當前位置:首頁 » 基礎知識 » 數學六年級大考知識點
擴展閱讀
同學評論嫂子好怎麼回復 2024-11-26 19:45:13
無錫智能兒童傢具哪裡買 2024-11-26 19:44:22
動漫鈴鐺掛飾怎麼畫 2024-11-26 19:35:52

數學六年級大考知識點

發布時間: 2024-07-18 00:14:15

A. 六年級數學必考知識點有哪些

一、分數

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。

二、百分數

1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。

2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。

三、分數除法

1、分數除法:分數除法是分數乘法的逆運算。

2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

四、比例

1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。

五、數量關系

1份數量×份數=總量。

總量÷1份數量=份數。

總量÷另一份數=另一每份數量。

B. 六年級數學知識點總結

六年級數學必備知識

一、分數乘法

(一)分數乘法的意義:

1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。

例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?

2、一個數乘分數的意義是求一個數的幾分之幾是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分數乘法的計演算法則:

1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)

2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)

4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。

(三)、 乘法中比較大小的規律

一個數(0除外)乘大於1的數,積大於這個數。

一個數(0除外)乘小於1的數(0除外),積小於這個數。

一個數(0除外)乘1,積等於這個數。

(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律: a × b = b × a

乘法結合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c

二、分數乘法的解決問題(已知單位「1」的量(用乘法),即求單位「1」的幾分之幾是多少)

1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。

2、找單位「1」: 單位「1」 在分率句中分率的前面;

或在「占」、「是」、「比」「相當於」的後面。

3、寫數量關系式的技巧:

(1)「的」 相當於 「×」 ,「占」、「相當於」「是」、「比」是 「 = 」

(2)分率前是「的」字:用單位「1」的量×分率=具體量

例如:甲數是20,甲數的1/3是多少?列式是:20×1/3

4、看分率前有沒有多或少的問題;分率前是「多或少」的關系式:

(比少):單位「1」的量×(1-分率)=具體量;

例如:甲數是50,乙數比甲數少1/2,乙數是多少?

列式是:50×(1-1/2)

(比多):單位「1」的量×(1+分率)=具體量

例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?

列式是:50×(1+3/5)

3、求一個數的幾倍是多少:用 一個數×幾倍;

4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。

5、求幾個幾分之幾是多少:用幾分之幾×個數

6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:

(1)、單位「1」的量×(1-分率)=另一個部分量(建議用)

(2)、單位「1」的量-已知占單位「1」的幾分之幾的部分量=要求的部分量

六年級數學知識重點

三角形的面積=底×高÷2。公式 S= a×h÷2

正方形的面積=邊長×邊長公式 S= a×a

長方形的面積=長×寬公式 S= a×b

平行四邊形的面積=底×高公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高公式:V=abh

長方體(或正方體)的體積=底面積×高公式:V=abh

正方體的體積=棱長×棱長×棱長公式:V=六年級數學知識點

圓的周長=直徑×π公式:L=πd=2πr

圓的面積=半徑×半徑×π公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

六年級數學常考知識點

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。

簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、么叫等式?等號左邊的數值與等號右邊的數值相等的'式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等於分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20、一個數除以分數,等於這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

C. 六年級數學必考知識點有哪些

六年級數學必考知識點總結如下:

一、倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

二、利潤

利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)。

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

三、小數

自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414。

四、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

五、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。


D. 六年級數學必考知識點

六年級數學必考知識點:

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

E. 小學六年級數學必考知識點總結歸納

小學數學是初中數學的基礎,一定要把基本概念牢記,我整理了一些六年級必背的知識點。

數與計算

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸

5、倒數:乘積是1的兩個數叫做互為倒數。

比和比例

1、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。

比的性質用於化簡比。

比表示兩個數相除;只有兩個項:比的前項和後項。

2、比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。

比的性質:比的前項和後項都乘或除以一個不為零的數。比值不變。

比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積相等。比例的性質用於解比例。聯系:比例是由兩個相等的比組成。

常用的數量關系

1、每份數×份數=總數;總數÷每份數=份數;總數÷份數=每份數

2、1倍數×倍數=幾倍數;幾倍數÷1倍數=倍數;幾倍數÷倍數=1倍數

3、速度×時間=路程;路程÷速度=時間;路程÷時間=速度

4、單價×數量=總價;總價÷單價=數量;總價÷數量=單價

5、工作效率×工作時間=工作總量;工作總量÷工作效率=工作時間

以上是我整理的六年級必考知識點,希望能幫到你。

F. 小學六年級數學必考知識點

小學六年級數學內容多,是小學階段所學數學知識的綜合。本文整理了六年級必背考點,歡迎閱讀。

六年級數學考點

數與計算

(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。

(2)分數四則混合運算,分數四則混合運算。

(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。

比和比例

比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。

幾何初步知識

圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。

求倒數地方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

按比例分配解題技巧

小技巧:a.把比轉化成為分數,用分數方法解答,即先求出總分數,然後求出各部分量占總量的幾分之幾,最後按照求一個數的幾分之幾多少的解題方法,分別求出各部分的量是多少

b.把比看做分得的分數,先求出各部分的總分數,然後再用「總量總份數=平均每份的量(歸一)」,再用「一份的量各部分量所對應的份數」,求出各部分的量。

c.用比例知識解答:首先設未知量為。再根據題中「已知比等於相對應的量的比」作為等量關系式列出含有x的比例式,再解比例求出x。

用正、反比例知識解答應用題的步驟

小技巧:(1)分析數量關系。判斷成什麼比例。(2)找等量關系。如果成正比例,則按等比找等量關系式;如果成反比例,則按等積找等量關系式。(3)解比例式。設未知數為x,並代入等量關系式,得正比例式或反比例式。(4)解比例。(5)檢驗並寫出答語。

知識體系

一、整除問題:

(1)數的整除的特徵和性質(小學六年級常考內容)

(2)位值原理的應用(用字母和數字混合表示多位數)

二、質數合數:

(1)質數、合數的概念和判斷(2)分解質因數(重點)

三、約數倍數:

(1)最大公約最小公倍數(2)約數個數決定法則(小學六年級常考內容)

四、余數問題:

1、帶余除式的理解和運用;

2、同餘的性質和運用;

3、中國剩餘定理奇偶問題:

(1)奇偶與四則運算;

4、奇偶性質在實際解題過程中的應用完全平方數:

(1)完全平方數的判斷和性質

(2)完全平方數的運用整數及分數的分解與分拆(重點、難點)