當前位置:首頁 » 基礎知識 » 學習七年級數學重要知識

學習七年級數學重要知識

發布時間: 2024-08-05 22:02:55

❶ 初一數學重要知識點歸納

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的初一數學知識點,希望對大家有所幫助。

七年級數學 基礎知識

三角形的高線:

1、從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱為三角形的高。

2、任意三角形都有三條高線,它們所在的直線相交於一點。(垂心)

3、注意等底等高知識的考試

7、相關命題:

1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

2)銳角三角形中的銳角的取值范圍是60≤X<90。銳角不小於60度。

3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

4)鈍角三角形有兩條高在外部。

5)全等圖形的大小(面積、周長)、形狀都相同。

6)面積相等的兩個三角形不一定是全等圖形。

7)能夠完全重合的兩個圖形是全等圖形。

8)三角形具有穩定性。

9)三條邊分別對應相等的兩個三角形全等。

10)三個角對應相等的兩個三角形不一定全等。

11)兩個等邊三角形不一定全等。

12)兩角及一邊對應相等的兩個三角形全等。

13)兩邊及一角對應相等的兩個三角形不一定全等。

14)兩邊及它們的夾角對應相等的兩個三角形全等。

15)兩條直角邊對應相等的兩個直角三角形全等。

16)一條斜邊和一直角邊對應相等的兩個三角形全等。

17)一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。

18)一角和一邊對應相等的兩個直角三角形不一定全等。

初一數學下冊知識點 總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

篇三:正方體

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.

(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.

數學初一知識點總結

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0

初一數學重要知識點歸納

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

初一數學重要知識點

正數和負數

⒈、正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2、具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;

(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1、有理數的概念

(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

(2)正分數和負分數統稱為分數

(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數

注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

初一數學方法技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做總結,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。

初一數學重要知識點歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊重點知識整理

★ 初一數學知識點梳理歸納

★ 初一數學上冊知識點匯總歸納

★ 七年級數學重要知識點總結

★ 初一數學知識點整理

★ 初一數學重要知識點總結

★ 初一數學知識點小歸納

★ 初一數學知識點歸納

★ 初一數學知識點歸納與學習方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❷ 七年級數學重要知識點有哪些

數學可能對於大部分學生來說都是一個很讓人頭疼的科目,往往都學不好。雖然在學習的道路上我們會遇到許多困難,

但只要努力解決這些困難後,你將會感覺到無比輕松與快樂。所以我給大家整理了七年級數學上冊的知識點,方便大家學習。

一:有理數

知識網路:

概念、定義:

1、大於0的數叫做正數(positive number)。

2、在正數前面加上負號「-」的數叫做負數(negative number)。

3、整數和分數統稱為有理數(rational number)。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。

5、在直線上任取一個點表示數0,這個點叫做原點(origin)。

6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。

7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

8、正數大於0,0大於負數,正數大於負數。

9、兩個負數,絕對值大的反而小。

10、有理數加法法則

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13、有理數減法法則

減去一個數,等於加上這個數的相反數。

14、有理數乘法法則

兩數相乘,同號得正,異號得負,並把絕對值向乘。

任何數同0相乘,都得0。

15、有理數中仍然有:乘積是1的兩個數互為倒數。

16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19、有理數除法法則

除以一個不等於0的數,等於乘這個數的倒數。

20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)

22、根據有理數的乘法法則可以得出

負數的奇次冪是負數,負數的偶次冪是正數。

顯然,正數的任何次冪都是正數,0的任何次冪都是0。

23、做有理數混合運算時,應注意以下運算順序:

(1)先乘方,再乘除,最後加減;

(2)同級運算,從左到右進行;

(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。

25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。

26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

注:黑體字為重要部分

二:整式的加減

知識網路:

概念、定義:

1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。

2、單項式中的數字因數叫做這個單項式的系數(coefficient)。

3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。

4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly

term)。

5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。

6、把多項式中的同類項合並成一項,叫做合並同類項。

合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。

7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;

8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。

三:一元一次方程

知識網路:

概念、定義:

1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。

2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。

3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。

4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

6、把等式一邊的某項變號後移到另一邊,叫做移項。

7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%

售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息

四:圖形初步認識

知識網路:

概念、定義:

1、我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。

2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。

3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。

4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。

5、幾何體簡稱為體(solid)。

6、包圍著體的是面(surface),面有平的面和曲的面兩種。

7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。

8、點動成面,面動成線,線動成體。

9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。

簡述為:兩點確定一條直線(公理)。

10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。

11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。

12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。

14、角∠(angle)也是一種基本的幾何圖形。

15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。

17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary

angle),即其中的每一個角是另一個角的餘角。

18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary

angle),即其中一個角是另一個角的補角

19、等角的補角相等,等角的餘角相等。

❸ 初一數學重要基礎知識點

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

【變數之間的關系】

一理論理解

1、若Y隨X的變化而變化,則X是自變數Y是因變數。

自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量,數值保持不變的量叫做常量。

3、若等腰三角形頂角是y,底角是x,那麼y與x的關系式為y=180-2x.

2、能確定變數之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間

二、列表法:採用數表相結合的形式,運用表格可以表示兩個變數之間的關系。列表時要選取能代表自變數的一些數據,並按從小到大的順序列出,再分別求出因變數的對應值。列表法的特點是直觀,可以直接從表中找出自變數與因變數的對應值,但缺點是具有局限性,只能表示因變數的一部分。

三.關系式法:關系式是利用數學式子來表示變數之間關系的等式,利用關系式,可以根據任何一個自變數的值求出相應的因變數的值,也可以已知因變數的值求出相應的自變數的值。

四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點

八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:

1.隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而增加(大));

2.隨著自變數x的逐漸增加(大),因變數y逐漸減小(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而減小).

注意:如果在整個過程中事物的變化趨勢不一樣,可以採用分段描述.例如在什麼范圍內隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)等等.

九、估計(或者估算)對事物的估計(或者估算)有三種:

1.利用事物的變化規律進行估計(或者估算).例如:自變數x每增加一定量,因變數y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;

2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變數y的值;

3.利用關系式:首先求出關系式,然後直接代入求值即可.

初一數學知識點

解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的 方法 並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

14、一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路:

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

初一數學方法技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做 總結 ,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。


初一數學重要基礎知識點相關 文章 :

★ 初一數學重要知識點總結

★ 初一數學基礎知識有哪些?

★ 初中數學基礎知識點總結

★ 初一數學上冊知識點大全

★ 初中數學基礎知識整理歸納

★ 初一數學知識點歸納

★ 初中數學基礎知識點歸納總結

★ 初一數學知識點歸納與學習方法

★ 初一數學必考的21個知識點,附考試重難點

★ 初一數學必考的23個知識點,考試必掌握的重難點

❹ 七年級數學知識點總結歸納大全

經過一年的學習,你掌握了哪些知識點呢,一起來查漏補缺吧!下面是由我為大家整理的「七年級數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

七年轎晌級數學知識點總結歸納大全

七年級數學知識點總結1

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數仿神是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結2

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一閉大鋒次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結3

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

❺ 七年級數學重要知識點總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結 北師大版

1.1正數與負數

在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。

1.2有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rationalnumber)。

通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3有理數的加減法

有理數加法法則:

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

有理數減法法則:減去一個數,等於加這個數的相反數。

1.4有理數的乘除法

有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。

人教版初一數學下冊知識點總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

初一數學 復習方法

考試與作業邏輯不同:

我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。

那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:

復習方法總結

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


七年級數學重要知識點總結相關 文章 :

★ 初中七年級數學知識點歸納整理

★ 初中七年級數學知識點總結

★ 七年級數學人教版知識點總結

★ 七年級數學基礎知識點總結

★ 七年級數學知識點整理大全

★ 七年級數學知識點大全

★ 初一數學知識點歸納梳理

★ 七年級數學知識點梳理總結

★ 初一數學重要知識點總結

★ 初一數學學習方法指導與學習方法總結