當前位置:首頁 » 基礎知識 » 高一必修一數學函數概念知識導圖
擴展閱讀
教育公平指是什麼 2024-11-26 17:51:33
公共基礎看多久比較合適 2024-11-26 17:50:03

高一必修一數學函數概念知識導圖

發布時間: 2024-07-17 09:43:41

㈠ 高一函數的性質知識點歸納

我相信,人類發現的知識只會流向需要它的人,從某種方面說,人只是知識的載體,知識是一種既能生產,又能消費的特殊能量。下面給大家分享一些關於高一函數的性質知識點歸納,希望對大家有所幫助。

一次函數

1.一次函數定義與定義式:

自變數x和因變數y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k為常數,k≠0)

2.一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

3.一次函數的圖像及性質:

(1)作法與圖形:通過如下3個步驟

a 列表;

b 描點;

c 連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

(2)性質:

a 在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

b 一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

(3)k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

4.確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最後得到一次函數的表達式。

5.一次函數在生活中的應用:

(1)當時間t一定,距離s是速度v的一次函數。s=vt。

(2)當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

6.常用公式:

(1)求函數圖像的k值:(y1-y2)/(x1-x2)

(2)求與x軸平行線段的中點:|x1-x2|/2

(3)求與y軸平行線段的中點:|y1-y2|/2

(4)求任意線段的長:√(x1-x2)』2+(y1-y2)』2(註:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

1.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關系:

y=ax』2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

2.二次函數的三種表達式

一般式:y=ax』2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)』2+k[拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關系:

h=-b/2ak=(4ac-b』2)/4ax?,x?=(-b±√b』2-4ac)/2a

3.二次函數的圖像

在平面直角坐標系中作出二次函數y=x』2的圖像,

可以看出,二次函數的圖像是一條拋物線。

4.拋物線的性質

(1)拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

(2)拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b』2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b』2-4ac=0時,P在x軸上。

(3)二次項系數a決定拋物線的開口方向和大小

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

(4)一次項系數b和二次項系數a共同決定對稱軸的位置

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

(5)常數項c決定拋物線與y軸交點

拋物線與y軸交於(0,c)

(6)拋物線與x軸交點個數

Δ=b』2-4ac>0時,拋物線與x軸有2個交點。

Δ=b』2-4ac=0時,拋物線與x軸有1個交點。

Δ=b』2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b』2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

5.二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax』2+bx+c,

當y=0時,二次函數為關於x的一元二次方程(以下稱方程),

即ax』2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。


高一函數的性質知識點歸納相關 文章 :

★ 高一函數知識點總結歸納

★ 高一函數知識點總結必看

★ 高一函數知識點總結大全

★ 高一數學函數知識點總結

★ 高一數學必修一知識點匯總

★ 高一數學知識點總結歸納

★ 高一數學必修1知識點歸納

★ 高一數學知識點總結(考前必看)

★ 高一數學必修一知識點總結歸納

㈡ 數學函數思維導圖怎麼畫

數學思維導圖的構建模式,都是先確定一個中心主題,引出子主題,對子主題再分層次即可。具體操作步驟如下。

1、用最簡潔的語言確定要畫的數學主題。以「角的度量」為例。如下圖所示。

注意事項:

上述思維導圖里,由角引出了射線的定義角和射線之間,畫一條關系線,方便我們把知識點串聯起來即可。

㈢ 高中數學必修一各章思維導圖

內容如下:

《高中數學必修1》(即《普通高中課程標准實驗教科書·數學必修1·A版》的簡稱)是2007年1月人民教育出版社出版的圖書,作者是人民教育出版社課程教材研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。

本冊包括:集合、函數。

作為這套書的主編,在大家開始用這套書學習數學之前,對於為什麼要學數學、如何才能學好數學等問題,我有一些想法與你們交流。

為什麼要學數學呢?我想從以下兩個方面談談認識。

1.數學是有用的。

2.學數學能提高能力

那麼,如何才能學好數學呢?我想首先應當對數學有一個正確的認識。

1.數學是自然的。

2.數學是清楚的。

在對數學有一個正確認識的基礎上,還需要講究一點點方法。

1.學數學要摸索自己的學習方法。

2.學數學趁年輕。

㈣ 高一數學必修一函數及其表示知識點

高一數學必修一函數及其表示知識點 篇1

高一數學必修一函數及其表示:

函數及其表示

知識點詳解文檔包含函數的概念、映射、函數關系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等

文檔首頁截圖如下:

1。函數與映射的區別:

2。求函數定義域

常見的用解析式表示的函數f(x)的定義域可以歸納如下:

①當f(x)為整式時,函數的定義域為R。

②當f(x)為分式時,函數的定義域為使分式分母不為零的實數集合。

③當f(x)為偶次根式時,函數的定義域是使被開方數不小於0的實數集合。

④當f(x)為對數式時,函數的定義域是使真數為正、底數為正且不為1的實數集合。

⑤如果f(x)是由幾個部分的數學式子構成的,那麼函數定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。

⑥復合函數的定義域是復合的各基本的函數定義域的交集。

⑦對於由實際問題的背景確定的函數,其定義域除上述外,還要受實際問題的制約。

3。求函數值域

(1)、觀察法:通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域;

(2)、配方法;如果一個函數是二次函數或者經過換元可以寫成二次函數的形式,那麼將這個函數的右邊配方,通過自變數的范圍可以求出該函數的值域;

(3)、判別式法:

(4)、數形結合法;通過觀察函數的圖象,運用數形結合的方法得到函數的值域;

(5)、換元法;以新變數代替函數式中的某些量,使函數轉化為以新變數為自變數的函數形式,進而求出值域;

(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函數值來求出值域;

(7)、利用基本不等式:對於一些特殊的分式函數、高於二次的函數可以利用重要不等式求出函數的值域;

(8)、最值法:對於閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a)。f(b)作比較,求出函數的最值,可得到函數y的值域;

(9)、反函數法:如果函數在其定義域內存在反函數,那麼求函數的值域可以轉化為求反函數的定義域。

高一數學必修一函數及其表示知識點 篇2

知識點總結

本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的'圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。

一、函數的單調性

1、函數單調性的定義

2、函數單調性的判斷和證明:

(1)定義法

(2)復合函數分析法

(3)導數證明法

(4)圖象法

二、函數的奇偶性和周期性

1、函數的奇偶性和周期性的定義

2、函數的奇偶性的判定和證明方法

3、函數的周期性的判定方法

三、函數的圖象

1、函數圖象的作法

(1)描點法

(2)圖象變換法

2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

常見考法

本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函數的單調性、最值和圖象等。

誤區提醒

1、求函數的單調區間,必須先求函數的定義域,即遵循「函數問題定義域優先的原則」。

2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

3、在多個單調區間之間不能用「或」和「 」連接,只能用逗號隔開。

4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關於原點對稱,則函數一定是非奇非偶函數。

5、作函數的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函數的圖象。

㈤ 急求高中數學必修一第一章「函數的基本性質」思維導圖

如果你想要模板可以參考MindMaster導圖社區:

圖片轉自MindMaster導圖社區希望可以幫到你

㈥ 高中數學必修1第一章思維導圖是什麼圖片