Ⅰ 初一數學必考的知識點
初一數學必考的知識點1
一、數軸
(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.
數軸的三要素:原點,單位長度,正方向。
(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。)
(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。
二、相反數
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。
三、絕對值
1.概念:數軸上某個數與原點的距離叫做這個數的絕對值。
①互為相反數的兩個數絕對值相等;
②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數.
③有理數的絕對值都是非負數.
2.如果用字母a表示有理數,則數a絕對值要由字母a本身的取值來確定:
①當a是正有理數時,a的絕對值是它本身a;
②當a是負有理數時,a的絕對值是它的相反數﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
初一數學必考知識點:有理數大小比較
1.有理數的大小比較
比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的.數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小。
2.有理數大小比較的法則:
①正數都大於0;
②負數都小於0;
③正數大於一切負數;
④兩個負數,絕對值大的其值反而小。
規律方法·有理數大小比較的三種方法:
(1)法則比較:正數都大於0,負數都小於0,正數大於一切負數.兩個負數比較大小,絕對值大的反而小.
(2)數軸比較:在數軸上右邊的點表示的數大於左邊的點表示的數.
(3)作差比較:
若a﹣b>0,則a>b;
若a﹣b<0,則a<b; p=""> </b;>
若a﹣b=0,則a=b.
初一數學必考知識點:相反數
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。
初一數學必考的知識點2
第一章 有理數
1.正數和負數
2.有理數
3.有理數的加減
4.有理數的乘除
5.有理數的乘方
重點:數軸、相反數、絕對值、有理數計算、科學計數法、有效數字
難點:絕對值
易錯點:絕對值、有理數計算
中考必考:科學計數法、相反數(選擇題)
第二章 整式的加減
1.整式
2.整式的加減
重點:單項式與多項式的概念及系數和次數的確定、同類項、整式加減
難點:單項式與多項式的系數和次數的確定、合並同類項
易錯點:合並同類項、計算失誤、整數次數的確定
中考必考:同類項、整數系數次數的確定、整式加減
第三章 一元一次方程
1.從算式到方程
2.解一元一次方程----合並同類項與移項
3.解一元一次方程----去括弧去分母
4.實際問題與一元一次方程
重點:一元一次方程(定義、解法、應用)
難點:一元一次方程的解法(步驟)
易錯點:去分母時,不含有分母項易漏乘、解應用題時,不知道如何找等量關系
第四章 圖形認識實步
1.多姿多彩的圖形
2.直線、射線、線段
3.角
4.課題實習----設計製作長方形形狀的包裝紙盒
重點:直線、射線、線段、角的認識、中點和角平分線的相關計算、餘角和補角,方位角等
難點:中點和角平分線的相關計算、餘角和補角的應用
易錯點:等量關系不會轉化、審題不清
Ⅱ 初一數學下冊知識點
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面是我為大家整理的初一數學下冊知識點,希望能幫助到大家。
目錄
初一數學下冊知識點
初一數學下冊知識點:實數
初一數學學習方法
初一數學下冊知識點相交線與平行線
一、知識網路結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特徵:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,並且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那麼結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那麼結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移後,新圖形與原圖形的 形狀 和 大小 完全相同。平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。
平移性質:平移前後兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
【知識點一】實數的分類
1、按定義分類: 2.按性質符號分類:
註:0既不是正數也不是負數.
【知識點二】實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關於原點對稱.
(3)互為相反數的兩個數之和等於0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等於a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果x3=a,那麼x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
【知識點三】實數與數軸
數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
【知識點四】實數大小的比較
1.對於數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大於0,負數都小於0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大小:
【知識點五】實數的運算
1.加法
同號兩數相加,取相同的符號,並把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等於加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等於乘上這個數的倒數.兩個數相除,同號得正,異號得負,並把絕對值相除.0除以任何一個不等於0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
【知識點六】有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的 方法 叫科學記數法.
平面直角坐標系
一、知識網路結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標,記作P(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①x軸正半軸上的點:橫坐標 0,縱坐標 0;②x軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填「>」、「<」或「=」)
8、點P(a,b)到x軸的距離是 |b| ,到y軸的距離是 |a| 。
9、對稱點的坐標特點①關於x軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關於y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關於原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點P(2,3) 到x軸的距離是 ; 到y軸的距離是 ; 點P(2,3) 關於x軸對稱的點坐標為( , );點P(2,3) 關於y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與x軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與x軸平行、與y軸垂直 。如果點P(2,3)、Q(2,6),這兩點橫坐標相同,則PQ∥y軸,PQ⊥x軸;如果點P(-1,2)、Q(4,2),這兩點縱坐標相同,則PQ∥x軸,PQ⊥y軸。
12、平行於x軸的直線上的點的縱坐標相同;平行於y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點P(a,b) 在一、三象限角平分線上,則P點的橫坐標與縱坐標相同,即 a = b ;如果點P(a,b) 在二、四象限角平分線上,則P點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是准確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按「左減右加、上加下減」的規律進行。如將點P(2,3)向左平移2個單位後得到的點的坐標為( , );將點P(2,3)向右平移2個單位後得到的點的坐標為( , );將點P(2,3)向上平移2個單位後得到的點的坐標為( , );將點P(2,3)向下平移2個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向下平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向下平移5個單位後得到的點的坐標為( , )。
一、多看
主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎麼閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:
1. 課前預習 閱讀。預習課文時,要准備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助於理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批註,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。
3.課後復習閱讀。課後復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課後,必須先閱讀課本,然後再做作業;一個單元後,應全面閱讀課本,對本單元的內容前後聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。
二、多想
主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。
同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納 總結 數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習題,學數學一定要做習題,並且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什麼方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。
四、多問
是指在學習過程中要善於發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有 經驗 的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那麼,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不願意動腦筋,不去思考,當然發現不了什麼問題,也提不出疑問。發現問題後,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善於提出問題、虛心學習的人,才有可能成為真正的學習上的強者。
初一數學下冊知識點相關 文章 :
★ 數學七年級下冊知識點
★ 七年級下冊數學知識點
★ 七年級數學下冊復習知識點
★ 初一下冊數學知識點歸納總結
★ 初一數學下冊單元知識點總結
★ 七年級下冊數學的知識點
★ 初一下冊數學重點知識點總結歸納
★ 新版初一數學下冊知識點歸納
★ 初一數學下冊知識點歸納
★ 七年級下數學知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅲ 初一數學下冊知識點歸納總結
想要學好初一下冊的數學,沒有學習方法很難學好,建議同學們學過數學新知識之後,對知識點做一個總結歸納。以下是我分享給大家的初一數學下冊知識點歸納,希望可以幫到你!
初一數學下冊知識點歸納
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(“≠”、“<”、“>”)表示的不等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的“位置關系”確定“數量關系”
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.
初一數學下冊重點知識點歸納
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
初一數學學習方法
1.讀的方法。初一同學往往不善於讀數學書,在讀的過程中,易沿用死記硬背的方法。那麼如何有效地讀數學書呢?平時應做到:
(1)粗讀。先粗略瀏覽教材的枝幹,並能粗略掌握本章節知識的概貌,重、難點;
(2)細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,並在不理解的地方作上記號(以便求教);
(3)研讀。要研究知識間的內在聯系,研討書本知識安排意圖,並對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初一同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課的過程中注意做到:
(1) 聽每節課的學習要求;
(2) 聽知識的引入和形成過程;
(3) 聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4) 聽例題關鍵部分的提示及應用的數學思想方法;
(5) 聽好課後小結。
3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,
數學更離不開思維活動,善於思考則學得活,效率高;不善於思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1) 敢於思考、勤於思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2) 善於思考。會抓住問題的關鍵、知識的重點進行思考;
(3) 反思。要善於從回顧解題策略、方法的優劣進行分析、歸納、總結。
4.問的方法。孔子曰:“敏而好學,不恥不問。” 愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善於問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1) 追問法。即在某個問題得到回答後,順其思路對問題緊追不舍,刨根到底繼續發問;
(2) 反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;
(3) 類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;
(4) 聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1) 在“聽”,“思”中有選擇地記錄;
(2) 記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3) 記解題思路、思想方法;
(4) 記課堂小結。並使學生明確筆記是為補充“聽”“思”的不足,是為最後復習准備的,好的筆記能使復習達到事倍功半的效果。
正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
猜你喜歡:
1. 初一數學上冊知識點匯總整理
2. 初一數學知識點整理
3. 初一數學上冊知識點匯總歸納
4. 初一上冊數學重點知識點歸納總結
5. 初一數學上冊知識點歸納總結
6. 七年級數學下冊知識點總結
Ⅳ 七年級數學重要知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一下冊數學知識點 總結 北師大版
1.1正數與負數
在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。
1.2有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
人教版初一數學下冊知識點總結
篇一:直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
(2)點與直線的位置關系:
①點經過直線,說明點在直線上;
②點不經過直線,說明點在直線外。
篇二:兩點間的距離
(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。
初一數學 復習方法
考試與作業邏輯不同:
我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:
復習方法總結
1回歸書本,梳理章節概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節常見的 熱點 問題歸納練習。
我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
七年級數學重要知識點總結相關 文章 :
★ 初中七年級數學知識點歸納整理
★ 初中七年級數學知識點總結
★ 七年級數學人教版知識點總結
★ 七年級數學基礎知識點總結
★ 七年級數學知識點整理大全
★ 七年級數學知識點大全
★ 初一數學知識點歸納梳理
★ 七年級數學知識點梳理總結
★ 初一數學重要知識點總結
★ 初一數學學習方法指導與學習方法總結
Ⅳ 初一數學必考知識點總結
初一數學必考知識點總結1
正數和負數
⒈、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數
1、有理數的概念
(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
(2)正分數和負分數統稱為分數
(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數
注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。
初一數學必考知識點總結2
有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
平面直角坐標系:
在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
因式分解
因式分解定義 :把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素 :①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式: 一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合並。
初一數學必考知識點總結3
第一章有理數
1、大於0的數是正數。
2、有理數分類:正有理數、0、負有理數。
3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)
4、規定了原點,單位長度,正方向的直線稱為數軸。
5、數的大小比較:
①正數大於0,0大於負數,正數大於負數。
②兩個負數比較,絕對值大的反而小。
6、只有符號不同的兩個數稱互為相反數。
7、若a+b=0,則a,b互為相反數
8、表示數a的點到原點的距離稱為數a的絕對值
9、絕對值的三句:正數的絕對值是它本身,
負數的絕對值是它的相反數,0的絕對值是0。
10、有理數的計算:先算符號、再算數值。
11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數的乘積。
14、負數的奇次冪是負數,負數的偶次冪是正數。
15、混合運算:先乘方,再乘除,後加減,同級運算從左到右,有括弧的先算括弧。
16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)
17、左邊第一個非零的數字起,所有的數字都是有效數字。
【知識梳理】
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。
3.倒數:若兩個數的積等於1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;
幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法:,其中。
6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
一元一次方程知識點
知識點1:等式的概念:用等號表示相等關系的式子叫做等式.
知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.
說明:代數式不含等號,方程是用等號把代數式連接而成的式子,且其中一定要含有未知數.
知識點3:一元一次方程的概念:只含有一個未知數,並且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形後,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.
例2:如果(a+1) +45=0是一元一次方程,則a________,b________.
分析:一元一次方程需要滿足的條件:未知數系數不等於0,次數為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.
(2) 等式兩邊乘以(或除以)同一個不為0的數或代數式, 所得的結果仍是等式.
即若a=b,則am=bm.或. 此外等式還有其它性質: 若a=b,則b=a.若a=b,b=c,則a=c.
說明:等式的性質是解方程的重要依據.
例3:下列變形正確的是( )
A.如果ax=bx,那麼a=b B.如果(a+1)x=a+1, 那麼x=1
C.如果x=y,則x-5=5-y D.如果則
分析:利用等式的性質解題.應選D.
說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.
知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.
知識點6:關於移項:⑴移項實質是等式的基本性質1的運用.
⑵移項時,一定記住要改變所移項的符號.
知識點7:解一元一次方程的一般步驟:去分母、去括弧、移項、合並同類項、將未知數的系數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.
例4:解方程 .
分析:靈活運用一元一次方程的步驟解答本題.
解答:去分母,得9x-6=2x,移項,得9x-2x=6,合並同類項,得7x=6,系數化為1,得x=.
說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.
知識點8:方程的檢驗
檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.
注意:應代入原方程的左、右兩邊分別計算,不能代入變形後的方程的左邊和右邊.
初一數學必考知識點總結4
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
初一數學必考知識點總結5
盡快地掌握科學知識,迅速提高學習能力,由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;
2.初步學會如何尋找問題中的相等關系,列出方程,了解方程的概念;
3.培養學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關系;
建立列方程解決實際問題的思想方法,學會合並同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關系;
分析實際問題中的已經量和未知量,找出相等關系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識點、概念總結
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的系數不為0.
4.等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5.合並同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合並成一項;常數計算後合並成一項
(3)合並時次數不變,只是系數相加減。
6.移項
(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合並同類項:把方程化成ax=b(a0)的形式;
(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那麼這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!
初一數學必考知識點總結6
一、方程的有關概念
1.方程:含有未知數的`等式就叫做方程。
2.一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解。
註:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。
二、等式的性質
(1)等式兩邊都加上(或減去)同個數(或式子),結果仍相等。用式子形式表示為:如果a=b,那麼ac=bc
(2)等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c0),那麼ac=bc
三、移項法則:
把等式一邊的某項變號後移到另一邊,叫做移項。
四、去括弧法則
1.括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.
2.括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數)
2.去括弧(按去括弧法則和分配律)
3.移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合並(把方程化成ax=b(a0)形式)
5.系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=ba)。
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什麼,求什麼,明確各數量之間的關系。
2.設:設未知數(可分直接設法,間接設法)。
3.列:根據題意列方程。
4.解:解出所列方程。
5.檢:檢驗所求的解是否符合題意。
6.答:寫出答案(有單位要註明答案)。
七、有關常用應用類型題及各量之間的關系
1、和、差、倍、分問題:
(1)倍數關系:通過關鍵詞語「是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……」來體現。
(2)多少關系:通過關鍵詞語「多、少、和、差、不足、剩餘……」來體現。
2、等積變形問題:
「等積變形」是以形狀改變而體積不變為前提。常用等量關系為:
①形狀面積變了,周長沒變;
②原料體積=成品體積。
3、勞力調配問題:
這類問題要搞清人數的變化,常見題型有:
(1)既有調入又有調出。
(2)只有調入沒有調出,調入部分變化,其餘不變。
(3)只有調出沒有調入,調出部分變化,其餘不變。
4、數字問題
(1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且19,09,09)則這個三位數表示為:100a+10b+c
(2)數字問題中一些表示:兩個連續整數之間的關系,較大的比較小的大1;偶數用2n表示,連續的偶數用2n+2或2n2表示;奇數用2n+1或2n1表示。
5、工程問題:
工程問題中的三個量及其關系為:工作總量=工作效率工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關系:路程=速度時間。
(2)基本類型有
①相遇問題;
②追及問題;常見的還有:相背而行;行船問題;環形跑道問題。
7、商品銷售問題
有關關系式:
商品利潤=商品售價商品進價=商品標價折扣率商品進價
商品利潤率=商品利潤/商品進價
商品售價=商品標價折扣率
8、儲蓄問題
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金利率期數
本息和=本金+利息
利息稅=利息稅率(20%)
今天的內容就介紹這里了。
初一數學必考知識點總結7
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1)幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
Ⅵ 初一下冊數學知識點總結
初一是我們邁入中學的第一步,那麼初一下冊數學知識點那麼總結過嗎?如果沒有請來我這里瞧瞧。下面是由我為大家整理的「初一下冊數學知識點總結」,僅供參考,歡迎大家閱讀。
初一下冊數學知識點總結
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。鄰補角的性質:鄰補角互補。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特徵:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。
②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
性質4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則a∥c。
拓展閱讀:初二下冊數學知識點總結
初二下冊數學知識點:第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號「<」(或「≤」),「>」(或「≥」)連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (注:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac
不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c
三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1八年級數學下冊全冊復習提綱八年級數學下冊全冊復習提綱。
四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型: 1、 求4x-6>7x-12的非負數解. 2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
初二下冊數學知識點:第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c) 2、a2-b2=(a+b)(a-b) 3、a2±2ab+b2=(a±b)2
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有「-」先提取「-」,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法八年級數學下冊全冊復習提綱學習總結。2、運用公式法。
初二下冊數學知識點:第三章 分式
注:1°對於任意一個分式,分母都不能為零.
2°分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3°分式的值為零含兩層意思:分母不等於零;分子等於零。( 中B≠0時,分式有意義;分式A/B中,當B=0分式無意義;當A=0且B≠0時,分式的值為零。)
常考知識點:1、分式的意義,分式的化簡。2、分式的加減乘除運算。3、分式方程的解法及其利用分式方程解應用題。
初二下冊數學知識點:第四章 相似圖形
一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=k•CD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 ≈0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形。 相似比:相似多邊形對應邊的比叫做相似比.
二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼 .如果(b,d都不為0),那麼ad=bc.2、合比性質:如果 ,那麼 。3、等比性質:如果 =…= (b+d+…+n≠0),那麼 。4、更比性質:若 那麼 。5、反比性質:若 那麼
三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.
四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比。相似多邊形的周長比等於相似比,面積比等於相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似。5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.
七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比。 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比八年級數學下冊全冊復習提綱八年級數學下冊全冊復習提綱。
八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質。2、相似三角形的性質及判定。相似多邊形的性質。
初二下冊數學知識點:第五章 數據的收集與處理
(1)普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查.(2)總體:其中所要考察對象的全體稱為總體。(3)個體:組成總體的每個考察對象稱為個體(4)抽樣調查:(sampling investigation):從總體中抽取部分個體進行調查,這種調查稱為抽樣調查.(5)樣本(sample):其中從總體中抽取的一部分個體叫做總體的一個樣本。(6) 當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查.為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性.還要注意關注樣本的大小. (7)我們稱每個對象出現的次數為頻數。而每個對象出現的次數與總次數的比值為頻率。
數據波動的統計量:極差:指一組數據中最大數據與最小數據的差。方差:是各個數據與平均數之差的平方的平均數。標准差:方差的算術平方根。識記其計算公式。一組數據的極差,方差或標准差越小,這組數據就越穩定。還要知平均數,眾數,中位數的定義。
刻畫平均水平用:平均數,眾數,中位數。 刻畫離散程度用:極差,方差,標准差。
常考知識點:1、作頻數分布表,作頻數分布直方圖。2、利用方差比較數據的穩定性。3、平均數,中位數,眾數,極差,方差,標准差的求法。3、頻率,樣本的定義
第六章 證明
一、對事情作出判斷的句子,就叫做命題. 即:命題是判斷一件事情的句子。一般情況下:疑問句不是命題.圖形的作法不是命題. 每個命題都有條件(condition)和結論(conclusion)兩部分組成. 條件是已知的事項,結論是由已知事項推斷出的事項. 一般地,命題都可以寫成「如果……,那麼……」的形式.其中「如果」引出的部分是條件,「那麼」引出的部分是結論. 要說明一個命題是一個假命題,通常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論.這種例子稱為反例。
二、三角形內角和定理:三角形三個內角的和等於180度八年級數學下冊全冊復習提綱學習總結。1、證明三角形內角和定理的思路是將原三角形中的三個角「湊」到一起組成一個平角.一般需要作輔助線.既可以作平行線,也可以作一個角等於三角形中的一個角.2、三角形的外角與它相鄰的內角是互為補角.
三、三角形的外角與它不相鄰的內角關系是:(1)三角形的一個外角等於和它不相鄰的兩個內角的和.(2)三角形的一個外角大於任何一個和它不相鄰的內角.
四、證明一個命題是真命題的基本步驟是:(1)根據題意,畫出圖形.(2)根據條件、結論,結合圖形,寫出已知、求證.(3)經過分析,找出由已知推出求證的途徑,寫出證明過程. 在證明時需注意:(1)在一般情況下,分析的過程不要求寫出來.(2)證明中的每一步推理都要有根據. 如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。30
所對的直角邊是斜邊的一半。斜邊上的高是斜邊的一半。
常考知識點:1、三角形的內角和定理,及三角形外角定理。2兩直線平行的性質及判定。命題及其條件和結論,真假命題的定義。
Ⅶ 人教版初一數學下冊知識點
關於人教版初一數學下冊課本中的知識點有哪些呢?學習從來無捷徑,循序漸進登高峰。這是我整理的人教版初一數學下學期的知識點,希望你能從中得到感悟!
人教版初一數學下冊知識點第五章 相交線與平行線
5.1 相交線
對頂角相等。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短。本知識點可會出現的填空題中來考)。
5.2 平行線 (重點知識必考)
1、經過直線外一點,有且只有一條直線與這條直線平行。
2、 如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
3、直線平行的條件:
4、兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行 兩條直線被第三條直線所截,如果內錯角相叢沖等,那麼兩直線平行(內錯角相等,兩直線平行)。
5、兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線毀肢平行(同旁內角互補,兩直線平行)。
5.3 平行線的性質 (重點知識必考)
1、兩條平行線被第三條直線所截,同位角相等(兩直線平行,同位角相等)。
2、兩條平行線被第三條直線所截,內錯角相等(兩直線平行,內錯角相等)。
3、兩條平行線被第三條直線所截,同旁內角互補(兩直線平行,同旁內角互補)。 判斷一件事情的語句,叫做命題(本考點可能會出現在填空題中命題的改寫和選擇題中判斷命題的真假性)。
本章知識考點分析:
1、平行線的性質及判定必考內容
2、命題的真假性、將命題改寫
3、證明題(完型填空、自主證明)
4、選擇題、填空題中相關知識的考點(相交線、平行線的性質;垂線段最短、過直線外一點有且只有一條直線平行於已知直線)
人教版初一數學下冊知識點第六章 實數
6.1 平方根
若一個數的平方等a,那這個數叫做a的平方根;(即若x2=a,那麼x叫做a的平方根,其中a為非負數,即a≥0.表示方式為x2=ax=a,其中xa叫做a的算術平方根),(本知識考點重點出現在填空題、選擇題與計算題中相關的應用)。
6.2立方根
若一個數的立方等a,那麼這個數叫做a的立方根(即若x3=a,那麼x叫做a的立方根,表示方式:x3=axa立方根只有一個),(本知識考點重點出現在填空題、選擇題與計算題中相關的應用)。
6.3 實數
無限不循環小數又叫做無理數。
有理數和無理數統稱實數。
考點分析:
1、有理數與無理數在填空和選擇題可能會出現
2、一個數的平方根和一個代數式的平方根的區別(細心點呀)
3、一個正數的平方根有兩個且這兩個平方根互為相反數(即它們的和等於0)
4、唯一性:平方根等於它本身的數只有0;立方根等於它本身的數有1、-1和0共三個;算術平方根等於它本身的數有1和0兩個。
人教版初一數學下冊知識點第七章 平面直角坐標系
7.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對。
本章知識考點可能會出現在:
1、判斷某個點在第幾象限或某個點在第幾象限再求相應未知數的值;
2、在平面直角坐標系中將某個圖形作一次或兩次平移後求出平前或平移後各對應點的坐標。
人教版初一數學下冊知識點第八章 二元一次方程組
8.1 二元一次方程組
1、方程中含有滲余殲未知數(如:x和y),並且未知數的指數(或未知項的次數)都是1,像這樣的方程叫做二元一次方程(本知識考點會出現在填空題和選擇題中,注意次數為1和系數不為0)。
2、把兩個含有相同未知數二元一次方程合在一起,就組成了一個二元一次方程組。
3、使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解(二元一次方程的解可能會出現在選擇題中驗根問題)。
4、二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解(二元一次方程組的解可能會出現在選擇題中驗根問題)。
8.2 消元
5、將未知數的個數由多化一(最終解一元一次方程然後反代解決二元三元、逐一解決的想法,叫做消元思想。
6、本章知識考點
a、計算題
b、選擇、填空
c、應用題
人教版初一數學下冊知識點第九章 不等式與不等式組
9.1 不等式
1、用小於號或大於號表示大小關系的式子,叫做不等式。
2、使不等式成立的未知數的值叫做不等式的解。
3、能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。
4、含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。
5、不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。
9.3 一元一次不等式組
6、把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組。
7、本章知識考點
a、選擇題
b、計算題)
c、簡單的一元一次不等式的應用題
人教版初一數學下冊知識點第十章 數據的收集、整理與描述
一、知識要點
1、全面調查:對全體對象的調查叫做全面調查(優點:調查結果比較精確; 缺點:費時、費力)。
2、抽樣調查:只抽取一部分對象進行調查,然後根據調查數據推斷全體對象的情況,這種調查 方法 叫做抽樣調查(優點:投入少、操作方便,而且有時只能用抽樣的方式去調查;缺點:調查結果與總體的結果可能有一些誤差)
3、總體:要考察的全體對象稱為總體.
4、個體:組成總體的每一個考察對象稱為個體.
5、樣本:被抽取的那些個體組成一個樣本.
6、樣本容量:樣本中個體的數目稱為樣本容量.
7、簡單隨機抽樣調查:抽取樣本的過程中,總體中的每一個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單的隨機抽樣。
二、統計圖的分類:
1.條形統計圖——適用於顯示不同對象之間的數量特徵,根據長方形(條形)的高度能直觀地看出被統計對象的量的大小、多少等。
2.折線統計圖——適用於顯示同一事物在不同的數量變化特徵,根據折線的變化能直觀地看出事物的變化(如上升或下降、增長快慢等)趨勢。
3.扇形統計圖——用圓代表整體,能直觀地顯示各部分(不同的統計對象)所佔的百分比,適用於顯示不同對象之間數量上的比例關系。
注意:求圓心角度數=所佔百分比×3600
4.頻數分布直方圖——對收集得到的數據,可通過“劃計”的方法整理成頻數分布表,畫出頻數分布直方圖.它①能夠顯示數據的分布情況,②易於顯示各組之間的頻數差別.製作頻數分布直方圖的步驟為 :①找出所有數據中的最大值和最小值,並算出它們的
極差極差或組距差(極差=最大值-最小值).②決定組距和組數(組數=).③列出頻組距組數數分布表.④畫頻數分布直方圖。
5.本章知識考點分析:
1、總體、樣本、個體與樣本容量會在選擇題出現
2、四類統計圖的考點中重點注意條形統計圖、扇形統計圖和直方圖的補全及頻數的補全等。
Ⅷ 初一數學必考知識點總結歸納
初中數學的必考知識點大都在初一的課程里,所以初一的學生學好數學很重要。以下是我分享給大家的初一數學必考知識點,希望可以幫到你!
初一數學代數初步知識必考知識點
1. 代數式:用運算符號“+ - × ÷ …… ”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;
(2)數與數相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
初一數學有理數必考知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數 0和正整數;a>0 a是正數;a<0 a是負數;
a≥0 a是正數或0 a是非負數;a≤ 0 a是負數或0 a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0 a+b=0 a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
(3) ; ;
(4) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 a=0,b=0;
(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
初一數學整式的加減必考知識點
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
整式分類為:
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.
7.合並同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是“+”號,括弧里的各項都不變號;若括弧前邊是“-”號,括弧里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
猜你喜歡:
1. 初一數學上冊知識點匯總整理
2. 7年級上冊數學知識點歸納
3. 初一數學知識點整理
4. 人教版七年級數學復習知識點
5. 初一數學上冊知識點匯總歸納
6. 初一數學上冊知識點復習