1. 數學知識點總結
小學數學知識匯總
圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)×2
長方形面積 =長×寬
正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
三角形面積 = 底×高÷2
平行四邊形面積 = 底 × 高
梯形面積 = (上底 +下底)×高÷2
圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
圓的面積等於3.14×半徑的平方。
環形的面積等於3.14×(大半徑的平方-
小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑
即:∏ r + 2 r
長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
長方體的體積 = 長 × 寬 × 高
或
底面積×高
正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
圓柱體的表面積=2個底面積 + 側面積
側面積=底面周長×高
圓柱體的體積 = 底面積 × 高
圓錐體的體積 = 底面積 × 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
幾何初步知識
直線沒有端點,兩端可以無限延長,不能測量長度。
射線有一個端點,一端可以無限延長,不能測量長度。
線段有兩個端點,不能延長,可以測量長度。
過一點可以畫無數條直線,過兩點可以畫一條直線。
在同一平面內,兩條直線的相互位置有相交和平行兩種。
在同一平面內,不相交的兩條直線叫做平行線。
一個頂點和從這個頂點出發的兩條射線組成的圖形叫做角。
大於0度小於90度的角叫銳角;大於90度小於180度的角叫鈍角。
三角形的內角和是180度;四邊形的內角和是360度。
直角是90度,平角是180度,周角是360度。
三角形按角可以分為直角三角形、銳角三角形和鈍角三角形。
三角形按邊可分為等邊三角形、等腰三角形和不等邊三角形;等邊三角形三條邊都相等,三個角都是60度。
長方形和正方形都是特殊的平行四邊形。
當圓、正方形和長方形的周長相等時,圓的面積最大,長方形的面積最小。
三角形具有穩定性,平行四邊形容易變形。
等底等高的情況下,三角形的面積是平行四邊形面積的一半。
圓是平面上的一種曲線圖形,圍成圓的曲線的長度叫做圓的周長;圓所在的平面的大小叫做圓的面積。
從圓心到圓上任意一點的線段叫做圓的半徑。
通過圓心,並且兩端都在圓上的線段叫做圓的直徑。
頂點在圓心的角叫做圓心角;圓內最長的線段是直徑。
圓有無數條半徑和無數條直徑。
在同一圓內,所有的半徑都相等,所有的直徑也都相等。
在同一圓內,直徑是半徑的2倍。
圓的周長與直徑的比值叫做圓周率,用字母∏來表示,是祖沖之最早計算出來的。∏≈ 3.14
圓心決定了圓的位置,半徑決定了圓的大小。
扇形的大小是由半徑和圓心角來決定的 。
圓規兩角間的距離指的是圓的半徑。
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形,摺痕所在的直線叫做對稱軸。
圓有無數條對稱軸,長方形有兩條對稱軸,正方形有四條對稱軸,等腰三角形有一條對稱軸,等邊三角形有三條對稱軸,等腰梯形有一條對稱軸,半圓或扇形都有一條對稱軸。
量的計量
常用的長度單位有千米、米、分米、厘米和毫米。
常用的面積單位有平方千米,公頃、平方米,平方分米和平方厘米。
常用的體積單位有立方米,立方分米,立方厘米。
常用的容積單位有升和毫升。1升=1000毫升。
立方分米就是升,立方厘米就是毫升。
常用的重量單位有噸,千克和克。
常用的人民幣單位有元、角、分。
常用的時間單位有世紀、年、月、日、時、分、秒。
1世紀=100年,1年=12月,大月31天,小月30天。
一年有12個月,分為四個季度,每個季度三個月。
每四年中有三個平年和一個閏年。平年2月有28天,閏年2月有29天。
代數初步知識
含有未知數的等式叫做方程。
求方程的解的過程叫做解方程。
兩個數相除又叫做兩個數的比;表示兩個比相等的式 子叫做比例。
比的後項不能為0。
比的前項除以後項的商,叫做比值。比值可以是整數、小數或分數。
比的前項和後項都乘上或除以相同的數(0除外),比值不變,叫做比的基本性質。
在比例里,兩個內項的積等於兩個外項的積,叫做比例的基本性質 。
圖上距離和實際距離的比叫做比例尺。
比例尺有數值比例尺和線段比例尺兩種。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做乘正比例的量,它們的關系叫做正比例關系。即: x ÷ y = k (一定)
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做乘反比例的量,它們的關系叫做反比例關系。即: x × y = k ( 一定 )
圓的半徑和面積不成比例 和 周長成正比例。
三角形的面積一定,底和高成反比例。
比例尺一定,圖上距離和實際距離成正比例。
一種商品先降價10%,再提價10%,價格比原來降低了。
甲比乙多25%,則乙比甲少20%。
數和數的運算
我們在數物體的時候,用來表示物體個數的1 ,2 ,3 …… 叫做自然數。0也是自然數,是最小的自然數,沒有最大的自然數。自然數都是整數。
把單位「l」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b = (b≠0)
分子和分母是互質數的分數叫做最簡分數。
真分數的倒數一定大於1,但假分數的倒數不一定小於1。
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變,叫做分數的基本性質。
小數的末尾添上「0」或者去掉「0」,小數的大小不變,這叫做小數的基本性質。
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
循環節從小數部分第一位就開始的叫做純循環小數;循環節不是從小數部分第一位開始的叫做混循環小數。
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數沒有單位。
整數a除以整數b( b≠0 ),除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者b能整除a 。
如果a能被b整除,我們就說a是b的倍數,b是a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它的本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
一個數,如果只有1和它本身兩個約數,叫做質數。
一個數,如果除了1和它本身,還有別的約數,叫做合數。
把一個合數寫成幾個質數相乘的形式,叫做分解質因數。
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
幾個數公有的約數叫做這幾個數的公約數,其中最大的一個數叫做這幾個數的最大公約數。
公約數只有1的兩個數,叫做互質數。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。一個自然數不是偶數就是奇數。
最小的偶數是0,最小的奇數是1 ,最小的質數是2 ,最小的合數是4 。
除了0和2以外,所有的偶數都是合數。
能同時被2、3、5整除的最小的兩位數是30,最小的三位數是120。
一個算式,如果只含有同一級運算,要按照從左往右的順序依次計算。如果含有兩級運算,要先算乘除,後算加減。如果有括弧,還要先算括弧裡面的,再算括弧外面的。
乘積是1的兩個數叫做互為倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
利息 = 本金 × 利率 × 時間
稅後利息 = 本金 × 利率 × 時間 ×80%
概念
數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
第一章 數和數的運算
(一)整數
整數的意義
自然數和0都是整數。
自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
2. 蘇教版小學二年級數學知識點
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 二年級數學 的知識點,希望對大家有所幫助。
二年級數學《萬以內數的認識》知識點
一、1000以內數的認識
1、10個一百就是一千。
2、讀數時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀「零」,末尾不管有幾個0,都不讀。
3、寫數時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數也沒有就寫0佔位。
4、數的組成:看每個數位上是幾,就由幾個這樣的計數單位組成。
二、10000以內數的認識
1、10個一千是一萬。
2、萬以內數的讀法和寫法與1000以內的數讀法和寫法相同。
3、最小兩位數是10,的兩位數是99;最小三位數是100,的三位數是999;最小四位數是1000,的四位數是9999;最小的五位數是10000,的五位數是99999。
三、整百、整千數加減法
1、整百、整千加減法的計算 方法 。
(1)把整百、整千數看成幾個百,幾個千,然後相加減。
(2)先把0前面的數相加減,再在得數末尾添上與整百、整千數相同個數的0。
2、估算
把數看做它的近似數再計算。
二年級數學學習新方法歸納
「由薄到厚」和「由厚到薄」的 學習方法
「由薄到厚」和「由厚到薄」是數學家華羅庚多次提到的治學方法,他認為學習要經過「由薄到厚」和「由厚到薄」的過程。「由薄到厚」是理解和弄懂所學的數學知識,知其然並知其所以然。學習不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來的,與前面的知識是怎樣聯系著的,表達中省略了什麼,關鍵在哪裡,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮後,就會對內容增添某些註解,補充一些的解法或產生新的認識等,出現了「書越讀越厚」。
但是學習不能到此止步,還需要把學過內容貫串起來,加以融會貫通,提煉出它的精神實質,抓住重點、線索和基本思想方法,組織整理成精煉的內容,這就是一個「由厚到薄」的過程。在這過程中,不是量的減少,而是質的提高,所以具有更重要的作用。通常在 總結 一章、幾章或一本書的內容時,就要有這種要求,運用這種方法。這時由於知識出現高度概括,就更能促進知識的遷移,也更有利於進一步學習。
「由薄到厚」和「由厚到薄」是一個螺旋上升的過程,它具有不同的層次和要求,學習中需要經過從低到高多次的運用,才能收到應有的效果。這一學習方法體現著「分析」與「綜合」、「發散」與「收斂」的辯證統一,就是說數學學習需要這兩者統一起來。
接受學習與發現學習相結合的方法
數學學習應是有意義接受學習和有意義發現學,如何使兩者互相配合、有機結合,充分發揮各自和綜合的效力這是學習方法的一個重要方面。
接受學習,不論是聽系統的講授,還是以定論的形式給出的教材,都不涉及任何的獨立發現。但在學習過程中,學生處於積極、主動的狀態,並非只是單純的接受,他們總不斷地向自己提出問題,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。許多數學家都十分強調「應該不只脹到書面上,而且還要看到書背後的東西。」在進行接受學習時,還要增添某些發現學習的萬分,從中學習創造、發明的思想和方法,而不僅僅停留在知識的接受上。
發現學習,是依靠自己對所提供的材料或問題的觀察、比較、分析、綜合等,獨立地了現的解決某問題,從而獲得新知識。在解決問題時,要真正理解問題中所涉及的要領、原理、公式、定理和法則,懂得每步操作的意義,以及提出假設、檢驗假設的目的等。解決問題,總需要聯想以往學習過和知識與方法,一時回憶不起來的,還要重新復習,以求進一步理解的應用。有是遇到困難問題,甚至還在查看參考書或請教老師者能解決。可見,這期間也穿插著接受學習。
數學學習既需要接受學習,以便在短時間內獲得大量前人積累起來的寶貴知識財富,也需要發現學習,以利於思維、培養創造能力。因此,學習要根據自身的年齡、學習能力特點和教學內容的要求,使兩者緊密結合起來。
學好數學的三大法寶正確的 思維方式 +良好的學習習慣+刻苦的學習精神便是學好數學的三大法寶。
所謂正確的思維方式,通俗點講就是同學們平時說的解題思路,很多學生抱怨道一看到數學題就完全沒有思路,不知道該從何入手。這說明學生還沒有建立正確的思維方式。解決這個問題其實並不難,首先課堂上要緊隨老師思路,特別是在老師講解習題時,不要僅僅把精力放在最後的結果上,更應該注重老師講解的過程和思維的切入點。其次應該勤於 思維訓練 ,比如說課後進行相似習題的思考,這里切忌照葫蘆畫瓢,一定要按照正確的思路從頭來一邊。最後還應積極的參與新問題的研究和討論,其實與同學討論甚至爭論都是幫助你不斷完善思維方式的有效手段,在討論中發現自己沒有想到的點,積累同一問題的多個思維角度。
良好的學習習慣不僅僅是在數學的學習中發揮著重大作用,它可能會成為你一生中許多事情成敗的決定因素。筆記是否記錄詳實,卷面是否書寫工整,課後是否及時復習等等,都是是否建立良好學習習慣的體現。有些同學會說,課堂上的知識當時都明白了,為什麼還要記筆記呢?請注意當時明白並不代表以後明白,筆記是為了今後復習時有案可查。還有一些同學會說,復習時再向其他同學借不就好了,殊不知每個同學在記筆記的過程中會有不同的側重點,甚至是自己標注的特殊符號,這些並不一定是你的側重點,同時你也失去了一次鍛煉自己歸納總結能力的機會。其實良好的學習習慣包括很多,這完全可以在學習過程中慢慢摸索體會,關鍵在於將學習變成一種有規律,可持久的習慣,然後樂在其中。
刻苦的學習精神並不是簡單的學習時間的累加,其實它真正表達的是一種不懈的精神。對於自己沒有理解清楚,沒有徹底掌握的地方是否馬虎應付,還是不停鑽研直到弄透?為了提高自己的計算速度和准確率,是否會花費大量的時間進行計算練習。舉個最簡單的例子,1+1=2同學們都可以非常迅速的回答,但95+36=?能很快給出答案嗎?其實這並不是因為1+1簡單,而是因為這個結論已經熟於心中,無需計算。因此,只要每個同學可以樹立合理的目標,並為之付出不懈的努力,最終是可以實現的,甚至是別人稱為「奇跡」的目標。
小學二年級數學教案
教學目標:
1、用自己喜歡的方法統計數據,使學生體驗隨機出現的數據收集和整理的過程。
2、初步認識條形統計圖和統計表(1格代表2個單位),會根據統計圖表中的數據,提出回答簡單的問題。
3、通過對學生身邊有興趣的事例調查活動,激發學生學習統計的興趣,培養學生的合作意識和實踐能力。
教學重點:
體驗數據的收集整理、描述、分析的過程,根據統計圖表提出和回答問題。
教學難點:
初步認識條形統計圖的每格代表2個單位。教學准備:統計表,方格紙,
教學過程:
一、復習統計圖。
同學們,在一年級,我們已經學習了統計的一些知識,今天農老師來考考你們,看誰記得?
二、激趣導入。
1、同學們,你們喜歡看動畫片嗎?
2、農老師也喜歡看動畫片,今天給你們帶來了幾位你們喜歡的朋友,一起來看看都有誰?(出示)你們喜歡它們嗎?現在農老師非常想了解,在這四個動畫人物裡面,咱們班喜歡哪個動畫人物最多?喜歡哪個動畫人物最少?你們想不想知道?
師:那我們就來統計一下,咱們班喜歡這幾個動畫人物的情況。(板書課題)
三、自主探究,體驗統計。
1、引導學生收集。整理數據。
在一年級,我們已經學習了統計的一些知識,知道了收集、記錄數據的一些方法。誰能 說說 都有些什麼方法呢?(可以用畫圓形、正方形、打勾,或是用畫「正」字的方法統計……)
現在我們要統計全班同學喜歡動畫人物的情況,選用哪種方法最快,哪種方法?老師給同學們提供一種方法,統計到哪個動畫人物,你喜歡你就站起來,坐著的同學數數一共有多少?一定要細心,不要多數、漏數。(全班討論)
師:剛才記錄喜歡動畫人物情況的過程就叫「統計」(板書課題)我們把統計的數據填到表格中,這張表格就叫統計表,從這張表中我們可以知道喜歡各種動畫人物的人數,如果想一眼看出喜歡哪個動畫人物的。人數多,喜歡哪個動畫人物的人數少,還可以整理成什麼?
生:……統計圖
2、引導學生通過生成的數據,讓學生動手畫統計圖。
①請同學們先觀察手上的表格,想一想,每格代表幾?先標上數據。
②學生動手製作統計圖。
3、小結:當統計的數據較大時,我們可以用1格表示2個單位。
4、根據畫好的統計圖回答問題。
①從這個統計圖,我們知道了什麼?
②你還能提出什麼問題?
③假如下次我們班要放動畫片,我們應該選擇放什麼動畫片?
四、應用實踐,鞏固新知。
①從這個統計圖你知道了什麼?
②假如你是超市的經理,你打算怎樣進貨?
五、暢談收獲、自我總結。
蘇教版小學二年級數學知識點相關 文章 :
★ 蘇教版二年級數學知識點
★ 蘇教版二年級數學知識點總結
★ 蘇教版二年級數學下知識點復習資料
★ 蘇教版二年級數學下冊知識點復習
★ 二年級數學知識點歸納
★ 蘇教版二年級數學期末總復習提綱
★ 蘇教版二年級數學復習資料
★ 二年級數學知識點
★ 蘇教版小學二年級數學復習題卷
★ 蘇教版二年級數學下冊復習提綱
3. 數學四年級小知識
少年得到北大學霸的數學培優課(四年級)(標清視頻)網路網盤
鏈接:
若資源有問題歡迎追問~
4. 二年級數學生活小知識
在日常生活或是工作,學習中,大家一定都或多或少地接觸過一些化學知識,下面是我為大家收集的有關初中數學之基礎知識點總結相關內容,僅供參考,希望能夠幫助到大家。
二年級數學生活小知識1
認識新的數計數單位
1、認識計數單位「千」「萬」
2、萬以內計數單位間的關系
3、萬以內數位順序表
萬以內數的讀寫
1、會讀萬以內的數
2、會寫萬以內的數
3、感受「滿十進一」的十進制計數法
萬以內數比較大小
1、會比較萬以內數的大小
2、會用符號表示萬以內數的大小
3、結合實際進行萬以內數的估計。
數一數(認識新的計數單位)
知識點:
1、認識計數單位「千」「萬」。
2、了解萬以內計數單位間的關系:10個一是十;10個十是一百;10個一百是一千;10個一千是一萬。
3、掌握萬以內數的數位順序。從右起第一位開始依次為個位,十位,百位,千位,萬位。
4、結合具體情景,對「一千」和「一萬」有具體的感受。
5、初步感受「滿十進一」的十進制計數法。
比一比(萬以內數比較大小)
知識點:
1、會比較萬以內數的大小。方法:先比較數位的多少,數位多的數比較大,如果數位相同,先比最高位,最高位上的數相同,就比較下一位……
2、能夠用符號表示萬以內數的大小。
3、能結合實際進行萬以內數的估計。
二年級數學生活小知識2
1、尺子是測量物體長度的工具,常用的長度單位有:米和厘米。食指的寬度約有1厘米,伸開雙臂大約1米。1米=100厘米100厘米=1米。
2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。
3、測量物體長度時:把尺的「0」刻度對准物體的左端,再看右端對著刻度幾,就是幾厘米。物體長度=較大數-較小數,例如:從刻度「0」到刻度「6」之間是6厘米(6-0=6),從刻度「6」到刻度「9」之間是3厘米(9-6=3);還可以用數一數的方法數出物體的長度。(算,數)
4、線段是直的,可以量出長度。
5、畫線段的方法:從尺子的「0」刻度開始畫起,長度是幾就畫到幾。(找點畫線;有時還要先算出長度再畫線。如畫一條比6厘米短2厘米的線段。)
6、角有1個頂點,2條直邊。銳角比直角小,鈍角比直角大,鈍角比銳角大。銳角直角鈍角(鈍角直角銳角)。
7、用三角板可以畫出直角,直角要標出直角符號(也叫垂足符號)。
8、所有的直角都一樣大。要知道一個角是不是直角,可以用三角板上的直角比一比。長方形和正方形都有4個角,4個都是直角。
9、角的大小與兩條邊的長短無關,與兩條邊叉開的大小有關。
10、每一個三角板上都有3個角,其中有1個是直角,另外2個是銳角。
11、角的畫法:從一個點起,用尺子向不同的方向畫兩條筆直的線,就畫成一個角。(從一點引出兩條射線所組成的圖形叫作角。)
二年級數學生活小知識3
一、用7、8、9的乘法口訣求商
求商方法:想「除數×()=被除數」,再根據乘法口訣計算得商。
二、解決問題
求一個數里有幾個幾,和把一個數平均分成幾份,求每份是多少,都用除法計算。
混合計算
一、混合計算
混合運算,先乘除,後加減,有括弧的要先算括弧裡面的,再算括弧外面的。只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的.實際問題
1、想好先解決什麼問題,再解決什麼問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
有餘數的除法
一、有餘數的除法
1、有餘數的除法的意義:在平均分一些物體時,有時會有剩餘。
2、余數與除數的關系:在有餘數的除法中,余數必須比除數小。的余數小於除數1,最小的余數是1。
3、筆算除法的計算方法:
(1)先寫除號「廠」
(2)被除數寫在除號里,除數寫在除號的左側。
(3)試商,商寫在被除數上面,並要對著被除數的個位。
(4)把商與除數的乘積寫在被除數的下面,相同數位要對齊。
(5)用被除數減去商與除數的乘積,如果沒有剩餘,就表示能除盡。
4、有餘數的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數和幾相乘最接近被除數且小於被除數,那麼商就是幾,寫在被除數的個位的上面。
(2)乘:把除數和商相乘,將得數寫在被除數下面。
(3)減:用被除數減去商與除數的乘積,所得的差寫在橫線的下面。
(4)比:將余數與除數比一比,余數必須必除數小。
倒數定義
倒數是一個數學學科術語。是指數學上設一個數x與其相乘的積為1的數,記為1/x,過程為「乘法逆」,除了0以外的數都存在倒數,分子和分母相倒並且兩個乘積是1的數互為倒數,0沒有倒數。
二年級數學生活小知識4
1.長度單位:是指丈量空間距離上的基本單元,是人類為了規范長度而制定的基本單位。其國際單位是「米」(符號「m」),常用單位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。長度單位在各個領域都有重要的作用。
2.米:國際單位制中,長度的標准單位是「米」,用符號「m」表示。
3.分米:分米(dm)是長度的公制單位之一,1分米相當於1米的十分之一。
4.厘米:厘米,長度單位。簡寫(符號)為:cm.
有關厘米的單位轉換:1厘米=10毫米=0.1分米=0.01米=0.00001千米。
5.毫米:英文縮寫MM(或mm、㎜)
進率關:1毫米=0.1厘米;
6.進位:加法運算中,每一數位上的數等於基數時向前一位數進一。
以個位向十位進位為例:基數為10(2進制的基數是2,類推),個位這個數位上的數量達到了10的情況下,則個位向前一位進1,成為一個十。
在十進制的演算法中,個位滿十,在十位中加1;十位滿十,在百位中加一。
7.不退位減:減法運算中不用向高位借位的減法運算。例:56-22=34。6能夠減去2,所以不用向高位5借位。
8.退位減:減法運算中必須向高位借位的減法運算。例:51-22=39.
1不能夠減去2,所以必須向高位的5借位。
9.連加:多個數字連續相加叫做連加。例如:28+24+23=85.
10.連減:多個數字連續相減叫做連減。例如:85-40-26=19.
11.加減混合:在運算中既有加法又有減法的運算。例如:67-25+28=70。
12.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
符號:∠
13.乘法算式中各數的名稱:是指將相同的數加法起來的快捷方式。其運算結果稱為積。
「×」是乘號,乘號前面和後面的數叫做因數,「=」是等於號,等於號後面的數叫做積。
10(因數)×(乘號)200(因數)=(等於號)2000(積)
14.1—6的乘法口訣
1×1=1
1×2=22×2=4
1×3=32×3=63×3=9
1×4=42×4=83×4=124×4=16
1×5=52×5=103×5=154×5=205×5=25
1×6=62×6=123×6=184×6=245×6=306×6=36
15.7——9的乘法口訣
1×7=72×7=143×7=214×7=285×7=356×7=427×7=49
1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=64
1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81
認識分數
1、單位1-----一個物體或者幾個物體
2、分數:把一個物體或者幾個物體平均分成若干份,表示其中1份或者幾份。
3、同分母分數的加減法。(分母不變,分子相加或相減。)
4、總個數分母分子=取出的個數如:90個桃子的五分之三是多少?
5、分子相同,分母小的分數大。分母相同,分子大的分數大。
6、三(1)班有男生20人,女生25人。男生人數占女生人數的,男生人數佔全班人數的。
三角形體積
三角形是二維圖形,二維圖形沒有體積公式。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。
體積,幾何學專業術語,是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在三維空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。