當前位置:首頁 » 基礎知識 » 璧中初三數學知識點全集
擴展閱讀
嗯中國同學會多少塊錢吧 2024-11-27 14:28:13

璧中初三數學知識點全集

發布時間: 2024-06-14 02:40:42

A. 初三數學重點知識點歸納大全

數學 最重要的就是 知識點 ,下面我就大家整理一下初三數學重點知識點歸納大全,僅供參考。

函數易錯知識點
1:各個待定系數表示的的意義。

2:熟練掌握各種函數解析式的求法,有幾個的待定系數就要幾個點值。

3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。

4:兩個變數利用函數模型解實際問題,注意區別方程、函數、不等式模型解決不等領域的問題。

5:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
方程(組)與不等式(組)
1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

2:運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗!

3:運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

4:關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。

5:關於一元一次不等式組有解、無解的條件易忽視相等的情況。

6:解分式方程時首要步驟去分母,分數相相當於括弧,易忘記根檢驗,導致運算結果出錯。

7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數軸。

8:利用函數圖象求不等式的解集和方程的解。

6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

7:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。

8:自變數的取值范圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。
初三數學學習法則
認真學習,研究教材,研究考試,把握教學的要求,了解教學中的重點和學生學習中的難點,提高自身的業務素養。另外也要根據當前教改的要求、學生的實際,研究教學方法,達到提高教學效率的目的。

要注重知識的發生發展過程,全面、准確的理解基本概念,切忌就事論事,然後通過大量的練習來「理解」、「掌握」概念,這種做法只能起到事倍功半的效果,不但「記不住」大量的數學概念,而且不會靈活地運用概念解決問題。

在平時的學習例題時,要注重分析解決問題的方法,糾正不研究的學習過程,只追求結果的錯誤學習方法;要注重數學思想方法的滲透,廢棄死記硬背的學習方式。數學思想方法是數學的靈魂,數學的精髓,它是培養學生創新意識、實踐能力的源泉,因此也是中考的重點。在初中階段要注意方程思想、函數思想、整體待換思想、化歸思想、數形結合思想、分類討論思想、換元法、配方法、待定系數法等數學思想方法,這樣才能提高學生分析問題解決問題的能力。

B. 初三數學知識點梳理

以下是 為大家整理的關於初三數學知識點梳理的文章,供大家學習參考!
第一章 實數

一、 重要概念 1.數的分類及概念 數系表:

說明:"分類"的原則:1)相稱(不重、不漏) 2)有標准

2.非負數:正實數與零的統稱。(表為:x≥0)

性質:則含若伏盯虧干個非負數的和為0,則每個非負數均為0。

3.倒數: ①定義及表示法

②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。

4.相反數: ①定義及缺神表示法

②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:①定義("三要素")

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數-自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│≥0,符號"││"是"非負數"的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。

二、 實數的運算

1. 運演算法則(加、減、乘、除、乘方、開方)

2. 運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]

分配律)

3. 運算順序:A.高級運算到低級運算;B.(同級運算)從"左"

到"右"(如5÷ ×5);C.(有括弧時)由"小"到"中"到"大"。

三、 應用舉例(略)

附:典型例題

1. 已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

第二章 代數式

重點代數式的有關概念及性質,代數式的運算

☆內容提要☆

一、 重要概念

分類:

1.代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨

的一個數或字母也是代數式。

整式和分式統稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積-包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,

=x, =│x│等。

4.系數與指數

區別與聯系:①從位置上看;②從表示的意義上看

5.同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律

6.根式

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。

注意:①從外形上判斷;②區別: 、 是根式,但不是無理式(是無理數)。

7.算術平方根

⑴正數a的正的平方根( [a≥0-與"平方根"的區別]);

⑵算術平方根與絕對值

① 聯系:都是非負數, =│a│

②區別:│a│中,a為一切實數; 中,a為非負數。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。

滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。

把分母中的根號劃去叫做分母有理化。

9.指數

⑴ ( -冪,乘方運算)

① a>0時, >0;②a0(n是偶數), <0(n是奇數)

⑵零指數: =1(a≠0)

負整指數: =1/ (a≠0,p是正整數)

二、 運算定律、性質、法則

1.分式的加、減、乘、除、乘方、開方法則

2.分式的性質

⑴基本性質: = (m≠0)

⑵符號法則:

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運演算法則(去括弧、添括弧法則)

4.冪的運算性質:① o = ;② ÷ = ;③ = ;④ = ;⑤

技巧:

5.乘法法則:⑴單×單;⑵單×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b) =

7.除法法則:⑴單÷單;⑵多÷單。

8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

9.算術根的性質: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .

11.科學記數法: (1≤a<10,n是整數=

三、 應用舉例(略)

四、 數式綜合運算(略)

第三章 統計初步

重點

☆ 內容提要☆

一、 重要概念

1.總體:考察對象的全體。

2.個體:總體中每一個考察對象。

3.樣本:從總體中抽出的一部分個體。

4.樣本容量:樣本中個體的數目。

5.眾數:一組數據中,出現次數最多的數據。

6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)

二、 計算方法

1.樣本平均數:⑴ ;⑵若 , ,…, ,則 (a-常數, , ,…, 接近較整的常數a);⑶加權平均數: ;⑷平均數是刻劃數據的集中趨勢(集中位置)的特徵數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越准確。

2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a-接近 、 、…、 的平均數的較"整"的常數);若 、 、…、 較"小"較"整",則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特徵數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

3.樣本標准差:

三、 應用舉例(略)

第四章 直線形

重點相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆ 內容提要☆

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從"圖形"、"表示法"、"界限"、"端點個數"、"基本性質"等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用"線段的基本性質"論證"三角形兩邊之和大於第三邊")

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明"直角三角形中斜邊大於直角邊")

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②××線的交點-三角形的×心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形--↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常"平移一腰"、"平移對角線"、"作高"、"連結頂點和對腰中點並延長與底邊相交"轉化為三角形。

6.作圖:任意等分線段。

四、 應用舉例(略)

第五章 方程(組)

重點一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)

☆ 內容提要☆

一、 基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

2. 分類:

二、 解方程的依據-等式性質

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括弧→移項→合並同類項→

系數化成1→解。

2. 元一次方程組的解法:⑴基本思想:"消元"⑵方法:①代入法

②加減法

四、 一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特徵)

⑵配方法(注意步驟-推倒求根公式)

⑶公式法:

⑷因式分解法(特徵:左邊=0)

3.根的判別式:

4.根與系數頂的關系:

逆定理:若 ,則以 為根的一元二次方程是: 。

5.常用等式:

五、 可化為一元二次方程的方程

1.分式方程

⑴定義

⑵基本思想:

⑶基本解法:①去分母法②換元法(如, )

⑷驗根及方法

2.無理方程

⑴定義

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、 列方程(組)解應用題

一概述

列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解應用題的關鍵。

二常用的相等關系

1. 行程問題(勻速運動)

基本關系:s=vt

⑴相遇問題(同時出發):

⑵追及問題(同時出發):

若甲出發t小時後,乙才出發,而後在B處追上甲,則

⑶水中航行: ;

2. 配料問題:溶質=溶液×濃度

溶液=溶質+溶劑

3.增長率問題:

4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位"1")。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。

三注意語言與解析式的互化

如,"多"、"少"、"增加了"、"增加為(到)"、"同時"、"擴大為(到)"、"擴大了"、……

又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。

四注意從語言敘述中寫出相等關系。

如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

如,"小時""分鍾"的換算;s、v、t單位的一致等。

七、應用舉例(略)

第六章 一元一次不等式(組)

重點一元一次不等式的性質、解法

☆ 內容提要☆

1. 定義:a>b、a

2. 一元一次不等式:ax>b、ax

3. 一元一次不等式組:

4. 不等式的性質:⑴a>b←→a+c>b+c

⑵a>b←→ac>bc(c>0)

⑶a>b←→ac

⑷(傳遞性)a>b,b>c→a>c

⑸a>b,c>d→a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)

7.應用舉例(略)

第七章 相似形

重點相似三角形的判定和性質

☆內容提要☆

一、本章的兩套定理

第一套(比例的有關性質):

涉及概念:①第四比例項②比例中項③比的前項、後項,比的內項、外項④黃金分割等。

第二套:

注意:①定理中"對應"二字的含義;

②平行→相似(比例線段)→平行。

二、相似三角形性質

1.對應線段…;2.對應周長…;3.對應面積…。

三、相關作圖

①作第四比例項;②作比例中項。

四、證(解)題規律、輔助線

1."等積"變"比例","比例"找"相似"。

2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來

3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

4.對比例問題,常用處理方法是將"一份"看著k;對於等比問題,常用處理辦法是設"公比"為k。

5.對於復雜的幾何圖形,採用將部分需要的圖形(或基本圖形)"抽"出來的辦法處理。

五、 應用舉例(略)

第八章 函數及其圖象

重點正、反比例函數,一次、二次函數的圖象和性質。

☆ 內容提要☆

一、平面直角坐標系

1.各象限內點的坐標的特點

2.坐標軸上點的坐標的特點

3.關於坐標軸、原點對稱的點的坐標的特點

4.坐標平面內點與有序實數對的對應關系

二、函數

1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

2.確定自變數取值范圍的原則:⑴使代數式有意義;⑵使實際問題有

意義。

3.畫函數圖象:⑴列表;⑵描點;⑶連線。

三、幾種特殊函數

(定義→圖象→性質)

1. 正比例函數

⑴定義:y=kx(k≠0) 或y/x=k。

⑵圖象:直線(過原點)

⑶性質:①k>0,…②k<0,…

2. 一次函數

⑴定義:y=kx+b(k≠0)

⑵圖象:直線過點(0,b)-與y軸的交點和(-b/k,0)-與x軸的交點。

⑶性質:①k>0,…②k<0,…

⑷圖象的四種情況:

3. 二次函數

⑴定義: 特殊地, 都是二次函數。

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。

⑶性質:a>0時,在對稱軸左側…,右側…;a<0時,在對稱軸左側…,右側…。

4.反比例函數

⑴定義: 或xy=k(k≠0)。

⑵圖象:雙曲線(兩支)-用描點法畫出。

⑶性質:①k>0時,圖象位於…,y隨x…;②k<0時,圖象位於…,y隨x…;③兩支曲線無限接近於坐標軸但永遠不能到達坐標軸。

四、重要解題方法

1.用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,並應充分運用拋物線關於對稱軸對稱的特點,尋找新的點的坐標。如下圖:

2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。

六、應用舉例(略)

第九章 解直角三角形

重點解直角三角形

☆ 內容提要☆

一、三角函數

1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= .

2. 特殊角的三角函數值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余兩角的三角函數關系:sin(90°-α)=cosα;…

4. 三角函數值隨角度變化的關系

5.查三角函數表

二、解直角三角形

1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

2. 依據:①邊的關系:

②角的關系:A+B=90°

③邊角關系:三角函數的定義。

注意:盡量避免使用中間數據和除法。

三、對實際問題的處理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

四、應用舉例(略)

第十章 圓

重點①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆ 內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3."三點定圓"定理

4.垂徑定理及其推論

5."等對等"定理及其推論

5. 與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.三種位置及判定與性質:

2.切線的性質(重點)

3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…

4.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:

內角的一半: (右圖)

(解Rt△OAM可求出相關元素, 、 等)

六、 一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側面展開圖及相關計算

七、 點的軌跡

六條基本軌跡

八、 有關作圖

1.作三角形的外接圓、內切圓

2.平分已知弧

3.作已知兩線段的比例中項

4.等分圓周:4、8;6、3等分

九、 基本圖形

十、 重要輔助線

1.作半徑

2.見弦往往作弦心距

3.見直徑往往作直徑上的圓周角

4.切點圓心莫忘連

5.兩圓相切公切線(連心線)

6.兩圓相交公共弦

C. 初三數學重點知識點總結歸納

初三學習的知識是初中三年學習的匯總,為了方便大家更好地復習數學,以下是我分享給大家的初三數學重點知識點,希望可以幫到你!
初三數學重點知識點
1.不在同一直線上的三點確定一個圓。

2.垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

推論1

①平分弦不是直徑的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

推論2 圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點的距離等於定長的點的 ***

5.圓的內部可以看作是圓心的距離小於半徑的點的 ***

6.圓的外部可以看作是圓心的距離大於半徑的點的 ***

7.同圓或等圓的半徑相等

8.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等。

11定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角

12.①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

13.切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

14.切線的性質定理 圓的切線垂直於經過切點的半徑

15.推論1 經過圓心且垂直於切線的直線必經過切點

16.推論2 經過切點且垂直於切線的直線必經過圓心

17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等 外角等於內對角

19.如果兩個圓相切,那麼切點一定在連心線上

20.①兩圓外離 d>R+r

②兩圓外切 d=R+r

③.兩圓相交 R-rr

④.兩圓內切 d=R-rR>r ⑤兩圓內含dr

21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

22.定理 把圓分成nn≥3:

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24.正n邊形的每個內角都等於n-2×180°/n

25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×n-2180°/n=360°化為n-2k-2=4

29.弧長計算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內公切線長= d-R-r 外公切線長= d-R+r

32.定理 一條弧所對的圓周角等於它所對的圓心角的一半

33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2 半圓或直徑所對的圓周角是直角;90°的圓周角所 對的弦是直徑

35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
初三數學復習技巧
注重課本知識

全面復習基礎知識,加強基本技能訓練的第一階段的復習工作我們已經結束了,在第二階段的復習中,反思和總結上一輪復習中的遺漏和缺憾,會發現有些知識還沒掌握好,解題時還沒有思路,因此要做到邊復習邊將知識進一步歸類,加深記憶;還要進一步理解概念的內涵和外延,牢固掌握法則、公式、定理的推導或證明,進一步加強解題的思路和方法;同時還要查詢一些類似的題型進行強化訓練,要及時有目的有針對性的補缺補漏,直到自己真正理解會做為止,決不要輕易地放棄。

這個階段尤其要以課本為主進行復習,因為課本的例題和習題是教材的重要組成部分,是數學知識的主要載體。吃透課本上的例題、習題,才能有利於全面、系統地掌握數學基礎知識,熟練數學基本方法,以不變應萬變。所以在復習時,我們要學會多方位、多角度審視這些例題習題,從中進一步清晰地掌握基礎知識,重溫思維過程,鞏固各類解法,感悟數學思想方法。復習形式是多樣的,尤其要提高復習效率。

另外,現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造了的題,有的大題雖是「高於教材」,但原型一般還是教材中的例題或習題,是課本中題目的引申、變形或組合,課本中的例題、練習和作業題不僅要理解,而且一定還要會做。同時,對課本上的《閱讀材料》《課題研究》《做一做》《想一想》等內容,我們也一定要引起重視。

注重課堂學習

在任課老師的指導下,通過課堂教學,要求同學們掌握各知識點之間的內在聯絡,理清知識結構,形成整體的認識,通過對基礎知識的系統歸納,解題方法的歸類,在形成知識結構的基礎上加深記憶,至少應達到使自己准確掌握每個概念的含義,把平時學習中的模糊概念搞清楚,使知識掌握的更扎實的目的,要達到使自己明確每一個知識點在整個初中數學中的地位、聯絡和應用的目的。上課要會聽課,會記錄,必須要把握每一節課所講的知識重點,抓住關鍵,解決疑難,提高學習效率,根據個人的具體情況,課堂上及時查漏補缺。

夯實基礎知識

在歷年的數學中考試題中,基礎分值占的最多,再加上部分中檔題及較難題中的基礎分值,因此所佔分值的比例就更大。我們必須扎扎實實地夯實基礎,通過系統的復習,我們對初中數學知識達到「理解」和「掌握」的要求,在應用基礎知識時能做到熟練、正確和迅速。

有的考題會對需要考查的知識和方法創設一個新的問題情境,特別是一些需要有較高區分度的試題更是如此;每個中檔以上難度的數學試題通常要涉及多個知識點、多種數學思想方法,或者在知識交匯點上巧妙設計試題。因此,我們每一個同學要學會思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進行正確的思考。

注意知識的遷移

課本中的某些例題、習題,並不是孤立的,而是前後聯絡、密切相關的,其他學科的知識也和數學有著千絲萬縷的聯絡,我們要學會從思維發展的最近點出發,去發現、研究和展示這些知識的內在聯絡,這樣做不僅有助於自己深刻理解課本知識,有利於強化知識重點,更重要的是能有效地促進自己數學知識網路和方法體系的構建,使知識和能力產生良性遷移,達到觸類旁通的效果,通過探究課本典型例題、習題的內在聯絡,讓我們在深刻理解課本知識的同時,更有效地形成知識網路與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數,還可以解決二次三項式的因式分解、方程組的根的判定及二次函式圖象與橫軸的交點座標。
初三數學復習計劃
第一階段:知識梳理形成知識網路

1、第一輪復習的形式,以中考說明為主線,注重基礎知識的梳理。

第一輪復習要「過三關」:

1過記憶關。必須做到記牢記准所有的公式、定理等。

2過基本方法關。如,待定系數法求二次函式解析式。

3過基本技能關。如,數形結合的題目,要求能畫圖能做出。

2、第一輪復習應該注意的幾個問題

1必須夯實基礎。一般中考試題按易:較易:中:難=4:3:2:1的比例,要求在應用基礎知識時能做到熟練、正確和迅速。

2中考有些基礎題是課本上、說明上的原題或改造,必須深鑽教材與說明,絕不能好高騖遠。

3不搞題海戰術,精講精練,舉一反三、觸類旁通。「大練習量」是相對而言的,要有針對性的、典型性、層次性、切中要害的強化練習。

4多歸納、多總結。

第二階段:專題復習

1、第二輪復習的形式,不再以節、章、單元為單位,而是以專題為單位。

在一輪復習的基礎上,進行拔高、集中、歸類,重點難點熱點突出復習,注意數學思想的形成和數學方法的掌握,這就需要充分發揮教師的主導作用。

2、第二輪復習應該注意的幾個問題

1第二輪復習可對平時遇到的難點、誤點設立專題。

2專題的劃分要合理,要有代表性,切忌面面俱到;圍繞熱點、難點、重點,重要處要狠下功夫,不惜「浪費」時間,捨得投入精力。

3以題代知識,學生在某種程度上遠離了基礎知識,會造成程度不同的知識遺忘現象,解決這個問題的最好辦法就是以題代知識。可適當穿插過去的小知識點,以引起記憶。

4專題復習可適當拔高。沒有一定的難度,你的能力是很難提高的,提高學習的能力,這是第二輪復習的任務。但不要過於多和難。

第三階段:綜合訓練

1、第三輪復習的形式是模擬中考的綜合演練,查漏補缺,俗稱考前練兵。訓練答題技巧、考場心態、臨場發揮的能力等。

2、第三輪復習應該注意的幾個問題

1模擬題必須要有模擬的特點。時間的安排,題量的多少,低、中、高檔題的比例,要貼近中考模式。

2歸集錯題,查漏補缺。

3適當的「解放」自己,特別是在時間安排上。但要注意,解放不是放鬆,後期題量不宜太大,要輕松解題、居高臨下解題,能跳出復習的圈子看試題。

4調節生物鍾。盡量把學習、思考的時間調整得與中考答卷時間相吻合。

5心態和信心調整。保持一顆平常心。

第四階段:查漏補缺

對自己仍然模糊的或已忘記的知識回歸課本,進一步鞏固和加深,迎接中考。

總之,在初三數學總復習中,發掘教材,夯實基礎是根本;共同參與,注重過程是前提;精選習題,提質減負是核心;強化訓練,發展能力是目的。只有這樣,才能以不變應萬變,以一題帶一片,達到事半功倍的效果。

1.初三上冊數學知識點總結

2.中考數學知識點總結大全

3.初中數學重點知識點

4.初三數學知識點整理

5.初三數學總復習知識點

D. 初三數學的知識點梳理

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算 方法

6.圓柱、圓錐的側面展開圖及相關計算

初三下冊數學知識點 總結

一、銳角三角函數

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

二、三角函數的計算

冪級數

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒展開式(冪級數展開法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形兩個銳角互余。

2.直角三角形的三條高交點在一個頂點上。

3.勾股定理:兩直角邊平方和等於斜邊平方

四、利用三角函數測高

1、解直角三角形的應用

(1)通過解直角三角形能解決實際問題中的很多有關測量問.

如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.

(2)解直角三角形的一般過程是:

①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.

初三數學學習技巧

重視構建知識網路——宏觀把握數學框架

要學會構建知識網路,數學概念是構建知識網路的出發點,也是數學中考[微博]考查的重點。因此,我們要掌握好代數中的數、式、不等式、方程、函數、三角比、統計和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質和判定,並會應用這些概念去解決一些問題。

重視夯實數學雙基——微觀掌握知識技能

在復習過程中夯實數學基礎,要注意知識的不斷深化,重視強化題組訓練——感悟數學思想方法

除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,並且養成解題後 反思 的習慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣,反思各種方法的縱橫聯系。而總結出它所用到的數學思想方法,並把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。

重視建立「病例檔案」——做到萬無一失

准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常地拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,這樣到中考時你的數學就沒有什麼「病例」了。我們要在教師的指導下做一定數量的數學習題,積累解題 經驗 、總結解題思路、形成解題思想、催生解題靈感、掌握 學習方法 。


初三數學的知識點梳理相關 文章 :

★ 初三數學知識點歸納人教版

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點歸納

★ 最新初三數學知識點總結大全

★ 初三中考數學知識點歸納總結

★ 初三數學重點知識點歸納

E. 初三數學基礎知識點有哪些

初三數學基礎知識點:

一、方程(組)與不等式(組)

1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。

3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。

二、有理數

1、有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2、有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

三、二次函數解析式的表示方法

1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;

2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;

3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。

F. 初三數學學什麼知識點

初三數學知識點
第一章\x09二次根式
1 二次根式:形如 ( )的式子為二次根式;
性質:( )是一個非負數;

.
2 二次根式的乘除:;
.
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.
4 海倫-秦九韶公式:,S是三角形的面積,p為 .
第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程.
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方;
公式法:
因式分解法:左邊是兩個因式的乘積,右邊為零.
3 一元二次方程在實際問題中的應用
4 韋達定理:設 是方程 的兩個根,那麼有
第三章 旋轉
1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換
性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角
旋轉前後的圖形全等.
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關於原點對稱的點的坐標
第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2 垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;
平分弦的直徑垂直弦,並且平分弦所對的兩條弧.
3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.
5 點和圓的位置關系
點在圓外
點在圓上 d=r
點在圓內 dR+r
外切 d=R+r
相交 R-r

G. 初三數學知識點整理

初三數學知識點整理1

1.數軸

(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.

數軸的三要素:原點,單位長度,正方向。

(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)

(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。

重點知識:

初中數學第一課,認識正數與負數!新初一的來~

2.相反數

(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.

(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。

(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。

3.絕對值

1.概念:數軸上某個數與原點的距離叫做這個數的絕對值。

①互為相反數的兩個數絕對值相等;

②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數.

③有理數的絕對值都是非負數.

2.如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:

①當a是正有理數時,a的絕對值是它本身a;

②當a是負有理數時,a的絕對值是它的相反數﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

中考數學知識點

1、反比例函數的概念

一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變數x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。

2、反比例函數的圖像

反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函數的性質

反比例函數k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,

y的取值范圍是y0;

②當k>0時,函數圖像的兩個分支分別

在第一、三象限。在每個象限內,y

隨x 的增大而減小。

①x的取值范圍是x0,

y的取值范圍是y0;

②當k<0時,函數圖像的兩個分支分別

在第二、四象限。在每個象限內,y

隨x 的增大而增大。

4、反比例函數解析式的確定

確定及誒是的方法仍是待定系數法。由於在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函數的幾何意義

設是反比例函數圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是系數的幾何意義.並且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

矩形PCEF面積=,平行四邊形PDEA面積=

二次函數中考數學知識點

二次函數的解析式有三種形式:

(1)一般式:

(2)頂點式:

(3)當拋物線與x軸有交點時,即對應二次好方程有實根和存在時,根據二次三項式的分解因式,二次函數可轉化為兩根式。如果沒有交點,則不能這樣表示。

注意:拋物線位置由決定.

(1)決定拋物線的開口方向

①開口向上.

②開口向下.

(2)決定拋物線與y軸交點的位置.

①圖象與y軸交點在x軸上方.

②圖象過原點.

③圖象與y軸交點在x軸下方.

(3)決定拋物線對稱軸的位置(對稱軸:)

①同號對稱軸在y軸左側.

②對稱軸是y軸.

③異號對稱軸在y軸右側.

(4)頂點坐標.

(5)決定拋物線與x軸的交點情況.、

①△>0拋物線與x軸有兩個不同交點.

②△=0拋物線與x軸有的公共點(相切).

③△<0拋物線與x軸無公共點.

(6)二次函數是否具有、最小值由a判斷.

①當a>0時,拋物線有最低點,函數有最小值.

②當a<0時,拋物線有點,函數有值.

(7)的符號的判定:

表達式,請代值,對應y值定正負;

對稱軸,用處多,三種式子相約;

軸兩側判,左同右異中為0;

1的兩側判,左同右異中為0;

-1兩側判,左異右同中為0.

(8)函數圖象的平移:左右平移變x,左+右-;上下平移變常數項,上+下-;平移結果先知道,反向平移是訣竅;平移方式不知道,通過頂點來尋找。

(9)對稱:關於x軸對稱的解析式為,關於y軸對稱的解析式為,關於原點軸對稱的解析式為,在頂點處翻折後的解析式為(a相反,定點坐標不變)。

(10)結論:①二次函數(與x軸只有一個交點二次函數的頂點在x軸上Δ=0;

②二次函數(的頂點在y軸上二次函數的圖象關於y軸對稱;

③二次函數(經過原點,則。

(11)二次函數的解析式:

①一般式:(,用於已知三點。

②頂點式:,用於已知頂點坐標或最值或對稱軸。

(3)交點式:,其中、是二次函數與x軸的兩個交點的橫坐標。若已知對稱軸和在x軸上的截距,也可用此式。

初三數學知識點整理2

知識點1。概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到。

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同。

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關。

知識點2。比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段。

知識點3。相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等。

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系。

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性。

知識點4。相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形。

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比。

知識點5。相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似。

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似。

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似。

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似。

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似。

知識點6。相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方。

(4)射影定理

初三數學知識點整理3

三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

初三數學知識點整理4

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是

1、這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:

去分母,移項,合並同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號」=「號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3、函數

變數:因變數,自變數。在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函數:

①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。

②當B=0時,稱Y是X的正比例函數。

一次函數的圖象:

①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數Y=KX的圖象是經過原點的一條直線。

③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的'增大而減少。

空間與圖形

圖形的認識:

1、點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與折疊:

①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。

②N稜柱就是底面圖形有N條邊的稜柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧,扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。

③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

平行:

①同一平面內,不相交的兩條直線叫做平行線。

②經過直線外一點,有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。

垂直:

①如果兩條直線相交成直角,那麼這兩條直線互相垂直。

②互相垂直的兩條直線的交點叫做垂足。

③平面內,過一點有且只有一條直線與已知直線垂直。

2、相交線與平行線

角:

①如果兩個角的和是直角,那麼稱和兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。

②同角或等角的餘角/補角相等。

③對頂角相等。

④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。

初三數學知識點整理5

重點代數式的有關概念及性質,代數式的運算

☆內容提要☆

一、重要概念

分類:

1.代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨

的一個數或字母也是代數式。

整式和分式統稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,

=x,=│x│等。

4.系數與指數

區別與聯系:①從位置上看;②從表示的意義上看

5.同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律

6.根式

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。

注意:①從外形上判斷;②區別:、是根式,但不是無理式(是無理數)。

7.算術平方根

⑴正數a的正的平方根(0與平方根的區別]);

⑵算術平方根與絕對值

①聯系:都是非負數,=│a│

②區別:│a│中,a為一切實數;中,a為非負數。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。

滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。

把分母中的根號劃去叫做分母有理化。

9.指數

⑴(冪,乘方運算)

①0時,②a0時,0(n是偶數),0(n是奇數)

⑵零指數:=1(a0)

負整指數:=1/0,p是正整數)

二、運算定律、性質、法則

1.分式的加、減、乘、除、乘方、開方法則

2.分式的性質

⑴基本性質:=0)

⑵符號法則:

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運演算法則(去括弧、添括弧法則)

4.冪的運算性質:①=②=③=④=⑤

技巧:

5.乘法法則:⑴單⑵單⑶多多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(ab)=

7.除法法則:⑴單⑵多單。

8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

9.算術根的性質:=0,b0,b0)(正用、逆用)

10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A.B.C..

11.科學記數法:a10,n是整數=

三、應用舉例(略)

四、數式綜合運算(略)

初三數學知識點整理6

二元一次方程組

1、定義:含有兩個未知數,並且未知項的次數是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。

(3)配方法

將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。

(4)韋達定理法

通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。

(5)消常數項法

當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x—m)2=n(n≥0)的方程,其解為x=±m。

直接開平方法就是平方的逆運算。通常用根號表示其運算結果。

2、配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。

(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數化1:將二次項系數化為1

(3)移項:將常數項移到等號右側

(4)配方:等號左右兩邊同時加上一次項系數一半的平方

(5)變形:將等號左邊的代數式寫成完全平方形式

(6)開方:左右同時開平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然後計算判別式△=b2—4ac的值,當b2—4ac≥0時,把各項系數a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。

代數式

1、代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

整式和分式統稱為有理式。

2、整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3、單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:

①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。

②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。

4、同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律。

H. 初三數學知識點歸納 九年級數學重點知識總結

很多人想知道初三數學上有哪些重要知識點,初三必背重點知識有哪些呢?下面我為大家介紹一下!

初三數學重要知識點歸納大全

一、 圓的對稱性

1、圓的軸對稱性

圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

2、圓的中心對稱性

圓是以圓心為對稱中心的中心對稱圖形。

二、 弧、弦、弦心距、圓心角之間的關系定理

1、圓心角

頂點在圓心的角叫做圓心角。

2、弦心距

從圓心到弦的距離叫做弦心距。

3、弧、弦、弦心距、圓心角之間的關系定理

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。

推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦型顫心距中有一組量相等,拿租和那麼它們所對應的其餘各組量都分別相等。

三、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

四、點和圓的位置關系

設⊙O的半徑是r,點P到圓心O的距離為d,則有:

d=r 點P在⊙O上;

d>r 點P在⊙O外。

過三點的圓

1、過三點的圓

不在同一直線上消盯的三個點確定一個圓。

2、三角形的外接圓

經過三角形的三個頂點的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。

4、圓內接四邊形性質(四點共圓的判定條件)

圓內接四邊形對角互補。

五、一些基本公式

三倍角公式

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推導

附推導:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

六、一些重點知識

巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。

三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。

平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。

梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。

正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。

中考數學必考重要知識點大全

知識點1:一元二次方程的基本概念

1.一元二次方程3x2+5x-2=0的常數項是-2.

2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2.

3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7.

4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.

知識點2:直角坐標系與點的位置

1.直角坐標系中,點A(3,0)在y軸上。

2.直角坐標系中,x軸上的任意點的橫坐標為0.

3.直角坐標系中,點A(1,1)在第一象限。

4.直角坐標系中,點A(-2,3)在第四象限。

5.直角坐標系中,點A(-2,1)在第二象限。

知識點3:已知自變數的值求函數值

1.當x=2時,函數y=的值為1.

2.當x=3時,函數y=的值為1.

3.當x=-1時,函數y=的值為1.

知識點4:基本函數的概念及性質

1.函數y=-8x是一次函數。

2.函數y=4x+1是正比例函數。

3.函數是反比例函數。

4.拋物線y=-3(x-2)2-5的開口向下。

5.拋物線y=4(x-3)2-10的對稱軸是x=3.

6.拋物線的頂點坐標是(1,2)。

7.反比例函數的圖象在第一、三象限。

知識點5:數據的平均數中位數與眾數

1.數據13,10,12,8,7的平均數是10.

2.數據3,4,2,4,4的眾數是4.

3.數據1,2,3,4,5的中位數是3.

知識點6:特殊三角函數值

1.cos30°=根號3/2。

2.sin260°+cos260°=1.

3.2sin30°+tan45°=2.

4.tan45°=1.

5.cos60°+sin30°=1.

初三數學學習方法與技巧總結

1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.

I. 初三數學重要知識點歸納

很多同學想知道初三數學重要知識點有哪些?下面和我具體了解一下吧,供大家參考。

圓的概念

(1)、確定一個圓的要素是圓心和半徑。

(2)①連結圓上任意兩點的線段叫做弦。②經過圓心的弦叫做直徑。③圓上任意兩點間的部分叫做圓弧,簡稱弧。④小於半圓周的圓弧叫做劣弧。⑤大於半圓周的圓弧叫做優弧。⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。⑦頂點在圓上,並且兩邊和圓相交的角叫圓周角。⑧經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。⑨與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。

圓的有關性質

(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。

(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。

推論1:①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90。90的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。

(5)定理:不在同一條直線上的三個點確定一個圓。

(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。

(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;

(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。

(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。

(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。

有理數的運算

加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

一元二次方程的解法

大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。

(1)配方法

利用配方,使方程變為完全平方公式,在用直接開平方法去求出解。

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。

J. 初三數學書目錄及重要知識點

初三數學的重要知識點有一元二次方程、二次函數、圓、概率、反比例函數等等,接下來分享初三數學書目錄及部分重要知識點。

初三上學期數學書目錄

初三下冊數學書目錄

初三數學重要知識點

(一)一元二次方程

1.只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。

2.一元二次方程的解法

(1)開平方法 (2)配方法

(3)因式分解法 (4)求根公式法

3.判別式

利用一元二次方程根的判別式(△=b²-4ac),可以判斷方程的根的情況。

(1)當△>0時,方程有兩個不相等的實數根;

(2)當△=0時,方程有兩個相等的實數根;

(3)當△<0時,方程無實數根,但有2個共軛復根。

(二)圓

1.在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

2.徑

連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。

通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d。

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑 d=2r。

3.弦:連接圓上任意兩點的線段叫做弦。

在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

4.弧:圓上任意兩點間的部分叫做圓弧。

5.圓的垂徑定理

(1)垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。

(2)弦的垂直平分線經過圓心,並且平分弦作對的兩條弧。

(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。

6.圓的切線定理

(1)垂直於過切點的半徑;經過半徑的外端點,並且垂直於這條半徑的直線,是這個圓的切線。

(2)切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。

7.圓的周角定理

(1)圓周角的度數等於它所對的弧的度數的一半。

(2)一條弧所對的圓周角等於它所對的圓心角的一半。

(3)「等弧對等角」、「等角對等弧」。

(4)「直徑對直角」、「直角對直徑」。

8.周長相等,圓面積比正方形、長方形、三角形的面積大。