A. 八年級數學上冊知識點
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
八年級上冊數學知識
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
初二數學 復習方法
一、復習內容:
第一章:勾股定理
第二章:實數第三章:位置與坐標
第四章:一次函數
第五章:二元一次方程組
第六章:數據的分析
第七章:平行線的證明
二、復習目標:
八年級數學本學期知識點多,復習時間又比較短,只有三周的時間。
根據實際情況,應該完成如下目標:
(一)、整理本學期學過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應用以及平行線的性質與判別還有三角形內角和定理及其應用。所以記住性質是關鍵,學會判定是重點,靈活應用是目的。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,形成一個有機整體。對常見的證明題要多練多 總結 。2.第四五六章主要是概念的教學,對這幾章的考試題型學生可能都不熟悉,所以要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質、方法綜合復習,加入適當的練習,在練習計算。課堂上逐一對易錯題的講解,多強調解題方法的針對性。最後針對平時練習中存在的問題,查漏補缺。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、通過本學期的數學學習,讓同學們總結自己有哪些收獲;有哪些需要改進的地方。
三、復習方法:
1、強化訓練,這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是一次函數,在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養成檢查計算結果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求,根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練,通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導,制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
四、課時安排:
本次復習共三周時間,具體安排如下:第一章1課時第二章2課時第三章1課時第四章2課時第五章2課時第六章1課時第七章2課時模擬測試4課時
五、復習階段採取的 措施 :
1.精心備課上課,針對班級學生出現的錯題及所涉及到的重點問題認真挑選試題。2.對於復習階段作業的布置,少而精,有針對性,並且很抓訂正及改錯。3.在試題的選擇上作到面面俱到,重點難點突出,不重不漏。4.面向全體學生。由於學生在知識、技能方面的發展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數學生的實際出發,並兼顧學習有困難的和學有餘力的學生。對學習有困難的學生,要特別予以關心,及時採取有效措施,激發他們學習數學的興趣,指導他們改進學習方法。減緩他們學習中的坡度,使他們經過努力,能夠達到大綱中規定的基本要求。對學有餘力的學生,要通過講授選學內容和組織課外活動等多種形式,滿足他們的學習願望,發展他們的數學才能。5.重視改進 教學方法 ,堅持啟發式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,並布置與課本內容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理學習的知識,指出重點和易錯點,解答學生復習時遇到的問題,使學生在學習中體會成功,調動學習積極性。6.改革作業結構減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、易三檔作業,使每類學生都能在原有基礎上提高。
八年級數學上冊知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學上冊知識點歸納
★ 八年級數學知識點整理歸納
★ 數學八年級上冊知識點整理
★ 八年級數學上冊知識點北師大版
★ 初二數學上冊知識點總結歸納
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點
★ 初二數學上冊知識點
B. 八年級上冊數學知識點歸納【三篇】
#初二# 導語: 學好數學的關鍵就在於要適時適量地進行總結歸類,下是 無 整理的八年級上冊數學知識點歸納【三篇】,希望對大家有幫助。
第六章知識點
一、函數:
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
二、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優缺點
(1)關系式(解析)法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把廳禪自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。
2、一次函數的圖像:所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:彎伏胡一次函數 的圖像是經過點(0,b)的直線;正比例函數 的圖像是經過原點(0,0)的直線。
第七章知識點
1、二元一次方程
含有兩個未知數,並且所含未知數的項的次數都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程埋攔的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
第八章知識點
1、刻畫數據的集中趨勢(平均水平)的量:平均數、眾數、中位數
2、平均數
(2)加權平均數:
3、眾數
一組數據中出現次數最多的那個數據叫做這組數據的眾數。
4、中位數
一般地,將一組數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
C. 人教版八年級上冊數學知識點歸納
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。歸納整理了人教版八年級數學上冊知識點,歡迎閱讀,希望對你復習有幫助。
人教版八年級數學上冊知識點總結
第十一章 三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形族裂漏的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。
第十二章 全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
⑸對應角:全等三角形中互相重合的角叫做對應角。
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性。
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等。
3.全等三角形的判定定理:
⑴邊邊邊():三邊對應相等的兩個三角形全等。
⑵邊角邊():兩邊和它們的夾角對應相等的兩個三角形全等。
⑶角邊角():兩角和它們的夾邊對應相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等。
⑸斜邊、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等。
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等。
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證。
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章 軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個源指圖形就叫做兆爛軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等。
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關於坐標軸對稱的點的坐標性質
。
⑷等腰三角形的性質:
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
⑸等邊三角形的性質:
①等邊三角形三邊都相等。
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個角都相等的三角形是等邊三角形。
③有一個角是60°的等腰三角形是等邊三角形。
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
第十四章 整式的乘除與分解因式
一、知識框架:
第十五章 分式
一、知識框架 :
●●●END●●●
D. 部編版八年級數學上冊知識點
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二數學知識點
【相似、全等三角形】
1、定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
4、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應成比例,兩三角形相似(SSS)
6、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
7、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
8、性質定理2相似三角形周長的比等於相似比
9、性質定理3相似三角形面積的比等於相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等
11、角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等
12、推論有兩角和其中一角的對邊對應相等的兩個三角形全等
13、邊邊邊公理有三邊對應相等的兩個三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
15、全等三角形的對應邊、對應角相等
【等腰、直角三角形】
1、等腰三角形的性質定理等腰三角形的兩個底角相等
2、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
3、等腰三角形的頂角平分線、底邊上的中線和高互相重合
4、推論3等邊三角形的各角都相等,並且每一個角都等於60°
5、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
6、推論1三個角都相等的三角形是等邊三角形
7、推論2有一個角等於60°的等腰三角形是等邊三角形
8、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
9、直角三角形斜邊上的中線等於斜邊上的一半
八年級數學知識點
1.提公共因式法
※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的 方法 叫做提公因式法.
如:
※2.概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
2.運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點點評:
因式分解要分解到底.如就沒有分解到底.
※4.運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
3.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
八年級數學重要知識點
【概率初步】
23.1確定事件和隨機事件
1.在一定條件下必定出現的現象叫做必然事件
2.在一定條件下必定不出現的現象叫做不可能事件
3.必然事件和不可能事件統稱為確定事件
4.那些在一定條件下可能出現也可能不出現的現象叫做隨機時間,也稱為不確定事件23.2事件發生的可能性
23.3時間的概率
1.用來表示某事件發生的可能性大小的數叫做這個事件的概率
2.規定用0作為不可能事件的概率;用1作為必然時間的概率
3.事件A的概率我們記作P(A);對於隨機事件A,可知0
4.如果一項可以反復進行的試驗具有以下特點:
(1)試驗的結果是有限個,各種結果可能出現的機會是均等的;
(2)任何兩個結果不可能同時出現
那麼這樣的試驗叫做等可能試驗
5.一般地,如果一個試驗共有n個等可能的結果,事件A包含其中的k個結果,那麼事件A的概率P(A)=事件A包含的可能結果數/所有的可能結果總數=k/n
6.列舉法、樹狀圖、列表
23.4概率計算舉例
部編版八年級數學上冊知識點相關 文章 :
★ 初二數學部編版知識點
★ 初二部編版數學的知識點
★ 八年級上冊數學復習知識提綱滬科版
★ 最好的學習方法指導和知識點總結
★ 一年級數學上冊知識點部編版
★ 初一數學部編版知識點歸納
★ 初一部編版數學知識點
★ 初三數學知識點部編版
★ 八年級學習方法指導
★ 初中生的學習技巧
E. 八年級上冊數學知識點總結
學習 八年級 數學知識點的來源於勤奮好學,只有好學者,才能在無邊的知識海洋里獵取到真智才學,為大家整理了八年級上冊數學知識點 總結 人教版,歡迎大家閱讀!
八年級上冊數學知識點總結人教版第11-12章
第十一章 全等三角形
知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本 方法 步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章 軸對稱
知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
八年級上冊數學知識點總結人教版第13-14章
第十三章 實數
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章 一次函數
知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
八年級上冊數學知識點總結人教版第15章
第十五章 整式的乘除與分解因式
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則:(m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級上冊數學知識點總結相關 文章 :
1. 人教版八年級數學上冊知識點總結
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級數學上冊知識點歸納
5. 八年級上冊數學知識點總結
6. 新人教版八年級數學上冊知識點歸納
7. 八年級上冊數學知識點總結與八年級數學學習技巧
8. 八年級數學知識點整理歸納
9. 八年級數學知識點總結
10. 2017人教版八年級上冊數學知識點總結
F. 八年級上冊數學提綱人教版
初中數學和小學相比:知識量加大,知識綜合性加強;對應用能力要求加大:如觀察、閱讀、記憶、思維、想像、操作、表達等能力。以下是我給大家整理的 八年級 上冊數學提綱人教版,希望對大家有所幫助,歡迎閱讀!
八年級上冊數學提綱人教版
分式知識點
1、分式的基本性質:分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變。
2、通分:利用分式的基本性質,使分子和分母都乘以適當的整式,不改變分式的值,把幾個異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關鍵是:確定幾個分式的最簡公分母。確定最簡公分母的一般 方法 是:(1)如果各分母都是單項式,那麼最簡公分母就是各系數的最小公倍數、相同字母的次冪、所有不同字母及指數的積。
(2)如果各分母中有多項式,就先把分母是多項式的分解因式,再參照單項式求最簡公分母的方法,從系數、相同因式、不同因式三個方面去確定。
3、約分:根據分式的基本性質,約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時要注意:(1)如果分子、分母都是單項式,那麼可直接約去分子、分母的公因式,即約去分子、分母系數的公約數,相同字母的最低次冪;(2)如果分子、分母中至少有一個多項式就應先分解因式,然後找出它們的公因式再約分;(3)約分一定要把公因式約完。
實數知識點
1、實數的分類:有理數和無理數
2、數軸:規定了原點、正方向和單位長度的直線叫數軸.實數和數軸上點一一對應.
3、相反數:符號不同的兩個數,叫做互為相反數.a的相反數是-a,0的相反數是0.(若a與b護衛相反數,則a+b=0)
4、絕對值:在數軸上表示數a的點到原點的距離叫數a的絕對值,記作∣a∣,正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0.
5、倒數:乘積為1的兩個數
6、乘方:求相同因數的積的運算叫乘方,乘方運算的結果叫冪.(平方和立方)
7、平方根:一般地,如果一個數x的平方等於a,即x2=a那麼這個數x就叫做a的平方根(也叫做二次方根).一個正數有兩個平方根,它們互為相反數;0隻有一個平方根,它是0本身;負數沒有平方根.(算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x就叫做a的算術平方根,0的算術平方根是0.)
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,它們能把數軸「填滿」。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後n位,n為正整數,包括整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。
1)相反數(只有符號不同的兩個數,它們的和為零,我們就說其中一個是另一個的相反數,叫做互為相反數)實數a的相反數是-a,a和-a在數軸上到原點0的距離相等。
2)絕對值(在數軸上一個數a與原點0的距離)實數a的絕對值是:|a|
①a為正數時,|a|=a(不變),a是它本身;
②a為0時,|a|=0,a也是它本身;
③a為負數時,|a|=-a(為a的絕對值),-a是a的相反數。
(任何數的絕對值都大於或等於0,因為距離沒有負數。)
3)倒數(兩個實數的乘積是1,則這兩個數互為倒數)實數a的倒數是:1/a(a≠0)
4)數軸
定義:規定了原點,正方向和單位長度的直線叫數軸
(1)數軸的三要素:原點、正方向和單位長度。
(2)數軸上的點與實數一一對應。
如何提高初中數學成績
想提高初中的數學成績首先我們需要認真學習,且認真完成老師每節課布置的作業,這樣子才能跟上學習進度。
在上課的時候我們一定要認真聽講,而且最好能夠提前一節課就把這些數學課所要講到的內容提前進行預習,這樣子才能夠更快地了解相關內容。
在下課的時候大家也可以一起來討論一下自己不會的題目或者相互給對方出數學題,讓對方做。
如果說實在跟不上趟的話,也可以給自己聘請一個專門的老師進行一對一的輔導。一般來說,初中的數學還停留在套公式的階段,並不是特別的難,只要認真學都是可以學會的。
當然需要提高成績,最好的辦法就是努力、勤奮的學習,不要總是想著靠他人或想著天上掉餡餅,那是不現實的。好好努力吧。
數學答題技巧
迅速摸清「題情」
剛拿到試卷的時候心情一定會比較緊張,在這種緊張的狀態下不要匆匆作答。首先要從頭到尾、正面反面瀏覽全卷,盡可能從卷面上獲取最多的信息。摸清「題情」的原則是:輕松解答那些一眼就可以看出結論來的簡單選擇題或者填空題;對不能立即作答的題目可以從心裡分為比較熟悉和比較陌生兩大類。對這些信息的掌握,可以確保不出現「前面難題做不出,後面易題沒時間做」的尷尬局面。
做題原則「一快一慢」
這里所謂的「一快一慢」指的是審題要慢,做題要快。
題目本身實際上是這道題目的全部信息源,所以在審題的時候一定要逐字逐句地看清楚,力求從語法結構、邏輯關系、數學含義等各方面真正地看清題意。有一些條件看起來沒有給出,但實際上細致審題你才會發現,這樣就可以收集更多的已知信息,為做題正確率尋求保障。
當思考出解題方法和思路之後,解答問題的時候就一定要簡明扼要、快速規范。這樣不僅給後面的題目贏得時間,更重要的是在保證踩到得分點上的基礎上盡量簡化解題步驟,可使得閱卷老師更加清晰地看出你的解題步驟。
把握技巧「分段得分」
對於中考數學 中的難題,並不是說只讓成績優秀的學生拿分而其他學生不得分。實際上,中考數學的大題採取的是「分段給分」的策略。簡單說來就是做對一步就給一步的分。這樣看來,我們確保會做的題目不丟分,部分理解的題目力爭多得分。
八年級上冊數學提綱人教版相關 文章 :
★ 初二數學知識點歸納上冊人教版
★ 八年級上冊數學復習提綱整理
★ 人教版八年級數學上冊知識點總結
★ 八年級上冊數學復習提綱2020
★ 初二數學上冊知識點總結
★ 人教版八年級上冊數學教材分析
★ 數學八年級上冊知識人教版
★ 2017人教版八年級數學上冊知識點歸納
★ 2021八年級上冊數學復習提綱
★ 數學八年級上冊知識點整理
G. 初二數學知識點歸納上冊人教版
雖然知道,造成 高二數學 成績不好的原因是多方面的,但最核心的一點是我們對相關知識的掌握還不夠透徹。初二數學知識點歸納上冊人教版有哪些?一起來看看初二數學知識點歸納上冊人教版,歡迎查閱!
初二數學知識點 總結 歸納
運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
10.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
11.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
12.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
初二數學復習提綱 方法
一、克服心理疲勞
第一,要有明確的學習目的。學習就像從河裡抽水,動力越足,水流量越大。動力來源於目的,只有樹立正確的學習目的,才會產生強大的學習動力;
第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,並伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的`。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處於一種良好的競技狀態;
第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。
二、戰勝高原現象
復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,並非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出 學習方法 、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。
三、重視復習「錯誤」
如果在復習中不善於從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,並對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕「後患」。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。
四、把握心理特點搞好考前復習
實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習。考生在復習迎考過程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。
1、課本不容忽視
對於初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,並對照課後練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對於課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
初二數學全冊復習提綱
第十一章 一次函數
我們稱數值變化的量為變數(variable)。
有些量的數值是始終不變的,我們稱它們為常量(constant)。
在一個變化過程中,如果有兩個變數x與y,並且對於x的每一個確定的值,y都有確定的值與其對應,那麼我們說x是自變數(independent variable),y是x的函數(function)。
如果當x=a時y=b,那麼b叫做當自變數的值為a時的函數值。
形如y=kx(k是常數,k≠0)的函數,叫做正比例函數(proportional function),其中k叫做比例系數。
形如y=kx+b(k,b是常數,k≠0)的函數,叫做一次函數(linear function)。正比例函數是一種特殊的一次函數。
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
每個二元一次方程組都對應兩個一次函數,於是也對應兩條直線。從「形」的角度看,解方程組相當於確定兩條直線交點的坐標。
第十二章 數據的描述
我們稱落在不同小組中的數據個數為該組的頻數(frequency),頻數與數據總數的比為頻率。
常見的統計圖:條形圖(bar graph)(復合條形圖)、扇形圖(pie chart)、折線圖、直方圖(histogram)。
條形圖:描述各組數據的個數。
復合條形圖:不僅可以看出數據的情況,而且還可以對它們進行比較。
扇形圖:描述各組頻數的大小在總數中所佔的百分比。
折線圖:描述數據的變化趨勢。
直方圖:能夠顯示各組頻數分布的情況;易於顯示各組之間頻數的差別。
在頻數分布(frequency distribution)表中:我們把分成組的個數稱為組數,每一組兩個端點的差稱為組距。
求出各個小組兩個端點的平均數,這些平均數稱為組中值。
第十三章 全等三角形
能夠完全重合的兩個圖形叫做全等形(congruent figures)。
能夠完全重合的兩個三角形叫做全等三角形(congruent triangles)。
全等三角形的性質:全等三角形對應邊相等;全等三角形對應角相等。
全等三角形全等的條件:三邊對應相等的兩個三角形全等。(SSS)
兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)
角平分線的性質:角平分線上的點到角的兩邊的距離相等。
到角兩邊的距離相等的點在角的平分線上。
第十四章 軸對稱
經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線(perpendicular bisector)。
軸對稱圖形的對稱軸,是任何一對對應點所連接線段的垂直平分線。
線段垂直平分線上的點與這條線段兩個端點的距離相等。
由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換。
等腰三角形的性質:
等腰三角形的兩個底角相等。(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)(附:頂角+2底角=180°)
如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等。(等角對等邊)
有一個角是60°的等腰三角形是等邊三角形。
在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
第十五章 整式
式子是數或字母的積的式子叫做單項式(monomial)。單獨的一個數或字母也是單項式。
單項式中的數字因數叫做這個單項式的系數(coefficient)。
一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree)。
幾個單項式的和叫做多項式(polynomial)。每個單項式叫多項式的項(term),其中,不含字母的叫做常數項(constant term)。
多項式里次數的項的次數,就是這個多項式的次數。
單項式和多項式統稱整式(integral expression_r)。
所含字母相同,並且相同字母的指數也相同的項叫做同類項。
把多項式中的同類項合並成一項,即把它們的系數相加作為新的系數,而字母部分不變,叫做合並同類項。
幾個整式相加減,通常用括弧把每一個整式括起來,再用加減號連接;然後去括弧,合並同類項。
同底數冪相乘,底數不變,指數相加。
冪的乘方,底數不變,指數相乘
積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
單項式與單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,則連同它的指數作為積的一個因式。
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底數冪相除,底數不變,指數相減。
任何不等於0的數的0次冪都等於1。
第十六章 分式
如果A、B表示兩個整式,並且B中含有字母,那麼式子A/B叫做分式(fraction)。
分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
分式乘方要把分子、分母分別乘方。
a^-n=1/a^n (a≠0) 這就是說,a^-n (a≠0)是a^n的倒數。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
第十七章 反比例函數
形如y=k/x(k為常數,k≠0)的函數稱為反比例函數(inverse proportional function)。
反比例函數的圖像屬於雙曲線(hyperbola)。
當k>0時,雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時,雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
第十八章 勾股定理
勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a^2+b^2=c^2
勾股定理逆定理:如果三角形三邊長a,b,c滿足a^2+b^2=c^2,那麼這個三角形是直角三角形。
經過證明被確認正確的命題叫做定理(theorem)。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章 四邊形
有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定:
1.兩組對邊分別相等的四邊形是平行四邊形;
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
直角三角形斜邊上的中線等於斜邊的一半。
矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。
矩形判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形(rhombus)。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
正方形的性質:四條邊都相等,四個角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。
一組對邊平行,另一組對邊不平行的四邊形叫做梯形(trapezium)。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
線段的重心就是線段的中點。
平行四邊形的重心是它的兩條對角線的交點。
三角形的三條中線交於疑點,這一點就是三角形的重心。
寬和長的比是(根號5-1)/2(約為0.618)的矩形叫做黃金矩形。
第二十章 數據的分析
將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
一組數據中的數據與最小數據的差叫做這組數據的極差(range)。
方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
數據的收集與整理的步驟:1.收集數據 2.整理數據 3.描述數據 4.分析數據 5.撰寫調查 報告
初二數學知識點歸納上冊人教版相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結歸納
★ 數學八年級上冊知識人教版
★ 八年級數學上冊知識點歸納
★ 初二數學上冊知識點總結2020
★ 八年級上冊數學的知識點歸納
★ 人教版八年級上冊數學教材分析
★ 初二上冊數學知識點總結與學習方法
★ 八年級上冊數學知識點總結
H. 八年級數學上冊知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級上冊數學知識點
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二數學知識點歸納
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
八年級數學上冊知識點 總結 相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點歸納
★ 初二上冊數學知識點歸納總結
★ 初二數學上冊知識點
★ 八年級上冊數學的知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結人教版
★ 初二數學知識點歸納上冊人教版
I. 人教版八年級上冊數學提綱
數學是中考的一項重要內容,學好數學能夠幫助我們提高總成績,你會寫復習提綱嗎?下面我給大家分享一些人教版 八年級 上冊數學提綱,希望能夠幫助大家,歡迎閱讀!
人教版八年級上冊數學提綱
一、多邊形
1、多邊形:由一些線段首尾順次連結組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今後所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點的內角的鄰補角。
9、多邊形內角和定理:n邊形內角和等於(n-2)180°。
10、多邊形內角和定理的推論:n邊形的外角和等於360°。
說明:多邊形的外角和是一個常數(與邊數無關),利用它解決有關計算題比利用多邊形內角和公式及對角線求法公式簡單。無論用哪個公式解決有關計算,都要與解方程聯系起來,掌握計算 方法 。
二、四邊形
在同一平面內,由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
三、凸四邊形
把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。
四、對角線
在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。
五、四邊形的不穩定性
三角形的三邊如果確定後,它的形狀、大小就確定了,這是三角形的穩定性。但是四邊形的四邊確定後,它的形狀不能確定,這就是四邊形所具有的不穩定性,它在生產、生活方面有著廣泛的應用。
四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等於360°。
四邊形的外角和定理:四邊形的外角和等於360°。
推論:多邊形的內角和定理:n邊形的內角和等於180°。
多邊形的外角和定理:任意多邊形的外角和等於360°。
提升數學成績的方法有哪些
考試的方法
1、良好心態考生要自信,要有客觀的考試目標。追求正常發揮,而不要期望自己超長表現,這樣心態會放的很平和。沉著冷靜的同時也要適度緊張,要使大腦處於最佳活躍狀態。
2、考試從審題開始審題要避免「猜」、「漏」兩種不良習慣,為此審題要從字到詞再到句。
3、學會使用演算紙要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號。
4、正確對待難題難題是用來拉開分數的,不管你水平高低,都應該學會繞開難題最後做,不要被難題搞亂思緒,只有這樣才能保證無論什麼考試,你都能排前幾名。
認真「聽」的習慣
為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學生提倡邊聽邊做聽課筆記。
積極「想」的習慣
積極思考老師和同學提出的問題,使自己始終置身於教學活動之中,這是提高學習質量和效率的重要保證。學生思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。
適當多做題,養成良好的解題習慣
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
數學證明題不會怎麼辦
1.讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。
2.要記
這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
3.要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。
人教版八年級上冊數學提綱相關 文章 :
★ 八年級上冊數學復習提綱整理
★ 人教版八年級數學上冊知識點總結
★ 八年級上冊數學復習提綱2020
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點整理
★ 2017人教版八年級數學上冊知識點歸納
★ 2021八年級上冊數學復習提綱
★ 人教版八年級上冊數學教材分析