、角平分線:把一個角平均分為兩個相同的角的射線叫該角的平分線;
2、角平分線的性質定理:角平分線上的點到角的兩邊的距離相等:①平分線上的點;②點到邊的距離;
3、角平分線的判定定理:角的內部到角的兩邊的距離相等的點在角平分線上
4、 方法 規律
(1)有角平分線,通常向角兩邊引垂線。
(2)證明點在角的平分線上,關鍵是要證明這個點到角兩邊的距離相等,即證明線段相等。常用方法有:使用全等三角形,角平分線的性質和利用面積相等,但特別要注意點到角兩邊的距離。
(3)注意:證題時可直接應用角平分線性質定理和判定定理,不必去找全等三角形。
怎樣學好初中數學
1、課後分析看例題??
課堂上例題弄懂了,並不說明你具備了解題能力和知識遷移能力。課後還需要從一個新的角度重新審視、分析例題。由於新的知識的掌握、知識面的擴展以及老師的引導、點撥,再看例題時則對難點有了不同的認識,進入了更高的層次。對題中基礎知識的運用,分析、推理方法的選擇都會有更深的理解。如果課後不看例題思維就會停留在一個淺層次,無法完成由淺入深,由表及裡的轉化過程。?? ?
2、作業推理識例題??
做練習是運用知識解決問題提高能力的最重要最有效的方法,也是學好數學的關鍵。做作業時首先要識別例題,即這道題屬於本章節所講例題的哪一類型;其次要回憶上課老師是如何解題的,再分析有幾種解題方法,最後明確哪一種方法最簡便。如果識記不清或對以前學過的例題產生了遺忘,要不惜時間去翻閱、分析、記憶。
八年級上冊數學第一單元知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 八年級數學上冊知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點
★ 八年級上冊數學書知識點
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點整理
★ 八年級上冊數學的知識點歸納
★ 數學八年級上冊知識點
★ 初二物理第一單元知識點大全
⑻ 初中七年級數學知識點歸納整理
數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中 七年級數學 知識點歸納,供大家閱讀參考。
初中七年級數學知識點歸納
第一章 相交線與平行線
一、知識框架
二、知識概念
1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內,不相交的兩條直線叫做平行線。
5.同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。
6.命題:判斷一件事情的語句叫命題。
7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。
9.定理與性質
對頂角的性質:對頂角相等。
10垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
12.平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。
第二章 平面直角坐標系
一.知識框架
二.知識概念
1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。
第三章 三角形
一.知識框架
二.知識概念
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
多邊形的外角和:多邊形的內角和為360°。
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有 條對角線。
三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。
第四章 二元一次方程組
一.知識結構圖
二、知識概念
1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。
4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。
6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。
本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題
第五章 不等式與不等式組
一.知識框架
二、知識概念
1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。
2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。
7.定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。
第六章 數據的收集、整理與描述
一.知識框架
全面調查
抽樣調查
收集數據
描述數據
整理數據
分析數據
得出結論
二.知識概念
1.全面調查:考察全體對象的調查方式叫做全面調查。
2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。
3.總體:要考察的全體對象稱為總體。
4.個體:組成總體的每一個考察對象稱為個體。
5.樣本:被抽取的所有個體組成一個樣本。
6.樣本容量:樣本中個體的數目稱為樣本容量。
7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。
8.頻率:頻數與數據總數的比為頻率。
9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。
本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。
數學考試拿高分的竅門
一、對照法
如何正確理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
二、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
三、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
四、分類法
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。
怎樣才能學好數學
1.打破沙鍋問到底的執著和溫故知新的毅力,被某個知識點或者某道題難住,就把它擱置,問題越來越多就積重難返了。
2.不會的問題當即解決最好,解決的方法有查資料或者請教他人等;對已經解決的問題和重要知識點,要定期復習,復習時要思考有無更好的方法。
3.學會一題多解,從各個方面來了解題目的含義,鍛煉孩子的變式思維;要敢於創新,老師可在講課過程中故意出錯,讓學生來思考,矯正,使學生處於主動思考的狀態。
初中七年級數學知識點歸納整理相關 文章 :
★ 初一數學知識點梳理歸納
★ 七年級數學知識點整理大全
★ 初一數學的知識點梳理
★ 初一數學知識點歸納梳理
★ 初一數學學習方法總結
★ 初一數學的知識點歸納
★ 初一數學考試知識點總結
★ 數學七年級下冊知識點總結之變數之間的關系
★ 七年級數學上冊知識點總結歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();