當前位置:首頁 » 基礎知識 » 8年級數學上冊知識點分式
擴展閱讀
什麼動漫主角是龍傲天 2024-11-26 21:11:18
核酸檢測小知識動畫 2024-11-26 21:10:21

8年級數學上冊知識點分式

發布時間: 2024-07-13 14:46:06

1. 八年級上冊數學知識點歸納總結

八年級必備數學知識

約分與通分:

1.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分;

分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據是分式的基本性質,即分式的分子、分母都除以同一個不等於零的整式,分式的值不變。 約分的方法和步驟包括:

(1)當分子、分母是單項式時,公因式是相同因式的最低次冪與系數的最大公約數的積;

(2)當分子、分母是多項式時,應先將多項式分解因式,約去公因式。

2.通分:根據分式的基本性質,異分母的分式可以化為同分母的分式,這一過程稱為分式的通。 分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。

(1)當幾個分式的'分母是單項式時,各分式的最簡公分母是系數的最小公倍數、相同字母的最高次冪的所有不同字母的積;

(2)如果各分母都是多項式,應先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;

(3)通分後的各分式的分母相同,通分後的各分式分別與原來的分式相等;

(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。 注意:

(1)分式的約分和通分都是依據分式的基本性質;

(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。

(3)約分時,分子與分母不是乘積形式,不能約分.

八年級數學知識重點

分式的運算: 1.分式的加減法法則:

(1)同分母的分式相加減,分母不變,把分子相加;

(2)異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法則進行計算。

2.分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。

4.分式的混合運算順序,先算乘方,再算乘除,最後算加減,有括弧先算括弧裡面的。

5.對於分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。

常見考法

分式的運算通常是綜合考查分式的加減、乘除、約分及分解因式等知識,是中考的重點。特別是化簡求值已經成近兩年中考的熱點。題型既有選擇、填空題,也有計算題。

誤區提醒

(1)互為相反數的因式約分時漏掉負號;

(2)通分時漏乘而出錯;

(3)把通分與去分母混淆,本是通分,卻把分式中的分母丟掉;

(4)計算順序搞亂而出錯。

八年級數學知識

列分式方程解應用題的步驟:

列分式方程解應用題的一般步驟為:

(1)設未知數:若把題目中要求的未知數直接用字母表示出來,則稱為直接設未知數,否則稱間接設未知數;

(2)列代數式:用含未知數的代數式把題目中有關的量表示出來,必要時作出示意圖或列成表格,幫助理順各個量之間的關系;

(3)列出方程:根據題目中明顯的或者隱含的相等關系列出方程;

(4)解方程並檢驗;

(5)寫出答案。

二.列分式方程解應用題的注意事項:

由於列方程解應用題是對實際問題的解答,所以檢驗時除從數學方面進行檢驗外,還應考慮題目中的實際情況,凡不符合實際的,應捨去。

常見考法

列分式方程解應用題是中考命題的熱點,命題廣泛聯系實際,題型新穎開放,但只要把握列分式方程解應用題的幾個步驟,解決起來仍不困難。

誤區提醒

(1)單位不統一;

(2)解完分式方程後忽略「雙檢」。

2. 八年級上冊數學分式有哪些

八年級上冊數學分式有:

1/x,2/(x+1)拆則,3+x/(x+1)。

分式的條件:

1、分式有意義條件:分母不為0。

2、分式值為0條件:分子為0且分母不為0。

3、分磨漏式值為正(負)數條件:分子分母同號得正,異號得負。瞎御爛

4、分式值為1的條件:分子=分母≠0。

5、分式值為-1的條件:分子分母互為相反數,且都不為0。

3. 初二數學分式的運算知識點歸納

初二數學分式的四則運算知識點

分式的四則運算和約分統一構成了分式的運演算法則。

分式的四則運算

1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=(a±b)/c

2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的`分式,然後再按同分母分式的加減法法則進行計算。用字母表示為:a/b±c/d=(ad±cb)/bd

3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/b * c/d=ac/bd

4.分式的除法法則:

(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。a/b÷c/d=ad/bc

(2).除以一個分式,等於乘以這個分式的倒數:a/b÷c/d=a/b*d/c

不管什麼樣的四則運算都會要求同學們做到細心和用心了。

4. 鍏騫寸駭涓婂唽鏁板﹀垎寮忔柟紼嬫槸浠涔堬紵

鍏騫寸駭涓婂唽鏁板﹀垎寮忔柟紼嬫槸鏂圭▼涓鐨勪竴縐嶏紝鏄鎸囧垎姣嶉噷鍚鏈夋湭鐭ユ暟鎴栧惈鏈夋湭鐭ユ暟鏁村紡鐨勬湁鐞嗘柟紼嬨

鍒嗗紡鏂圭▼瑙i樻ラわ細

1銆佹渶綆鍏鍒嗘瘝錛屽皢鍒嗗紡鏂圭▼鍖栦負鏁村紡鏂圭▼銆

2銆佹寜瑙f暣寮忔柟紼嬬殑姝ラわ紙縐婚」錛屽悎騫跺悓綾婚」錛岀郴鏁板寲涓1錛夋眰鍑烘湭鐭ユ暟鐨勫箋

3銆侀獙鏍(奼傚嚭鏈鐭ユ暟鐨勫煎悗蹇呴』楠屾牴錛屽洜涓哄湪鎶婂垎寮忔柟紼嬪寲涓烘暣寮忔柟紼嬬殑榪囩▼涓錛屾墿澶т簡鏈鐭ユ暟鐨勫彇鍊艱寖鍥達紝鍙鑳戒駭鐢熷炴牴)銆

鍏充簬鏂圭▼鐨勫垎綾伙細

1銆佷竴鍏冧竴嬈℃柟紼

鍙鍚鏈変竴涓鏈鐭ユ暟錛屼笖鏈鐭ユ暟嬈℃暟鏄涓鐨勬暣寮忔柟紼嬪彨涓鍏冧竴嬈℃柟紼嬨傞氬父褰㈠紡鏄痑x+b=0(a錛宐涓哄父鏁幫紝涓攁鈮0錛夈

2銆佷簩鍏冧竴嬈℃柟紼嬬粍

浜屽厓涓嬈℃柟紼嬬粍瀹氫箟錛氱敱涓や釜浜屽厓涓嬈℃柟紼嬬粍鎴愮殑鏂圭▼緇勶紝鍙浜屽厓涓嬈℃柟紼嬬粍銆

3銆佷竴鍏冧簩嬈℃柟紼

鍚鏈変竴涓鏈鐭ユ暟錛屽苟涓旀湭鐭ユ暟鐨勬渶楂樻℃暟鏄2鐨勬暣寮忔柟紼嬶紝榪欐牱鐨勬柟紼嬪彨鍋氫竴鍏冧簩嬈℃柟紼嬨

5. 八年級上冊數學分式方程是什麼

八年級上冊數學分式方程知識點如下。

1、分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程。

2、分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根。

3、分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根。

4、分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加驗增根的程序。

6. 人教版八年級數學知識點

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

分式方程

一、理解定義

1、分式方程:含分式,並且分母中含未知數的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

(2)解這個整式方程。

(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。

(4)寫出原方程的根。

「一化二解三檢驗四 總結 」

3、增根:分式方程的增根必須滿足兩個條件:

(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根;

註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

5、分式方程解實際問題

步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。

二、軸對稱圖形:

一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

1、軸對稱:

兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

2、軸對稱圖形與軸對稱的區別與聯系:

(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。

(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。

3、軸對稱的性質:

(1)成軸對稱的兩個圖形全等。

(2)對稱軸與連結「對應點的線段」垂直。

(3)對應點到對稱軸的距離相等。

(4)對應點的連線互相平行。

三、用坐標表示軸對稱

1、點(x,y)關於x軸對稱的點的坐標為(x,-y);

2、點(x,y)關於y軸對稱的點的坐標為(-x,y);

3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。

四、關於坐標軸夾角平分線對稱

點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)

點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)

八年級數學知識點

1、全等三角形的對應邊、對應角相等

2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

7、定理1在角的平分線上的點到這個角的兩邊的距離相等

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9、角的平分線是到角的兩邊距離相等的所有點的集合

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

11、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

13、推論3等邊三角形的各角都相等,並且每一個角都等於60°

14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

15、推論1三個角都相等的三角形是等邊三角形

16、推論2有一個角等於60°的等腰三角形是等邊三角形

17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

18、直角三角形斜邊上的中線等於斜邊上的一半

19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

22、定理1關於某條直線對稱的兩個圖形是全等形

23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形

初二 數學學習方法 十大技巧

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10、客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。


人教版八年級數學知識點相關 文章 :

★ 人教版八年級數學上冊知識點總結

★ 八年級數學上冊知識點總結人教版

★ 人教版八年級數學上冊知識點整理

★ 八年級數學知識點整理歸納

★ 八年級數學知識點整理

★ 人教版八年級上冊數學課本知識點歸納

★ 初二數學知識點歸納上冊人教版

★ 人教版八年級數學上冊知識點

★ 人教版八年級上冊數學知識點總結

★ 新人教版八年級數學上冊知識點

7. 八年級數學必備知識點總結

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

分式方程

一、理解定義

1、分式方程:含分式,並且分母中含未知數的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

(2)解這個整式方程。

(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。

(4)寫出原方程的根。

「一化二解三檢驗四 總結 」

3、增根:分式方程的增根必須滿足兩個條件:

(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根;

註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

分式方程檢驗 方法 :將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

5、分式方程解實際問題

步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。

八年級上冊數學知識點

(一)運用公式法

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

八年級數學重要知識點

【概率初步】

23.1確定事件和隨機事件

1.在一定條件下必定出現的現象叫做必然事件

2.在一定條件下必定不出現的現象叫做不可能事件

3.必然事件和不可能事件統稱為確定事件

4.那些在一定條件下可能出現也可能不出現的現象叫做隨機時間,也稱為不確定事件23.2事件發生的可能性

23.3時間的概率

1.用來表示某事件發生的可能性大小的數叫做這個事件的概率

2.規定用0作為不可能事件的概率;用1作為必然時間的概率

3.事件A的概率我們記作P(A);對於隨機事件A,可知0

4.如果一項可以反復進行的試驗具有以下特點:

(1)試驗的結果是有限個,各種結果可能出現的機會是均等的;

(2)任何兩個結果不可能同時出現

那麼這樣的試驗叫做等可能試驗

5.一般地,如果一個試驗共有n個等可能的結果,事件A包含其中的k個結果,那麼事件A的概率P(A)=事件A包含的可能結果數/所有的可能結果總數=k/n

6.列舉法、樹狀圖、列表

23.4概率計算舉例


八年級數學必備知識點總結相關 文章 :

★ 八年級數學知識點整理歸納

★ 人教版八年級數學上冊知識點總結

★ 初二數學知識點歸納整理

★ 八年級下冊數學知識點整理

★ 初中八年級數學知識點總結

★ 初二數學知識點歸納梳理

★ 初二數學基礎知識點歸納

★ 初二數學上冊知識點總結

★ 初二數學知識點整理歸納

★ 初二數學知識點整理

8. 八年級上冊數學提綱人教版

初中數學和小學相比:知識量加大,知識綜合性加強;對應用能力要求加大:如觀察、閱讀、記憶、思維、想像、操作、表達等能力。以下是我給大家整理的 八年級 上冊數學提綱人教版,希望對大家有所幫助,歡迎閱讀!

八年級上冊數學提綱人教版

分式知識點

1、分式的基本性質:分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變。

2、通分:利用分式的基本性質,使分子和分母都乘以適當的整式,不改變分式的值,把幾個異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。

通分的關鍵是:確定幾個分式的最簡公分母。確定最簡公分母的一般 方法 是:(1)如果各分母都是單項式,那麼最簡公分母就是各系數的最小公倍數、相同字母的次冪、所有不同字母及指數的積。

(2)如果各分母中有多項式,就先把分母是多項式的分解因式,再參照單項式求最簡公分母的方法,從系數、相同因式、不同因式三個方面去確定。

3、約分:根據分式的基本性質,約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。

在約分時要注意:(1)如果分子、分母都是單項式,那麼可直接約去分子、分母的公因式,即約去分子、分母系數的公約數,相同字母的最低次冪;(2)如果分子、分母中至少有一個多項式就應先分解因式,然後找出它們的公因式再約分;(3)約分一定要把公因式約完。

實數知識點

1、實數的分類:有理數和無理數

2、數軸:規定了原點、正方向和單位長度的直線叫數軸.實數和數軸上點一一對應.

3、相反數:符號不同的兩個數,叫做互為相反數.a的相反數是-a,0的相反數是0.(若a與b護衛相反數,則a+b=0)

4、絕對值:在數軸上表示數a的點到原點的距離叫數a的絕對值,記作∣a∣,正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0.

5、倒數:乘積為1的兩個數

6、乘方:求相同因數的積的運算叫乘方,乘方運算的結果叫冪.(平方和立方)

7、平方根:一般地,如果一個數x的平方等於a,即x2=a那麼這個數x就叫做a的平方根(也叫做二次方根).一個正數有兩個平方根,它們互為相反數;0隻有一個平方根,它是0本身;負數沒有平方根.(算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x就叫做a的算術平方根,0的算術平方根是0.)

實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,它們能把數軸「填滿」。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。

實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後n位,n為正整數,包括整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。

1)相反數(只有符號不同的兩個數,它們的和為零,我們就說其中一個是另一個的相反數,叫做互為相反數)實數a的相反數是-a,a和-a在數軸上到原點0的距離相等。

2)絕對值(在數軸上一個數a與原點0的距離)實數a的絕對值是:|a|

①a為正數時,|a|=a(不變),a是它本身;

②a為0時,|a|=0,a也是它本身;

③a為負數時,|a|=-a(為a的絕對值),-a是a的相反數。

(任何數的絕對值都大於或等於0,因為距離沒有負數。)

3)倒數(兩個實數的乘積是1,則這兩個數互為倒數)實數a的倒數是:1/a(a≠0)

4)數軸

定義:規定了原點,正方向和單位長度的直線叫數軸

(1)數軸的三要素:原點、正方向和單位長度。

(2)數軸上的點與實數一一對應。

如何提高初中數學成績

想提高初中的數學成績首先我們需要認真學習,且認真完成老師每節課布置的作業,這樣子才能跟上學習進度。

在上課的時候我們一定要認真聽講,而且最好能夠提前一節課就把這些數學課所要講到的內容提前進行預習,這樣子才能夠更快地了解相關內容。

在下課的時候大家也可以一起來討論一下自己不會的題目或者相互給對方出數學題,讓對方做。

如果說實在跟不上趟的話,也可以給自己聘請一個專門的老師進行一對一的輔導。一般來說,初中的數學還停留在套公式的階段,並不是特別的難,只要認真學都是可以學會的。

當然需要提高成績,最好的辦法就是努力、勤奮的學習,不要總是想著靠他人或想著天上掉餡餅,那是不現實的。好好努力吧。

數學答題技巧

迅速摸清「題情」

剛拿到試卷的時候心情一定會比較緊張,在這種緊張的狀態下不要匆匆作答。首先要從頭到尾、正面反面瀏覽全卷,盡可能從卷面上獲取最多的信息。摸清「題情」的原則是:輕松解答那些一眼就可以看出結論來的簡單選擇題或者填空題;對不能立即作答的題目可以從心裡分為比較熟悉和比較陌生兩大類。對這些信息的掌握,可以確保不出現「前面難題做不出,後面易題沒時間做」的尷尬局面。

做題原則「一快一慢」

這里所謂的「一快一慢」指的是審題要慢,做題要快。

題目本身實際上是這道題目的全部信息源,所以在審題的時候一定要逐字逐句地看清楚,力求從語法結構、邏輯關系、數學含義等各方面真正地看清題意。有一些條件看起來沒有給出,但實際上細致審題你才會發現,這樣就可以收集更多的已知信息,為做題正確率尋求保障。

當思考出解題方法和思路之後,解答問題的時候就一定要簡明扼要、快速規范。這樣不僅給後面的題目贏得時間,更重要的是在保證踩到得分點上的基礎上盡量簡化解題步驟,可使得閱卷老師更加清晰地看出你的解題步驟。

把握技巧「分段得分」

對於中考數學 中的難題,並不是說只讓成績優秀的學生拿分而其他學生不得分。實際上,中考數學的大題採取的是「分段給分」的策略。簡單說來就是做對一步就給一步的分。這樣看來,我們確保會做的題目不丟分,部分理解的題目力爭多得分。


八年級上冊數學提綱人教版相關 文章 :

★ 初二數學知識點歸納上冊人教版

★ 八年級上冊數學復習提綱整理

★ 人教版八年級數學上冊知識點總結

★ 八年級上冊數學復習提綱2020

★ 初二數學上冊知識點總結

★ 人教版八年級上冊數學教材分析

★ 數學八年級上冊知識人教版

★ 2017人教版八年級數學上冊知識點歸納

★ 2021八年級上冊數學復習提綱

★ 數學八年級上冊知識點整理