當前位置:首頁 » 基礎知識 » 初二人教數學知識點歸納
擴展閱讀
洋酒洋酒知識大全 2024-11-27 11:02:19

初二人教數學知識點歸納

發布時間: 2024-06-20 22:51:22

㈠ 人教版初二數學知識點總結

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

數據的分析

1、平均數

①一般地,對於n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。

②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。

2、中位數與眾數

①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。

②一組數據中出現次數最多的那個數據叫做這組數據的眾數。

③平均數、中位數和眾數都是描述數據集中趨勢的統計量。

④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。

⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。

⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。

3、從統計圖分析數據的集中趨勢

4、數據的離散程度

①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。

②數學上,數據的離散程度還可以用方差或標准差刻畫。

③方差是各個數據與平均數差的平方的平均數。

④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。

⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。

八年級 數學知識點歸納

分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的 方法 分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

學好數學的關鍵就在於要適時適量地進行 總結 歸類,接下來我就為大家整理了這篇人教版八年級數學全等三角形知識點講解,希望可以對大家有所幫助。

全等三角形的性質:全等三角形對應邊相等、對應角相等。

全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等

角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

人教版八年級數學全等三角形知識點講解就為大家介紹到這里了,希望大家都能養成善於總結的好習慣。

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.

初二數學 復習方法 總結

一、初中數學中考復習方法:

數學家華羅庚曾經說過:「聰明在於學習,天才在於勤奮」,勤能補拙是良訓,一分辛勞一分才。

1.復習一定要做到勤

勤動手:做題不要看,一定要算,不會的知識點寫下來,記在 筆記本 上。

勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。

勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。

勤動腦:善於思考問題,積極思考問題——吸收、儲存信息

勤動腿:不要參加過於激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鍾即可,報至狀態。

2.初中數學復習還要強調兩個要點:

一要:動手,二要:動腦。

動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知之間的聯系,多問幾個為什麼,多體會考的哪個知識點。

動手就是多實踐,多做題,要拳不離手曲不離口。同學就是題不離手,這兩個要點大家要記住並且要堅持住。動腦又動手,才能地發揮大腦的效率。這也是老師的 經驗 。

3.用心做到三個一遍

上課要認真聽一遍:聽老師講的方法知識等。

動手算一遍:按照老師的思路算一遍看看是否融會貫通。

認真想一遍:想想為什麼這么做題,考的哪個知識。

4.重視簡單的學習過程

讀好一本教科書它是教學、中考的主要依據;

記好一本筆記方法知識是教師多年經驗的結晶,每人自己准備一本錯題集;

做好做凈一本習題集它是使知識拓寬;

這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復的不就是老師剛剛說的嗎?

沒有寶典神功,只有普普通通。最最難能可貴的是堅持。

資源可以的話,找幾套往屆的期末考試題,是自己縣區的,其他縣區也可以(考點差不多一樣的),在規定時間內,摸摸底,熟悉每個章節考的的題型,練練自己的做題效率。很多同學第一次做練習出錯,如果不及時糾正、 反思 ,而僅僅是把答案改正,那麼他沒有真正地弄明白自己到底錯在什麼地方,也就沒弄明白如何應用這部分知識,最終會導致在今後遇到類似的問題一錯再錯。


人教版初二數學知識點總結相關 文章 :

★ 初二數學知識點歸納上冊人教版

★ 人教版八年級數學上冊知識點總結

★ 初二數學人教版知識點總結歸納

★ 初二數學上冊知識點總結

★ 八年級數學知識點整理歸納

★ 人教版初二數學上知識點總結

★ 初二數學上冊知識點總結人教版

★ 人教版初二數學上學期知識點總結

★ 初二數學知識點人教版

★ 人教版初二上數學知識點

㈡ 八年級數學的知識點歸納

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

數學知識點八年級

【統計的初步認識】

1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。

2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。

3、能夠看出折線統計圖所提供的信息,並回答相關的問題。

補充內容:

1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。

2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。

課後練習

1.統計學的基本涵義是(D)。

A.統計資料

B.統計數字

C.統計活動

D.是一門處理數據的方法和技術的科學,也可以說統計學是一門研究「數據」的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為採取決策提供依據。

2.要了解某一地區國有工業企業的生產經營情況,則統計總體是(B)。

A.每一個國有工業企業

B.該地區的所有國有工業企業

C.該地區的所有國有工業企業的生產經營情況

D.每一個企業

3.要了解20個學生的學習情況,則總體單位是(C)。

A.20個學生

B.20個學生的學習情況

C.每一個學生

D.每一個學生的學習情況

4.下列各項中屬於數量標志的是(B)。

A.性別

B.年齡

C.職稱

D.健康狀況

初二下冊數學知識點 總結

【抽樣調查】

(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。

(2)是以抽取的全部樣本單位作為一個「代表團」,用整個「代表團」來代表總體。而不是用隨意挑選的個別單位代表總體。

(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。

(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,並控制在允許范圍以內,調查結果的准確程度較高。

課後練習

1.抽樣成數是一個(A)

A.結構相對數B.比例相對數C.比較相對數D.強度相對數

2.成數和成數方差的關系是(C)

A.成數越接近於0,成數方差越大B.成數越接近於1,成數方差越大

C.成數越接近於0.5,成數方差越大D.成數越接近於0.25,成數方差越大

3.整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)

A.全面調查B.非全面調查C.一次性調查D.經常性調查

4.對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為95.45%,則優等生比重的極限抽樣誤差為(A)

A.40%B.4.13%C.9.18%D.8.26%

5.根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)

A.甲產品大B.乙產品大C.相等D.無法判斷

數學知識點八年級

菱形的判定定理

1.一組鄰邊相等的平行四邊形是菱形。

2.對角線互相垂直的平行四邊形是菱形。

3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)

正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1.鄰邊相等的矩形是正方形。

2.有一個角是直角的菱形是正方形。

梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

直角梯形的定義:有一個角是直角的梯形

等腰梯形的定義:兩腰相等的梯形。

等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

解梯形問題常用的輔助線:如圖

線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交於疑點,這一點就是三角形的重心。寬和長的比是-1(約為0.618)的矩形叫做黃金矩形。


八年級數學知識點相關 文章 :

★ 人教版八年級數學上冊知識點總結

★ 八年級數學知識點整理歸納

★ 八年級數學知識點總結

★ 初二數學上冊知識點總結

★ 初二數學知識點歸納

★ 初二數學知識點復習整理

★ 八年級數學上知識點歸納

★ 八年級數學上冊知識點歸納

★ 八年級上冊數學知識點整理

㈢ 初二數學都有哪些知識點

歸納如下:

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)•(a +b).

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.

(六)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.

2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:

1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於

一次項的系數.

2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:

① 列出常數項分解成兩個因數的積各種可能情況;

②嘗試其中的哪兩個因數的和恰好等於一次項系數.

3.將原多項式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.

(八)分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.

3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.

5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.

10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.

12.作為最後結果,如果是分式則應該是最簡分式.

(九)含有字母系數的一元一次方程

1.含有字母系數的一元一次方程

引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)

在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。

含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。

(3)初二人教數學知識點歸納擴展閱讀:

概念口訣

有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

【注】「大」減「小」是指絕對值的大小。

有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則

同號得正異號負,一項為零積是零。

合並同類項

說起合並同類項,法則千萬不能忘。

只求系數代數和,字母指數留原樣。

去、添括弧法則

去括弧或添括弧,關鍵要看連接號。

擴號前面是正號,去添括弧不變號。

括弧前面是負號,去添括弧都變號。

解方程

已知未知鬧分離,分離要靠移完成。

移加變減減變加,移乘變除除變乘。

平方差公式

兩數和乘兩數差,等於兩數平方差。

積化和差變兩項,完全平方不是它。

完全平方公式

二數和或差平方,展開式它共三項。

首平方與末平方,首末二倍中間放。

和的平方加聯結,先減後加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先減後加差平方。

解一元一次方程

先去分母再括弧,移項變號要記牢。

同類各項去合並,系數化「1」還沒好。

求得未知須檢驗,回代值等才算了。

解一元一次方程

先去分母再括弧,移項合並同類項。

系數化1還沒好,准確無誤不白忙。

㈣ 初二數學人教版知識點歸納

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

八年級 數學知識點

數據的收集、整理與描述

一.知識框架

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查.

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.

3.總體:要考察的全體對象稱為總體.

4.個體:組成總體的每一個考察對象稱為個體.

5.樣本:被抽取的所有個體組成一個樣本.

6.樣本容量:樣本中個體的數目稱為樣本容量.

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.

8.頻率:頻數與數據總數的比為頻率.

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.

初二下冊數學知識點 總結

1.等式與等量:用"="號連接而成的式子叫等式.注意:"等量就能代入"!

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).

9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).

10.列一元一次方程解應用題:

(1)讀題分析法:…………多用於"和,差,倍,分問題"

仔細讀題,找出表示相等關系的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法:…………多用於"行程問題"

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

初二數學學習技巧

自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。

因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。

自信才能自強

在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。

具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做, 其它 的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。

數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。


初二數學人教版知識點歸納相關 文章 :

★ 初二數學知識點歸納上冊人教版

★ 人教版八年級數學上冊知識點總結

★ 初二數學上冊知識點總結

★ 八年級數學知識點整理歸納

★ 人教版八年級數學上冊知識點歸納

★ 初二數學下冊知識點人教版

★ 人教版八年級下冊數學復習提綱

★ 新人教版初中數學復習資料

★ 數學八年級上冊知識點

★ 數學八年級上冊知識人教版

㈤ 八年級數學知識點下冊人教版

只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二數學下冊知識點歸納

第一章一元一次不等式和一元一次不等式組

一、一般地,用符號(或),(或)連接的式子叫做不等式.

能使不等式成立的未知數的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.

由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

不等式組的解集:一元一次不等式組各個不等式的解集的公共部分.

等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.

二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(註:移項要變號,但不等號不變.)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質1、若ab,則a+cb+c;2、若ab,c0則acbc若c0,則ac不等式的其他性質:反射性:若ab,則bb,且bc,則ac

三、解不等式的步驟:1、去分母;2、去括弧;3、移項合並同類項;4、系數化為1.四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集.五、列一元一次不等式組解實際問題的一般步驟:(1)審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答.

六、常考題型:1、求4x-67x-12的非負數解.2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.

3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間.

第二章分解因式

一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形.

三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.

四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.

五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.分解因式的方法:1、提公因式法.2、運用公式法.

第三章分式

註:1對於任意一個分式,分母都不能為零.

2分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.

3分式的值為零含兩層意思:分母不等於零;分子等於零.(中B0時,分式有意義;分式中,當B=0分式無意義;當A=0且B0時,分式的值為零.)

常考知識點:1、分式的意義,分式的化簡.2、分式的加減乘除運算.3、分式方程的解法及其利用分式方程解應用題.

八年級數學知識點

1、在同一平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內兩條直線的位置關系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…

平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用「」表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…

第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特徵以及彼此之間的關系1.矩形是特殊的平行四邊形,矩形的四個內角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…

特殊的平行四邊形和一元二次方程的知識點歸納

【菱形】

1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

2.菱形的性質:

(1)菱形的性質有:①平行四邊形的一切性質;②四條邊都相等;③對角線互相垂直,並且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。

(2)菱形面積=底×高=對角線乘積的一半。

3.菱形的判定:

(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。

(2)對角線互相垂直的平行四邊形是菱形。

(3)四條邊都相等的四邊形是菱形。

綜上可知,判定菱形時常用的思路:

四條邊都相等菱形

菱形四邊形

平行

四邊形有一組鄰邊相等菱形

【矩形】

1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。

2.矩形的性質:(1)具有平行四邊形的一切性質;(2)矩形的四個角都是直角;

(3)矩形的四個角都相等。

4.矩形的判定方法:

(1)用定義判定(即有一個角是直角的平行四邊形是矩形);

(2)三個角都是直角的四邊形是矩形;

(3)對角線相等的平行四邊形是矩形。

綜上可知,判定矩形時常用的思路:

【正方形】

1.正方形的定義:有一組鄰邊相等,並且有一個角是直角的平行四邊形叫做正方形。

2.正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。

(1)邊:四條邊相等,鄰邊垂直且相等,對邊平行且相等。

1(2)角:四個角都是直角。

(3)對角線:對角線相等且互相垂直平分,每條對角線平分一組對角。

初二 數學學習方法

一該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。

因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。

物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。

3、「對應」的思想

「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。

三自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。

因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。


八年級數學知識點下冊相關 文章 :

★ 八年級下冊數學知識點整理

★ 八年級數學下冊知識點整理

★ 初二數學下冊知識點歸納與數學學習方法

★ 初中八年級數學下冊知識點

★ 八年級下冊數學知識點

★ 八年級數學知識點整理歸納

★ 八年級下冊數學知識點歸納

★ 初二數學下冊知識點人教版

★ 八年級下冊的數學知識點

★ 初二數學下冊知識點

㈥ 人教版八年級數學知識點

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

分式方程

一、理解定義

1、分式方程:含分式,並且分母中含未知數的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

(2)解這個整式方程。

(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。

(4)寫出原方程的根。

「一化二解三檢驗四 總結 」

3、增根:分式方程的增根必須滿足兩個條件:

(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根;

註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

5、分式方程解實際問題

步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。

二、軸對稱圖形:

一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

1、軸對稱:

兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

2、軸對稱圖形與軸對稱的區別與聯系:

(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。

(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。

3、軸對稱的性質:

(1)成軸對稱的兩個圖形全等。

(2)對稱軸與連結「對應點的線段」垂直。

(3)對應點到對稱軸的距離相等。

(4)對應點的連線互相平行。

三、用坐標表示軸對稱

1、點(x,y)關於x軸對稱的點的坐標為(x,-y);

2、點(x,y)關於y軸對稱的點的坐標為(-x,y);

3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。

四、關於坐標軸夾角平分線對稱

點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)

點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)

八年級數學知識點

1、全等三角形的對應邊、對應角相等

2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

7、定理1在角的平分線上的點到這個角的兩邊的距離相等

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9、角的平分線是到角的兩邊距離相等的所有點的集合

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

11、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

13、推論3等邊三角形的各角都相等,並且每一個角都等於60°

14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

15、推論1三個角都相等的三角形是等邊三角形

16、推論2有一個角等於60°的等腰三角形是等邊三角形

17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

18、直角三角形斜邊上的中線等於斜邊上的一半

19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

22、定理1關於某條直線對稱的兩個圖形是全等形

23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形

初二 數學學習方法 十大技巧

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10、客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。


人教版八年級數學知識點相關 文章 :

★ 人教版八年級數學上冊知識點總結

★ 八年級數學上冊知識點總結人教版

★ 人教版八年級數學上冊知識點整理

★ 八年級數學知識點整理歸納

★ 八年級數學知識點整理

★ 人教版八年級上冊數學課本知識點歸納

★ 初二數學知識點歸納上冊人教版

★ 人教版八年級數學上冊知識點

★ 人教版八年級上冊數學知識點總結

★ 新人教版八年級數學上冊知識點

㈦ 八年級數學必備知識點總結

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

分式方程

一、理解定義

1、分式方程:含分式,並且分母中含未知數的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

(2)解這個整式方程。

(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。

(4)寫出原方程的根。

「一化二解三檢驗四 總結 」

3、增根:分式方程的增根必須滿足兩個條件:

(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根;

註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

分式方程檢驗 方法 :將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

5、分式方程解實際問題

步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。

八年級上冊數學知識點

(一)運用公式法

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

八年級數學重要知識點

【概率初步】

23.1確定事件和隨機事件

1.在一定條件下必定出現的現象叫做必然事件

2.在一定條件下必定不出現的現象叫做不可能事件

3.必然事件和不可能事件統稱為確定事件

4.那些在一定條件下可能出現也可能不出現的現象叫做隨機時間,也稱為不確定事件23.2事件發生的可能性

23.3時間的概率

1.用來表示某事件發生的可能性大小的數叫做這個事件的概率

2.規定用0作為不可能事件的概率;用1作為必然時間的概率

3.事件A的概率我們記作P(A);對於隨機事件A,可知0

4.如果一項可以反復進行的試驗具有以下特點:

(1)試驗的結果是有限個,各種結果可能出現的機會是均等的;

(2)任何兩個結果不可能同時出現

那麼這樣的試驗叫做等可能試驗

5.一般地,如果一個試驗共有n個等可能的結果,事件A包含其中的k個結果,那麼事件A的概率P(A)=事件A包含的可能結果數/所有的可能結果總數=k/n

6.列舉法、樹狀圖、列表

23.4概率計算舉例


八年級數學必備知識點總結相關 文章 :

★ 八年級數學知識點整理歸納

★ 人教版八年級數學上冊知識點總結

★ 初二數學知識點歸納整理

★ 八年級下冊數學知識點整理

★ 初中八年級數學知識點總結

★ 初二數學知識點歸納梳理

★ 初二數學基礎知識點歸納

★ 初二數學上冊知識點總結

★ 初二數學知識點整理歸納

★ 初二數學知識點整理

㈧ 初中八年級數學知識點

各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

軸對稱圖形:

一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

1、軸對稱:

兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

2、軸對稱圖形與軸對稱的區別與聯系:

(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。

(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。

3、軸對稱的性質:

(1)成軸對稱的兩個圖形全等。

(2)對稱軸與連結「對應點的線段」垂直。

(3)對應點到對稱軸的距離相等。

(4)對應點的連線互相平行。

三、用坐標表示軸對稱

1、點(x,y)關於x軸對稱的點的坐標為(x,-y);

2、點(x,y)關於y軸對稱的點的坐標為(-x,y);

3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。

四、關於坐標軸夾角平分線對稱

點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)

點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)

初二數學下冊知識點歸納

第一章分式

1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變

2分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減

3整數指數冪的加減乘除法

4分式方程及其解法

第二章反比例函數

1反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2反比例函數在實際問題中的應用

第三章勾股定理

1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。

第四章四邊形

1平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,並且等於第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等於斜邊的一半。

(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。

初二數學學習技巧

自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。

因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。

自信才能自強

在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。

具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做, 其它 的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。

數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。


初中八年級數學知識點相關 文章 :

★ 八年級數學知識點整理歸納

★ 人教版八年級數學上冊知識點總結

★ 初中八年級上冊數學知識點

★ 初中八年級上冊數學知識點總結歸納

★ 八年級數學知識點總結

★ 初二數學上冊知識點總結

★ 初二數學知識點復習整理

★ 八年級上冊數學知識點整理

★ 八年級數學知識點上冊

㈨ 八年級數學重點知識點總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

八年級上冊數學知識點

1、全等三角形的對應邊、對應角相等

2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

7、定理1在角的平分線上的點到這個角的兩邊的距離相等

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9、角的平分線是到角的兩邊距離相等的所有點的集合

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

11、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

13、推論3等邊三角形的各角都相等,並且每一個角都等於60°

14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

15、推論1三個角都相等的三角形是等邊三角形

16、推論2有一個角等於60°的等腰三角形是等邊三角形

17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

18、直角三角形斜邊上的中線等於斜邊上的一半

19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

22、定理1關於某條直線對稱的兩個圖形是全等形

23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形

28、定理四邊形的內角和等於360°

29、四邊形的外角和等於360°

八年級數學知識點 總結

函數及其相關概念

1、變數與常量

在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。

2、函數解析式

用來表示函數關系的數學式子叫做函數解析式或函數關系式。

使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。

3、函數的三種表示法及其優缺點

(1)解析法

兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數關系的方法叫做圖像法。

4、由函數解析式畫其圖像的一般步驟

(1)列表:列表給出自變數與函數的一些對應值

(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來

初二數學 學習 經驗 心得

1學好初中數學課前要預習

初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。

初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。

2學習初中數學課上是關鍵

初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。

你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。

3課後可以適當做一些初中數學基礎題

在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。

但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,

數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.


八年級數學重點知識點總結相關 文章 :

★ 人教版八年級數學上冊知識點總結

★ 八年級數學知識點整理歸納

★ 八年級數學知識點歸納總結

★ 初二數學上冊知識點總結

★ 八年級下冊數學知識點整理

★ 八年級數學知識點總結

★ 八年級數學知識點歸納

★ 八年級數學上知識點總結

★ 八年級數學上知識點歸納

★ 初二數學重點知識歸納整理