當前位置:首頁 » 基礎知識 » 五年級數學下冊知識
擴展閱讀
樁基礎臨期需要多久 2024-11-27 09:15:34
坐摩天輪吹牛的小知識 2024-11-27 09:08:43

五年級數學下冊知識

發布時間: 2024-06-22 23:20:26

『壹』 五年級人教版數學下冊的重點有哪些

五年級下冊數學知識要點:第一單元:圖形的變換 1. 軸對稱圖形:一個圖形沿一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形.這條直線叫做它的對稱軸. 2. 軸對稱圖形的特徵:1、對稱點到對稱軸的距離相等;2、對應點連線與對稱軸互相垂直. 3. 旋轉:圖形或物體繞著一個點或一條軸運動的現象叫做旋轉. 第二單元:因數與倍數 1. 因數和倍數:在整數乘法里,如果a×b=c,那麼a和b是c的因數,c是a和b的倍數. 2. 為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0).但是0也是整數. 3. 一個數的最小因數是1,最大因數是它本身.一個數的因數的個數是有限的. 4. 一個數的最小倍數是它本身,沒有最大的倍數. 一個數的倍數的個數是無限的. 5. 個位上是0、2、4、6、8的數都是2的倍數.個位上是0、5的數都是5的倍數.一個數,每個數位上的數的和是3的倍數,這個數就是3的倍數. 6. 自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數. 7. 最小的奇數是1,最小的偶數是0.最小的質數是2,最小的合數是4. 8. 四則運算中的奇偶規律: 奇數+奇數=偶數 奇數-奇數=偶數 奇數×奇數=奇數 偶數+偶數=偶數 偶數-偶數=偶數 偶數×偶數=偶數 奇數+偶數=奇數 奇數-偶數=奇數 奇數×偶數=偶數 偶數-奇數=奇數 9. 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);如果除了1和它本身還有別的因數,這樣的數叫做合數. 10. 1既不是質數,也不是合數. 11. 自然數按照因數的個數多少,可以分為1、質數、合數;按是否是2的倍數,可以分為奇數、偶數. 12. 100以內的質數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97. 第三單元:長方體和正方體 1. 正方體也叫立方體. 2. 長方體的特徵是:①長方體有6個面;②每個面都是長方形(特殊情況下有兩個相對的面是正方形);③相對的面完全相同;④有12條棱;⑤相對的棱長度相等;⑥有8個頂點. 3. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高. 4. 正方體可以看成是長、寬、高都相等的長方體.正方體是特殊的長方體. 5. 正方體的特徵是:①正方體有6個面;②每個面都是正方形;③所有的面都完全相同;④有12條棱;⑤所有的棱長度都相等;⑥有8個頂點. 6. 長方體的棱長總和=(長+寬+高)×4 7. 正方體的棱長總和=棱長×12 8. 長方體六個面的面積總和叫做長方體的表面積. 9. 上面或下面面積=長×寬;前面或後面面積=長×高;左面或右面面積=寬×高. 10. 長方體的表面積=(長×寬+長×高+寬×高)×2 11. 正方體的表面積=棱長2×6 12. 「有兩個相對的面是正方形」的長方體表面積=正方形面的面積×2+長方形面的面積×4 13. 長方體的側面積=底面周長×高 14. 物體所佔空間的大小,叫做物體的體積. 15. 常用的體積單位有立方厘米,立方分米和立方米,可以分別寫成cm3,dm3,和m3. 16. 棱長是1cm的正方體,體積是1cm3;棱長是1dm的正方體,體積是1dm3;棱長是1m的正方體,體積是1m3. 17. 長方體的體積=長×寬×高;用字母表示是V=abh 18. 正方體的體積=棱長3;用字母表示是V=a3 19. 長方體(或正方體)的體積=底面積×高=橫截面積×長 20. 在工程上,1立方米簡稱1方. 21. 1個長方體或正方體,如果所有的棱長都擴大n倍,那麼棱長總和也擴大n倍,表面積擴大n2倍,體積擴大n3倍. 22. 棱長總和相等的長方體或正方體,正方體的體積最大. 23. 1立方米=1000立方分米;1立方分米=1000立方厘米. 24. 每相鄰兩個長度單位間的進率是10;每相鄰兩個面積單位之間的進率是100;每相鄰兩個體積單位之間的進率是1000. 25. 容器所能容納物體的體積,通常叫做它們的容積.計量容積,一般就用體積單位. 26. 計量液體的體積,常用的容積單位是升和毫升,也可以寫成L和ml. 27. 1升相當於1立方分米,1毫升相當於1立方厘米,所以1升=1000毫升. 28. 長方體或正方體容器容積的計算方法,跟體積的計算方法相同,但要從容器裡面量長、寬、高.所以容器的容積比體積要小一些. 29. 浸沒在水中的物體的體積=現在水的體積-原來水的體積=容器的長×容器的寬×水面上升的高度 30. 怎樣測量一個不規則的物體的體積呢?先在量杯里裝上適量的水,記下水面對應的刻度,再把物體浸沒在水中,再記下新的水面對應刻度.兩次刻度的差,就是這個不規則物體的體積. 第四單元:分數的意義和性質 1. 一個物體或是幾個物體組成的一個整體都可以用自然數1來表示,我們通常把它叫做單位「1」. 2. 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數.例如3/7表示把單位「1」平均分成7份,取其中的3份. 3. 5/8米按分數的意義,表示:把1米平均分成8份,取其中的5份.按分數與除法的關系,表示:把5米平均分成8份,取其中的1份. 4. 把單位「1」平均分成若干份,表示其中一份的數叫分數單位. 5. 分數和除法的關系是:分數的分子相當於除法中的被除數,分數的分數線相當於除法中的除號,分數的分母相當於除法中的除數,分數的分數值相當於除法中的商. 6. 把一個整體平均分成若干份,求每份是多少,用除法.總數÷份數=每份數. 7. 求一個數量是另一個數量的幾分之幾,用除法.一個數量÷另一個數量=幾分之幾(幾倍). 8. 分子比分母小的分數叫真分數.真分數小於1. 9. 分子比分母大或分子和分母相等的分數叫做假分數.假分數大於1或等於1. 10. 帶分數包括整數部分和分數部分,分數部分應當是真分數.帶分數大於1. 11. 把假分數化成帶分數的方法是用分子除以分母,商是整數部分,余數是分子,分母不變.把帶分數化成假分數的方法是用整數部分乘分母的積加原來的分子作分子,分母不變. 12. 整數可以看成分母是1的假分數.例如5可以看成是5/1. 13. 分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變.這叫做分數的基本性質. 14. 幾個數公有的因數叫做這幾個數的公因數,其中最大的公因數叫作它們的最大公因數.最小公因數一定是1. 15. 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的公倍數叫作它們的最小公倍數.沒有最大的公倍數. 16. 求最大公因數或最小公倍數可以用列舉法,也可以用短除法分解質因數. 17. 公因數只有1的兩個數叫做互質數.分子和分母是互質數的分數叫做最簡分數.最簡分數不一定是真分數. 18. 除法計算的結果可以用分數表示,比較方便.如果計算結果可以約分的話,要化簡成最簡分數. 19. 如果兩個數是倍數關系,那麼它們的最大公因數是較小的數,最小公倍數是較大的數. 20. 如果兩個數是互質關系,那麼它們的最大公因數是1,最小公倍數是它們的積. 21. 數A×數B=它們的最大公因數×它們的最小公倍數. 22. 兩個數是互質數的幾種特殊情況有:1、1和任何數都是互質數;2、兩個相鄰的自然數一定是互質數;3、兩個相鄰的奇數一定是互質數;4、兩個不同的質數一定是互質數;5、一個質數和一個不是它倍數的合數一定是互質數. 23. 把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分.把幾個異分母分數分別化成和原來分數相等的同分母分數,叫做通分. 24. 把分數化成小數的方法是用分子除以分母;把小數化成分數的方法是先寫成分母是10、100……的分數,然後再進行約分. 25. 如果一個最簡分數的分母除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數. 26. 兩個數的最大公因數等於兩個數公有的質因數的積;兩個數的最小公倍數等於兩個數公有的質因數×它們各自獨有的質因數. 27. 兩個數的公因數,都是這兩個數的最大公因數的因數;兩個數的公倍數,都是這兩個數的最小公倍數的倍數. 此資料來源於網路.希望對你有幫助.

『貳』 五年級下冊數學重要知識點

五年級下冊數學重要知識點有哪些呢?感興趣的同學們快來和我一起看看吧。下面是由我為大家整理的「五年級下冊數學重要知識點」,僅供參考,歡迎大家閱讀。

五年級下冊數學重要知識點

第一單元 方程

1、表示相等關系的式子叫做等式。

2、含有未知數的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。

等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。

5、求方程中未知數的過程,叫做解方程。

解方程時常用的關系式:

一個加數=和-另一個加數 減數=被減數-差 被減數=減數+差

一個因數=積÷另一個因數 除數=被除數÷商 被除數=商×除數

注意:解完方程,要養成檢驗的好習慣。

6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和÷個數=中間數

7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和×個數÷2(高斯求和公式)

8、列方程解應用題的思路:A、審題並弄懂題目的已知條件和所求問題。B、理清題目的等量關系。C、設未知數,一般是把所求的數用X表示。D、根據等量關系列出方程E、解方程F、檢驗G、作答。

第二單元 確定位置

1、確定位置時,豎排叫做列,橫排叫做行。確定第幾列一般從左往右數,確定第幾行一般從前往後數。

2、數對(x,)第1個數表示第幾列(x),第2個數表示第幾行(),寫數對時,是先寫列數,再寫行數。

3、從地球儀上看,連接北極和南極兩點的是經線,垂直於經線的線圈是緯線,經線和緯線、分別按一定的順序編排表示「經度」和「緯度」,「經度」和「緯度」都用度(°)、分(′)、秒(″)表示。

4、將某個點向左右平移幾格,只是列(x)上的數字發生加減變化,向左減,向右加,行()上的數字不變。舉例:將點(6,3)的位置向右平移2個單位後的位置是(8,3),列6+2=8;將點(6,3)的位置向左平移2個單位後的位置是(4,3),列6-2=4。

5、將某個點向上下平移幾格,只是行()上的數字發生加減變化,向上減,向下加,列(x)上的數字不變。舉例:將點(6,3)的位置向上平移2個單位後的位置是(6,5),行3+2=5;將點(6,3)的位置向下平移2個單位後的位置是(6,1),列3-2=1。

第三單元 公倍數和公因數

1、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。

一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。

一個數最大的因數等於這個數最小的倍數。

2、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,用符號[ ,]表示。幾個數的公倍數也是無限的。

3、兩個數公有的因數,叫做這兩個數的公因數,其中最大的一個,叫做這兩個數的最大公因數,用符號( , )。兩個數的公因數也是有限的。

4、兩個素數的積一定是合數。舉例:3×5=15,15是合數。

5、兩個數的最小公倍數一定是它們的最大公因數的倍數。舉例:[6,8]=24,(6,8)=2,24是2的倍數。

6、求最大公因數和最小公倍數的方法:

倍數關系的.兩個數,最大公因數是較小的數,最小公倍數是較大的數。舉例:15和5,[15,5]=15,(15,5)=5;

素數關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。舉例:[3,7]=21,(3,7)=1;

一個素數和一個合數,最大公因數是1,最小公倍數是它們的乘積。[5,8]=40,(5,8)=1;

相鄰關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。[9,8]=72,(9,8)=1;

特殊關系的數(兩個都是合數,一個是奇數,一個是偶數,但他們之間只有一個公因數1),比如4和9、4和15、10和21,最大公因數是1,最小公倍數是它們的乘積。

拓展閱讀:五年級上冊數學知識點

第一單元 小數乘法

1、小數乘整數:意義——求幾個相同加數的和的簡便運算。

如:1.5×3表示1.5的3倍是多少或3個1.5是多少。

計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

2、小數乘小數:意義——就是求這個數的幾分之幾是多少。

如:1.5×0.8(整數部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整數部分不是0)就是求1.5的1.8倍是多少。

計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。

3、規律:一個數(0除外)乘大於1的數,積比原來的數大; 一個數(0除外)乘小於1的數,積比原來的數小。

4、求近似數的方法一般有三種:

⑴四捨五入法;⑵進一法;⑶去尾法

5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。

6、小數四則運算順序跟整數是一樣的。

7、運算定律和性質:

加法:

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

乘法:乘法交換律:a×b=b×a

乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1時,省略b)

變式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

減法:減法性質:a-b-c=a-(b+c)

除法:除法性質:a÷b÷c=a÷(b×c)

第二單元 位置

8、確定物體的位置,要用到數對(先列:即豎,後行即橫排)。用數對要能解決兩個問題:一是給出一對數對,要能在坐標途中標出物體所在位置的點。二是給出坐標中的一個點,要能用數對表示。

第三單元 小數除法

10、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:0.6÷0.3表示已知兩個因數的積0.6,一個因數是0.3,求另一個因數是多少。

11、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。

11、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。

注意:如果被除數的位數不夠,在被除數的末尾用0補足。

12、在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。

13、除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大(縮小),商隨著擴大(縮小)。③被除數不變,除數縮小,商反而擴大;被除數不變,除數擴大,商反而縮小。

14、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.簡寫作6.32

15、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。小數分為有限小數和無限小數。

第四單元 可能性

16、事件發生有三種情況:可能發生、不可能發生、一定發生。

17、可能發生的事件,可能性大小。把幾種可能的情況的份數相加做分母,單一的這種可能性做分子,就可求出相應事件發生可能性大小。

第五單元 簡易方程

18、在含有字母的式子里,字母中間的乘號可以記作「·」,也可以省略不寫。加號、減號除號以及數與數之間的乘號不能省略。

19、a×a可以寫作a·a或a ,a 讀作a的平方 2a表示a+a

特別地1a=a這里的:「1「我們不寫

20、方程:含有未知數的等式稱為方程(★方程必須滿足的條件:必須是等式 必須有未知數兩者缺一不可)。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。

21、解方程原理:天平平衡。等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。

22、10個數量關系式:加法:和=加數+加數 一個加數=和-另一個加數

減法:差=被減數-減數 被減數=差+減數 減數=被減數-差

乘法:積=因數×因數 一個因數=積÷另一個因數

除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商

23、所有的方程都是等式,但等式不一定都是等式。

24、方程的檢驗過程:方程左邊=……

25、方程的解是一個數;解方程式一個計算過程。=方程右邊 所以,X=…是方程的解。

第六單元 多邊形的面積

26、公式:

正方形:

正方形的面積=邊長X邊長 S正=aXa=a2;

已知:正方形的面積,求邊長;

長方形:

長方形的面積=長X寬;

S長=aXb

已知:長方形的面積和長,求寬;

平行四邊形:

平行四邊形的面積=底X高;

S平=aXh

已知:平行四邊形的面積和底,求高 h=S平÷a;

三角形:

三角形的面積=底X寬高÷2;

S三=aXh÷2

已知:三角形的面積和底,求高;

H=S三X2÷a

梯形:

梯形形的面積=(上底+下底)X高÷2

S梯=(a+b)X2

已知:梯形的面積與上下底之和,求高

高=面積×2÷(上底+下底)

上底=面積×2÷高-下底

組合圖形:

當組合圖形是凸出的,用兩種或三種簡單圖形面積相加進行計算。

當組合圖形是凹陷的,用一種最大的簡單圖形面積減較小的簡單圖形面積進行計算。

27、平行四邊形面積公式推導:剪拼、平移

平行四邊形可以轉化成一個長方形;長方形的長相當於平行四邊形的底; 長方形的寬相當於平行四邊形的高;長方形的面積等於平行四邊形的面積,因為長方形面積=長×寬,所以平行四邊形面積=底×高。

28、三角形面積公式推導:旋轉

兩個完全一樣的三角形可以拼成一個平行四邊形,平行四邊形的底相當於三角形的底;平行四邊形的高相當於三角形的高;

平行四邊形的面積等於三角形面積的2倍,因為平行四邊形面積=底×高,所以三角形面積=底×高÷2;

29、梯形面積公式推導:旋轉

30、兩個完全一樣的梯形可以拼成一個平行四邊形。平行四邊形的底相當於梯形的上下底之和;平行四邊形的高相當於梯形的高;平行四邊形面積等於梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2。

『叄』 五年級下冊數學必背知識點有哪些

五年級下冊數學必背知識點有如下:

一、長方形的周長=(長+寬)×2 ,C=(a+b)×2。

二、正方形的周長=邊長×4, C=4a。

三、長方形的面積=長×寬 ,S=ab。

四、正方形的面積=邊長×邊長 ,S=a.a=a^2。

五、三角形的面積=底×高÷2 ,S=ah÷2。

六、平行四邊形的面積=底×高, S=ah。

七、梯形的面積=(上底+下底)×高÷2, S=(a+b)h÷2。

八、圓的周長=圓周率×直徑=圓周率×半徑×2, c=πd=2πr。

九、圓的面積=圓周率×半徑×半徑πr ^2。

『肆』 小學五年級下冊(人教版)數學概念的整理,有誰知道

一、分數乘法、分數除法
1. 分數乘法的意義:求幾個相同分數的和的簡便運算
2. 分數除法的意義:已知兩個乘數的積和其中一個乘數,求另一個乘數的運算
3. 分數乘法的運演算法則:
(1) 分數與整數相乘:分子和整數相乘,分母不變。
(2) 分數與分數相乘:分子與分子相乘,分母與分母相乘,能約分的可以先約分。
4. 分數除法的運演算法則:
(1)一個數除以一個整數(0除外)等於這個數乘以這個整數的倒數。
(2)一個數除以一個分數等於這個數乘以這個分數的倒數。
(3) 除以一個數(0除外)等於乘這個數的倒數。
5. 如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。比如1/2的倒數是2,2的倒數是1/2,這兩個數互為倒數。1的倒數是1,0沒有倒數。
6. 分數乘、除法的實際問題
(1)求一個數的幾分之幾是多少,用乘法。
(2)已知一個數的幾分之幾是多少,求這個數,用除法,也可以用解方程。
二、分數的混合運算
1. 分數混合運算的順序與整數混合運算的順序一樣:先算乘除後算加減,有括弧的先算括弧裡面的,再算括弧外面的。
2. 運算定律:
(1)乘法分配律:
(2)乘法結合律:
(3)乘法交換律:
運用運算定律可對分數的混合運算進行簡便運算。
三、長方體的認識、表面積、體積和容積
1. 長方體有6個面,一般都是長方形(特殊情況有兩個相對的面是正方形),相對的面面積相等;有8個頂點,12條棱,12條棱可以分為三組:4條長,4條寬,4條高。
2. 正方體有6個面,都是面積相等的正方形;有8個頂點,12條棱,每條棱的長度都相等。
3. 正方體是特殊的長方體。(長寬高都相等)
4. 長方體的棱長總和=(長+寬+高)×4
5. 正方體的棱長總和=棱長×12
6. 長方體6個面的總面積叫作它的表面積。長方體相對的面的面積相等,前後面的面積=長×高;左右面的面積=寬×高;上下面的面積=長×寬
7. 長方體的表面積=(長×寬+長×高+寬×高)×2
8. 長方體的體積=長×寬×高
9. 正方體的體積=棱長×棱長×棱長
10. 長方體(正方體)的體積=底面積×高
四、百分數
1. 百分數表示一個數是另一個數的百分之幾。百分數也叫百分比、百分率。
寫作22%,讀作:百分之二十二
2. 百分數與小數的互化:
(1)小數化百分數:小數點向右移兩位,再加上百分號。
(2)百分數化小數:去掉百分號,百分號前的數的小數點向左移兩位。
3. 百分數與分數的互化:
(1)分數化百分數:用分子除以分母,除得的商再化成百分數。或者把分數化成分母是100的分數,再改寫成百分數。
(2)百分數化分數:把百分數寫成分母是100的分數,能約分的要約分成最簡分數。
4. 優秀率=優秀人數÷總人數
5. 及格率=及格的人數÷總人數
6. 合格率=合格的產品數÷產品總數
7. 出勤率=出勤人數÷總人數
8. 命中率=命中次數÷總次數
9. 發芽率=發芽的種子數÷種子總數
10. 成活率=成活的棵數÷種植的總棵數
11. 出粉率=麵粉的重量÷小麥的重量
12. 出油率=榨出的油的重量÷花生仁的重量
五、統計
1. 條形統計圖能清楚地表示地各種數量的多少,並且方便進行比較。
2. 扇形統計圖能直觀地表示出各種量分別占總量的百分之幾。
3. 折線統計圖能直觀地表示出數量的變化情況。
4. 平均數=總數量÷總份數
5. 把一組數據從小到大(或從大到小)排列,中間的數叫這組數據的中位數。
6. 一組數據中出現次數最多的數叫這組數據的眾數。
五年級數學下冊概念公式
一、分數乘法、分數除法
1. 分數乘法的意義:求幾個相同分數的和的簡便運算
2. 分數除法的意義:已知兩個乘數的積和其中一個乘數,求另一個乘數的運算
3. 分數乘法的運演算法則:
(4) 分數與整數相乘:分子和整數相乘,分母不變。
(5) 分數與分數相乘:分子與分子相乘,分母與分母相乘,能約分的可以先約分。
4. 分數除法的運演算法則:
(1)一個數除以一個整數(0除外)等於這個數乘以這個整數的倒數。
(2)一個數除以一個分數等於這個數乘以這個分數的倒數。
(6) 除以一個數(0除外)等於乘這個數的倒數。
5. 如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。比如1/2的倒數是2,2的倒數是1/2,這兩個數互為倒數。1的倒數是1,0沒有倒數。
6. 分數乘、除法的實際問題
(1)求一個數的幾分之幾是多少,用乘法。
(2)已知一個數的幾分之幾是多少,求這個數,用除法,也可以用解方程。
二、分數的混合運算
1. 分數混合運算的順序與整數混合運算的順序一樣:先算乘除後算加減,有括弧的先算括弧裡面的,再算括弧外面的。
2. 運算定律:
(1)乘法分配律:
(2)乘法結合律:
(3)乘法交換律:
運用運算定律可對分數的混合運算進行簡便運算。
三、長方體的認識、表面積、體積和容積
1. 長方體有6個面,一般都是長方形(特殊情況有兩個相對的面是正方形),相對的面面積相等;有8個頂點,12條棱,12條棱可以分為三組:4條長,4條寬,4條高。
2. 正方體有6個面,都是面積相等的正方形;有8個頂點,12條棱,每條棱的長度都相等。
11. 正方體是特殊的長方體。(長寬高都相等)
12. 長方體的棱長總和=(長+寬+高)×4
13. 正方體的棱長總和=棱長×12
14. 長方體6個面的總面積叫作它的表面積。長方體相對的面的面積相等,前後面的面積=長×高;左右面的面積=寬×高;上下面的面積=長×寬
15. 長方體的表面積=(長×寬+長×高+寬×高)×2
16. 正方體6個面的總面積叫作它的表面積,6個面的面積都相等。
17. 正方體的表面積=棱長×棱長×6
18. 物體所佔空間的大小叫作物體的體積。常用的體積單位有:立方厘米,立方分米,立方米。
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米
19. 容器所能容納物體的體積叫作容器的容積。常用的容積單位有:升和毫升
1升=1立方分米 1毫升=1立方厘米
20. 相鄰的的體積單位之間的互化

低級單位 高級單位

21. 計算物體的體積用體積單位,計算液體、氣體的體積一般用容積單位。
22. 長方體的體積=長×寬×高
23. 正方體的體積=棱長×棱長×棱長
24. 長方體(正方體)的體積=底面積×高
四、百分數
1. 百分數表示一個數是另一個數的百分之幾。百分數也叫百分比、百分率。
寫作22%,讀作:百分之二十二
2. 百分數與小數的互化:
(1)小數化百分數:小數點向右移兩位,再加上百分號。
(2)百分數化小數:去掉百分號,百分號前的數的小數點向左移兩位。
3. 百分數與分數的互化:
(1)分數化百分數:用分子除以分母,除得的商再化成百分數。或者把分數化成分母是100的分數,再改寫成百分數。
(2)百分數化分數:把百分數寫成分母是100的分數,能約分的要約分成最簡分數。
13. 優秀率=優秀人數÷總人數
14. 及格率=及格的人數÷總人數
五、統計
1. 條形統計圖能清楚地表示地各種數量的多少,並且方便進行比較。
7. 扇形統計圖能直觀地表示出各種量分別占總量的百分之幾。
8. 折線統計圖能直觀地表示出數量的變化情況。
9. 平均數=總數量÷總份數
10. 把一組數據從小到大(或從大到小)排列,中間的數叫這組數據的中位數。
11. 一組數據中出現次數最多的數叫這組數據的眾數。

『伍』 五年級下學期數學知識點歸納

小學的時候,我們只知道玩,並不知道知識點如何總結。為了幫助同學們更好的學習。下面是由我為大家整理的「五年級下學期數學知識點歸納」,僅供參考,歡迎大家閱讀。

五年級下學期數學知識點歸納

1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、成軸對稱圖形的特徵和性質:①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。

3、物體旋轉時應抓住三點:①旋轉中心;②旋轉方向;③旋轉角度。旋轉只改變物體的位置,不改變物體的形狀、大小。

、因數與倍數

1、因數和倍數:如果整數a能被b整除,那麼a就是b的倍數,b就是a的因數。

2、一個數的因數的求法:一個數的因數的個數是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。

3、一個數的倍數的求法:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數。

4、2、5、3的倍數的特徵:個位上是0、2、4、6、8的數,都是2的倍數。個位上是0或5的數,是5的倍數。一個數各位上的數的和是3的倍數,這個數就是3的倍數。

5、偶數與奇數:是2倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。

6、質數和和合數:一個數,如果只有1和它本身兩個因數的數叫做質數(或素數),最小的質數是2。一個數,如果除了1和它本身還有別的因數的數叫做合數,最小的合數是4。

二、長方體和正方體

1、長方體和正方體的特徵:長方體有6個面,每個面都是長方形(特殊的有一組對面是正方形),相對的面完全相同;有12條棱,相對的棱平行且相等;有8個頂點。正方形有6個面,每個面都是正方形,所有的面都完全相同;有12條棱,所有的棱都相等;有8個頂點。

2、長、寬、高:相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。

3、長方體的棱長總和=(長+寬+高)×4??? 正方體的棱長總和=棱長×12

4、表面積:長方體或正方體6個面的總面積叫做它的表面積。

5、長方體的表面積=(長×寬+長×高+寬×高)×2?? S=(ab+ah+bh)×2

正方體的表面積=棱長×棱長×6?? 用字母表示:S=

6、表面積單位:平方厘米、平方分米、平方米? 相鄰單位的進率為100

7、體積:物體所佔空間的大小叫做物體的體積。

8、長方體的體積=長×寬×高??? 用字母表示:V=abh?? 長=體積÷(寬×高)寬=體積÷(長×高)

高=體積÷(長×寬)

正方體的體積=棱長×棱長×棱長?? 用字母表示:V= a×a×a

9、體積單位:立方厘米、立方分米和立方米? 相鄰單位的進率為1000

10、長方體和正方體的體積統一公式:長方體或正方體的體積=底面積×高 V=Sh

11、體積單位的互化:把高級單位化成低級單位,用高級單位數乘以進率;

把低級單位聚成高級單位,用低級單位數除以進率。

12、容積:容器所能容納物體的體積。

13、容積單位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米

14、容積的計算:長方體和正方體容器容積的計算方法跟體積的計算方法相同,但要從裡面量長、寬、高。

、分數的意義和性質

1、分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。

2、分數單位:把單位「1」平均分成若干份,表示這樣的.一份的數叫做分數單位。

3、分數與除法的關系:除法中的被除數相當於分數的分子,除數相等於分母,用字母表示:a÷b= (b≠0)。

4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小於1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大於1或等於1。由整數部分和分數部分組成的分數叫做帶分數。

5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。

6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。

7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。

8、互質數:公因數只有1的兩個數叫做互質數。兩個數互質的特殊判斷方法:①1和任何大於1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。

9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。

10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。

11、最小公倍數:幾個數共有的倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。

12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

13、特殊情況下的最大公因數和最小公倍數:

①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。

14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。

15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。

四、分數的加法和減法

1、同分母分數的加減法:同分母分數相加、減,分母不變,只把分子相加減。

2、異分母分數的加減法:異分母分數相加、減,先通分,再按照同分母分數加減法的方法進行計算。

3、分數加減混合運算的運算順序與整數加減混合運算的順序相同。在一個算式中,如果含有括弧,應先算括弧裡面的,再算括弧外面的;如果只含有同一級運算,應從左到右依次計算。

五、打電話

1、逐個法:所需時間最多;

2、分組法:相對節約時間;

3、同時進行法:最節約時間。

拓展閱讀:小學語文課文目錄

一年級上冊目錄

一年級下冊目錄

二年級上冊目錄

二年級下冊目錄

三年級上冊目錄

三年級下冊目錄

四年級上冊目錄

四年級下冊目錄

五年級上冊目錄

五年級下冊目錄

六年級上冊目錄

六年級下冊目錄

小學數學課文目錄

一年級上冊目錄

一年級下冊目錄

二年級上冊目錄

二年級下冊目錄

三年級上冊目錄

三年級下冊目錄

四年級上冊目錄

四年級下冊目錄

五年級上冊目錄

五年級下冊目錄

六年級上冊目錄

六年級下冊目錄

小學英語課文目錄

三年級上冊目錄

三年級下冊目錄

四年級上冊目錄

四年級下冊目錄

五年級上冊目錄

五年級下冊目錄

六年級上冊目錄

六年級下冊目錄

『陸』 人教版五年級下冊數學中有關倍數與因數的知識點都有哪些

因數與倍數重要知識點.....
1. 因數、倍數概念:如果a×b=c(a、b、c都是不為0的整數)我們就說a和b都是c的因數c是a的倍數也是b的倍數。倍數和因數是相互依存的。
2. 一個數的因數個數是有限的,最小因數是1,最大因數是它本身。一個數的倍數個數是無限的,最小倍數是它本身,沒有最大倍數。 3. 2、3、5倍數的特徵。
(1)2的倍數的特徵:個位上是0、2、4、6、8的數,都是2的倍數,是2的倍數的數叫做偶數;不是2的倍數的數叫做奇數。
(2)3的倍數的特徵:一個數各位數上的和是3的倍數這個數是3的倍數。 (3)個位上是0、5的數都是5的倍數。 4.質數和合數。
(1)一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(素數)。最小的質數是2。
(2) 一個數,除了1和它本身還有別的因數,這樣的因數叫做合數。最小的合數是4,合數至少有三個因數。 (3)1既不是質數,也不是合數。 5.質因數和分解質因數。
(1)每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
(2) 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 例:30=2×3×5 6.最大公因數和最小公倍數。
(1) 幾個數公有的因數,叫做這幾個數的公因數,其中最大的一個,叫做這幾個數的最大公因數。
(2)幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。
7.互質數:公因數只有1的兩個數,叫做互質數。
8. 100以內質數:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、97 9. 13的倍數:26、39、52、65、78、91、104、117 17的倍數:34、51、68、85、102、119、136、153 19的倍數:38、57、76、95、114、133、152、171 因數與倍數專項練習題.......... 一.我會填.
1.一個數是3、5、7的倍數,這個數最小是( 105 ). 2.是3的倍數的最小三位數是( 102).
3.三個數相乘,積是70,這三個數是(2 )( 5 )( 7 )
4.同時是2、3、5的倍數的最小兩位數是( 30 ),最大兩位數( 90 )最小三位數( 120 )最大三位數( 990 )。
5.用8、5、1、0中三個數組成同時是2、3、5的倍數的最大三位數是( 810 )同時是3、5倍數的最小三位數是( 105 )。 6.100以內6和15的公倍數有(30、60、90)。 7.一個數最小倍數除以它的最大因數,商是( 1 )。
8.既是2的倍數,又是3的倍數,最小的一位數是(6 ),最大的三位數是( 996 )。
9.有兩個不同質數的和是22,它們的積是( 85 )。
10.兩個數是質數,那麼它們的乘積是( 合數 )。
11.一個數是9的倍數,還是72的因數,這個數是( 18或36 )。 12.甲=2×3×5乙=2×3×7,甲和乙的最大公因數是( 6 )。 13.把154分解質因數是( 7 2 11)。
14.有兩個連續自然數都是質數,這兩個數的和是( 5 ) 15.兩個質數得積一定是( 合數 ),兩個合數的積一定是( 合數 )。 二.我會選。
1.下列各組數中,兩個數只有公因數1的是( C )A.17和51 B.52和91 C.24和25 D.11和22
2.當a是自然數時,2a+1一定是( A )A.奇數 B.偶數 C.質數 D.合數
3.在自然數中,能同時被2、5整除的數一定是( C )A.質數 B.奇數 C.個位上是0的數
4.a是21的因數,a+21的值有( C)個A.2 B.3 C.4 D.5
5.要使四位數4 □27是3的倍數,□內應填( B )A.0、3、6、9 B.2、5、8 C.2、6 D.任何數字
三.我會算(計算最大公因數和最小公倍數) 1.56和42 2.225和15 3.54、72和90
解:7 168 解:15 225 解:18 1080 4. 84和105 5.66、165和231 6.13、26和52
解:21 420 解:33 2310 解:13 52 四.我會列.
1.三個連續自然數的和是72,這三個自然數分別是多少?如果是三個連續的偶數,這三個數又是多少?
解: 三個自然數為 23 24 25 三個連續偶數為 22 24 26 2.一塊長45厘米,寬20厘米的長方形木板,把它鋸成若干塊正方形而無剩餘,所鋸成的正方形邊長最長是多少厘米? 提示:找45和20的最大公因數 答:所鋸成正方形邊長最長是5厘米
3. 有一車飲料,如果3箱一數,還剩一箱;如果5箱一數,還剩一箱;如果7箱一數,也剩一箱,這車飲料至少有多少箱? 提示:找3,5,7的最小公倍數,加1即所求結果 答:這車飲料至少有106箱。
5.班級要召開聯歡會,同學們剪綵帶布置教室,有三根綵帶,分別長18分米,24分米,48分米,要把它們剪成同樣長的小段,不能有剩餘,每段綵帶最長多少分米?一共剪幾段? 提示:找18,24,48的最大公因數 答:每段綵帶最長是6分米,一共剪成15段。
6.一個長60分米,寬35分米的房間內鋪同樣大小的正方形地磚,鋪的時候地磚要完整而沒有剩餘,地磚邊長最大是幾分米? 提示:找60,35的最大公因數 答:地磚邊長最大是5分米
7.甲、乙、丙三人是朋友,他們每隔不同天數到圖書館去一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天他們三個恰好在圖書館相會。至少又過多少天他們又在圖書館相會? 提示:找3,4,5的最小公倍數 答:至少過60天他們又在圖書館相會。
8.級三個班分別有24人,36人,42人參加體育活動,要把它們分成人數相等的小組,但各班同學不能打亂,最多每組多少人?每班可以分幾組?提示:找24,36,42的最大公因數
答:每組最多6人。每班分別可分4組 ,6組,7組
因數與倍數練習題一
一、判斷題
( )1、任何自然數,它的最大因數和最小倍數都是它本身。 ( )2、一個數的倍數一定大於這個數的因數。 ( )3、個位上是0的數都是2和5的倍數。
( )4、一個數的因數的個數是有限的,一個數的倍數的個數是無限的。 ( )5、5是因數,10是倍數。
( )6、36的全部因數是2、3、4、6、9、12和18,共有7個。 ( )7、因為18÷9=2,所以18是倍數,9是因數。 ( )9、任何一個自然數最少有兩個因數。
( )10、一個數如果是24的倍數,則這個數一定是4和8的倍數。 ( )11、15的倍數有15、30、45。
( )12、一個自然數越大,它的因數個數就越多。 ( )13、兩個素數相乘的積還是素數。 ( )14、一個合數至少得有三個因數。
( )15、在自然數列中,除2以外,所有的偶數都是合數。 ( )16、15的因數有3和5。
( )17、在1—40的數中,36是4最大的倍數。 ( )18、1是16的因數,16是16的倍數。 ( )19、8的因數只有2,4。
( )20、一個數的最大因數和最小倍數都是它本身,也就是說一個數的最大因數等於它的最小倍數。
( )21、任何數都沒有最大的倍數。 ( )22、1是所有非零自然數的因數。 ( )23、所有的偶數都是合數。 ( )24、素數與素數的乘積還是素數。
( )25、個位上是3、6、9的數都能被3整除。 ( )26、一個數的因數總是比這個數小。
( )27、743的個位上是3,所以743是3的倍數。 ( )28、100以內的最大素數是99。 二、填空。
1、在50以內的自然數中,最大的素數是( ),最小的合數是( )。 2、既是素數又是奇數的最小的一位數是( )。 3、在20以內的素數中,( )加上2還是素數。
4、如果有兩個素數的和等於24,可以是( )+( ),( )+( )或( )+( )。
5、一個數的最小倍數減去它的最大因數,差是( )。 6、一個數的最小倍數除以它的最大因數,商是( )。
7、一個自然數比20小,它既是2的倍數,又有因數7,這個自然數是()。 8、如果a的最大因數是17,b的最小倍數是1,則a+b的和的所有因數有( )個;a-b的差的所有因數有( )個;a×b的積的所有因數有( )個。 9、比6小的自然數中,其中2是( )的因數,又是( )的倍數。
10、個位上是( )的數,都能被2整除;個位上是( )的數,都能被5整除。
11、在自然數中,最小的奇數是( ),最小的偶數是( ),最小的素數是( ),最小的合數是( )。
12、同時是2和5倍數的數,最小兩位數是( ),最大兩位數是( )。 13、1024至少減去( )就是3的倍數,1708至少加上 ( )就是5的倍數。 14、素數只有( )個因數,它們分別是( )和( )。
15、一個合數至少有( )個因數,( )既不是素數,也不是合數。 16、自然數中,既是素數又是偶數的是( )。 17、在20至30中,不能分解質因數的數是( )。
18、三個連續偶數的和是186,這三個偶數是( )、( )、 ( )。 19、我是54的因數,又是9的倍數,同時我的因數有2和3。( ) 20、我是50以內7的倍數,我的其中一個因數是4。( ) 21、我是30的因數,又是2和5的倍數。( )
22、我是36的因數,也是2和3的倍數,而且比15小。( )
23、 根據算式25×4=100,( )是( )的因數,( )也是( )的因數;( )是( )的倍數,( )也是( )的倍數。 24、在1—20的自然數中,奇數有( ),偶數有( )素數有( ),合數有( )。
25、 在18、29、45、30、17、72、58、43、75、100中,2的倍數有( );3的倍數有( );5的倍數有( ),既是2的倍數又是5的倍數有( ),既是3 的倍數又是5的倍數有( )。
26、 48的最小倍數是( ),最大因數是( )。最小因數是( )。 27、 用5、6、7這三個數字,組成是5的倍數的三位數是( );組成一個是3的倍數的最小三位數是( )。
28、一個自然數的最大因數是24,這個數是( )。
29、在 27、68、44、72、587、602、431、800中。(共4分) 奇數是: 偶數是:
30、在2、3、45、10、22、17、51、91、93、97中。(共5分) 素數是: 合數是: 31、按要求做。(6~7題共12分)
從0、3、5、7、這4個數中,選出三個組成三位數。 (1)組成的數是2的倍數有: (2)組成的數是5的倍數有: 。 (3)組成的數是3的倍數有: 32、偶數+偶數= 奇數+奇數= 偶數+奇數=
33、幼兒園的大班有36個小朋友,中班有48個小朋友,小班有54個小朋友。按班分組,三個班的各組人數一樣多,問每組最多有( )個小朋友。 三、選擇題
1、15的最大因數是( ),最小倍數是( )。 ①1 ②3 ③5 ④15
2、在14=2×7中,2和7都是14的( )。 ①素數 ②因數 ③質因數
3、一個數,它既是12的倍數,又是12的因數,這個數是( )。 ①6 ②12 ③24 ④144
4、一筐蘋果,2個一拿,3個一拿,4個一拿,5個一拿都正好拿完而沒有餘數,這筐蘋果最少應有( )。
①120個 ②90個 ③60個 ④30個
5、自然數中,凡是17的倍數( )。 ①都是偶數 ②有偶數有奇數 ③都是奇數
6、下面的數,因數個數最多的是( )。A 18 B 36 C 40
7、兩個素數的和是( )。A 偶數 B 奇數 C奇數或偶數 8、自然數按是不是2的倍數來分,可以分為( )。A奇數和偶數 B素數和合數 C素數、合數、0和1
9、1是( )。A 素數 B 合數 C 奇數 D 偶數
10、甲數×3=乙數,乙數是甲數的( )。A 倍數 B 因數 C 自然數
11、同時是2、3、5的倍數的數是( )。A 18 B 120 C 75 D 810 四、應用題。
1、一個小於30的自然數,既是8的倍數,又是12的倍數,這個數是多少? 2、當a分別是1、2、3、4、5時,6a+1是素數,還是合數?
3、 幼兒園里有一些小朋友,王老師拿了32顆糖平均分給他們,正好分完。小朋友的人數可能是多少?
4、小朋友到文具店買日記本,日記本的單價已看不清楚,他買了3本日記本,售貨員阿姨說應付134元,小紅認為不對。你能解釋這是為什麼嗎?
因數與倍數練習題二 一、填空。(33%)
(1)6×4=24,6和4是24的( ),24是6的( ),也是4的( )。 (2)24的因數有( )。 (3)下面的數中,把質數劃去,留下合數。
2 9 23 27 28 29 31 35 37 39 51
(4)一個數,既是12的倍數,又是12的因數,這個數是( )。 (5)兩個都是質數的連續自然數是( )和( )。 (6)在15、18、29、35、39、41、47、58、70、87這些數中: ①是偶數的有( ); ②是奇數的有( ); ③有因數3的是( ); ④5的倍數有( )。 (7)最小的自然數是( ),最小的質數是( )最小的合數是( )。
(8)有因數3,也是2和5的倍數的最小三位數是( )。 (9)在0、1、7、8中選3個數字,組成一個能同時被3、5整除的最小三位數是( )。
(10)三個連續奇數的和是45,這三個奇數分別是( )、( )和( )。 (11)100以內最大的質數與最小的合數的和是( ),差是( )。 (12)是42的因數,又是7的倍數,這些數有( )、( )、( )、( )、。
(13)凡是5的倍數,個位上一定是( )或( )。 (14)既是3的倍數,又是5的倍數的最大兩位數是( )。 (14)67至少要加上( )就是3的倍數。
(15)兩個質數和為18,積是65,這兩個質數是( )和( )。 二、判斷題。下列說法正確的在括弧里打「√」,錯誤的打「×」。並訂正。(8%) (1)在自然數中與1相鄰的數只有2。………………………………………( ) 訂正:
(2)3的倍數,一定是9的倍數。……………………………………………( ) 訂正:
(3)奇數都比偶數小。…………………………………………………………( ) 訂正:
(4)質數的因數只有一個。……………………………………………………( ) 訂正:
(5)個數上是3、6、9的數,都是3的倍數。……………………………( ) 訂正:
(6)一個數的因數的個數是無限的。………………………………………( ) 訂正:
(7)質數一定是奇數,合數一定是偶數。…………………………………( ) 訂正:
(8)兩個質數的和一定是偶數。……………………………………………( ) 訂正:
三、選擇題。將正確答案的序號填在題中的括弧里。(8%) (1)一個數是3的倍數,這個數各位上數的和( )。 ①大於3 ②等於3 ③是3的倍數 ④小於3 (2)一個合數至少有( )。
①一個因數 ②二個因數 ③三個因數 ④四個因數 (3)87是( );41是( )。
①合數 ②質數 ③因數 ④倍數 (4)既不是質數又不是合數的是( )。 ①1 ②2 ③3 ④4 (5)42÷3=14,我們可以說( )。
①42是倍數 ②3是因數 ③ 42是3的倍數 ④42是3的因數 (6)兩個奇數的和( )。
①一定是奇數 ②一定是偶數 ③可能是奇數也可能是偶數 ④一定是質數 (7)幾個質數之積一定是( )。
①奇數 ②偶數 ③合數 ④質數 (8)5和7都是35的( )。
①奇數 ②偶數 ③因數 ④倍數 四、解方程。(6%)
(1)X ÷ 36=0.4 (2)8X-9.1=22.9 (3)36+2X=78.6 (4)4×0.9+3X=46.2 五、列方程解文字題。(4%)
(1)一個數的13倍加4與1.7的積,和是162,這個數是多少? (2)一個數的3倍減去5.8,差是13.4,求這個數。 六、按要求完成下列各題。(41%) (1)在圈內寫上合適的數。(4%)
60的因數 50以內6的倍數
(2)從四張數字卡片中選出三張,按要求組成三位數。(10%)
①奇數 ②偶數 ③3的倍數 ④5的倍數 ⑤既是2的倍數,又是5的倍數 (3)在括弧里填上適當的質數。(8%)
①8=( )+( ) ②12=( )+( )+( ) ③15=( )+( ) ④18=( )+( )+( ) ⑤24=( )+( )=( )+( )=( )+( ) (4)在1~100的自然數中寫出9的所有倍數。(4%)
(5)在□里填上一個數字,使這個數成為3的倍數。(寫出所有填法)(6%) □8 4□6 2 3□1
(6)寫出一些三位數,這些數都同時是2、3、5的倍數。(每種寫兩個數)(6%)
①有兩個數字是質數: ②有兩個數字是合數: ③有兩個數字是奇數:
(7)1+2+3+……+999+1000+1001的和是奇數還是偶數?請寫出理由。(3%)
因數與倍數練習題三 一、填空(30分)
1、像0,1,2,3,4,5,6,……這樣的數是( ) 2、像-3,-2,-1,0,1,2,3,……這樣的數是( )
3、有一個算式7×8=56,那麼可以說( )和( )是( )的因數,( )是( )和( )的倍數。 4、是2的倍數的數叫( )。 5、不是2的倍數的數叫( )。
6、凡是個位上是( )或( )的數,都是5的倍數。一個數既是2的倍數,又是5的倍數,這個數的個位上的數字一定是( )。
7、一個數各個數位上的數字加起來的和是9的倍數,那麼這個數也是( )的倍數。如果要讓□729成為3的倍數,那麼□里可以填( )。 8、一個數只有( )兩個因數,這個數叫作質數。
一個數除了( )以外還有( ),這個數叫做合數。合數最少有( )個因數,質數只有( )個因數。 9、要使5□是質數,□可以填( )
10、最小的質數是( ),最小的合數是( )。 11、寫出1~20的所有質數是( ),
1~20中共有( )個質數,在1~20中,共有( )個合數。( )既不是質數,也不是合數。
12、有一個比14大,比19小的奇數,它同時是質數,這個數是( )。 13、任何大於6的質數除以6,肯定有餘數,余數只會是( )或( )。 14、有一個兩位數,它是2的倍數,同時,它的各個數位上的數字的積是12,這個兩位數可能是 ( )。 二、判斷(6分)
1、大於2的所有的偶數都是合數。 ( ) 2、除2以外,所有的質數都是奇數。 ( ) 3、6的所有倍數都是合數。 ( )
4、一個數是9的倍數,這個數一定也是3的倍數。 ( ) 5、連續的兩個自然數相加的和一定是奇數。 ( ) 6、8是因數,12是倍數。 ( )

『柒』 5年級數學下冊重點知識有哪些內容

5年級數學下冊重點知識有如下:

1、表示相等關系的式子叫做等式。

2、含有未知數的等式是方程。

3、方程一定是等式;等式不一定是方程。等式方程

4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。

等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。

5、求方程中未知數的過程,叫做解方程。

解方程時常用的關系式:

一個加數=和-另一個加數 減數=被減數-差 被減數=減數+差。

一個因數=積另一個因數 除數=被除數商 被除數=商除數。

注意:解完方程,要養成檢驗的好習慣。

6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和個數=中間數

7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和個數2(高斯求和公式)