當前位置:首頁 » 基礎知識 » 初三數學十四章知識點
擴展閱讀
關於英語句型的知識點 2024-11-27 15:35:53

初三數學十四章知識點

發布時間: 2024-06-13 14:42:19

① 滬教版初三數學知識點歸納

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算 方法

6.圓柱、圓錐的側面展開圖及相關計算

九年級上冊數學單元知識點

第一章證明

一、等腰三角形

1、定義:有兩邊相等的三角形是等腰三角形。

2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)

3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)

4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半

6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)

7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸

3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

特殊的等腰三角形

等邊三角形

1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。

(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。

2、性質:⑴等邊三角形的內角都相等,且均為60度。

⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。

⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。

3、判定:⑴三邊相等的三角形是等邊三角形。

⑵三個內角都相等的三角形是等邊三角形。

⑶有一個角是60度的等腰三角形是等邊三角形。

⑷有兩個角等於60度的三角形是等邊三角形。

初三 數學 學習方法

概念課

要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

習題課

要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。

復習課

在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個 反思 性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的 措施 。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。


滬教版初三數學知識點歸納相關 文章 :

★ 初三數學知識點整理歸納

★ 初三數學知識點考點歸納總結

★ 初中數學知識點總結(滬科版)

★ 初三數學知識點歸納總結

★ 初三上冊數學知識點歸納有哪些

★ 初三數學知識點上冊總結歸納

★ 初三數學知識點歸納

★ 初三數學的知識點歸納

★ 最新初三數學知識點總結大全

★ 初三數學知識點整理

② 初三數學重點知識點總結歸納

初三學習的知識是初中三年學習的匯總,為了方便大家更好地復習數學,以下是我分享給大家的初三數學重點知識點,希望可以幫到你!
初三數學重點知識點
1.不在同一直線上的三點確定一個圓。

2.垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

推論1

①平分弦不是直徑的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

推論2 圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點的距離等於定長的點的 ***

5.圓的內部可以看作是圓心的距離小於半徑的點的 ***

6.圓的外部可以看作是圓心的距離大於半徑的點的 ***

7.同圓或等圓的半徑相等

8.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等。

11定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角

12.①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

13.切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

14.切線的性質定理 圓的切線垂直於經過切點的半徑

15.推論1 經過圓心且垂直於切線的直線必經過切點

16.推論2 經過切點且垂直於切線的直線必經過圓心

17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等 外角等於內對角

19.如果兩個圓相切,那麼切點一定在連心線上

20.①兩圓外離 d>R+r

②兩圓外切 d=R+r

③.兩圓相交 R-rr

④.兩圓內切 d=R-rR>r ⑤兩圓內含dr

21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

22.定理 把圓分成nn≥3:

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24.正n邊形的每個內角都等於n-2×180°/n

25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×n-2180°/n=360°化為n-2k-2=4

29.弧長計算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內公切線長= d-R-r 外公切線長= d-R+r

32.定理 一條弧所對的圓周角等於它所對的圓心角的一半

33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2 半圓或直徑所對的圓周角是直角;90°的圓周角所 對的弦是直徑

35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
初三數學復習技巧
注重課本知識

全面復習基礎知識,加強基本技能訓練的第一階段的復習工作我們已經結束了,在第二階段的復習中,反思和總結上一輪復習中的遺漏和缺憾,會發現有些知識還沒掌握好,解題時還沒有思路,因此要做到邊復習邊將知識進一步歸類,加深記憶;還要進一步理解概念的內涵和外延,牢固掌握法則、公式、定理的推導或證明,進一步加強解題的思路和方法;同時還要查詢一些類似的題型進行強化訓練,要及時有目的有針對性的補缺補漏,直到自己真正理解會做為止,決不要輕易地放棄。

這個階段尤其要以課本為主進行復習,因為課本的例題和習題是教材的重要組成部分,是數學知識的主要載體。吃透課本上的例題、習題,才能有利於全面、系統地掌握數學基礎知識,熟練數學基本方法,以不變應萬變。所以在復習時,我們要學會多方位、多角度審視這些例題習題,從中進一步清晰地掌握基礎知識,重溫思維過程,鞏固各類解法,感悟數學思想方法。復習形式是多樣的,尤其要提高復習效率。

另外,現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造了的題,有的大題雖是「高於教材」,但原型一般還是教材中的例題或習題,是課本中題目的引申、變形或組合,課本中的例題、練習和作業題不僅要理解,而且一定還要會做。同時,對課本上的《閱讀材料》《課題研究》《做一做》《想一想》等內容,我們也一定要引起重視。

注重課堂學習

在任課老師的指導下,通過課堂教學,要求同學們掌握各知識點之間的內在聯絡,理清知識結構,形成整體的認識,通過對基礎知識的系統歸納,解題方法的歸類,在形成知識結構的基礎上加深記憶,至少應達到使自己准確掌握每個概念的含義,把平時學習中的模糊概念搞清楚,使知識掌握的更扎實的目的,要達到使自己明確每一個知識點在整個初中數學中的地位、聯絡和應用的目的。上課要會聽課,會記錄,必須要把握每一節課所講的知識重點,抓住關鍵,解決疑難,提高學習效率,根據個人的具體情況,課堂上及時查漏補缺。

夯實基礎知識

在歷年的數學中考試題中,基礎分值占的最多,再加上部分中檔題及較難題中的基礎分值,因此所佔分值的比例就更大。我們必須扎扎實實地夯實基礎,通過系統的復習,我們對初中數學知識達到「理解」和「掌握」的要求,在應用基礎知識時能做到熟練、正確和迅速。

有的考題會對需要考查的知識和方法創設一個新的問題情境,特別是一些需要有較高區分度的試題更是如此;每個中檔以上難度的數學試題通常要涉及多個知識點、多種數學思想方法,或者在知識交匯點上巧妙設計試題。因此,我們每一個同學要學會思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進行正確的思考。

注意知識的遷移

課本中的某些例題、習題,並不是孤立的,而是前後聯絡、密切相關的,其他學科的知識也和數學有著千絲萬縷的聯絡,我們要學會從思維發展的最近點出發,去發現、研究和展示這些知識的內在聯絡,這樣做不僅有助於自己深刻理解課本知識,有利於強化知識重點,更重要的是能有效地促進自己數學知識網路和方法體系的構建,使知識和能力產生良性遷移,達到觸類旁通的效果,通過探究課本典型例題、習題的內在聯絡,讓我們在深刻理解課本知識的同時,更有效地形成知識網路與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數,還可以解決二次三項式的因式分解、方程組的根的判定及二次函式圖象與橫軸的交點座標。
初三數學復習計劃
第一階段:知識梳理形成知識網路

1、第一輪復習的形式,以中考說明為主線,注重基礎知識的梳理。

第一輪復習要「過三關」:

1過記憶關。必須做到記牢記准所有的公式、定理等。

2過基本方法關。如,待定系數法求二次函式解析式。

3過基本技能關。如,數形結合的題目,要求能畫圖能做出。

2、第一輪復習應該注意的幾個問題

1必須夯實基礎。一般中考試題按易:較易:中:難=4:3:2:1的比例,要求在應用基礎知識時能做到熟練、正確和迅速。

2中考有些基礎題是課本上、說明上的原題或改造,必須深鑽教材與說明,絕不能好高騖遠。

3不搞題海戰術,精講精練,舉一反三、觸類旁通。「大練習量」是相對而言的,要有針對性的、典型性、層次性、切中要害的強化練習。

4多歸納、多總結。

第二階段:專題復習

1、第二輪復習的形式,不再以節、章、單元為單位,而是以專題為單位。

在一輪復習的基礎上,進行拔高、集中、歸類,重點難點熱點突出復習,注意數學思想的形成和數學方法的掌握,這就需要充分發揮教師的主導作用。

2、第二輪復習應該注意的幾個問題

1第二輪復習可對平時遇到的難點、誤點設立專題。

2專題的劃分要合理,要有代表性,切忌面面俱到;圍繞熱點、難點、重點,重要處要狠下功夫,不惜「浪費」時間,捨得投入精力。

3以題代知識,學生在某種程度上遠離了基礎知識,會造成程度不同的知識遺忘現象,解決這個問題的最好辦法就是以題代知識。可適當穿插過去的小知識點,以引起記憶。

4專題復習可適當拔高。沒有一定的難度,你的能力是很難提高的,提高學習的能力,這是第二輪復習的任務。但不要過於多和難。

第三階段:綜合訓練

1、第三輪復習的形式是模擬中考的綜合演練,查漏補缺,俗稱考前練兵。訓練答題技巧、考場心態、臨場發揮的能力等。

2、第三輪復習應該注意的幾個問題

1模擬題必須要有模擬的特點。時間的安排,題量的多少,低、中、高檔題的比例,要貼近中考模式。

2歸集錯題,查漏補缺。

3適當的「解放」自己,特別是在時間安排上。但要注意,解放不是放鬆,後期題量不宜太大,要輕松解題、居高臨下解題,能跳出復習的圈子看試題。

4調節生物鍾。盡量把學習、思考的時間調整得與中考答卷時間相吻合。

5心態和信心調整。保持一顆平常心。

第四階段:查漏補缺

對自己仍然模糊的或已忘記的知識回歸課本,進一步鞏固和加深,迎接中考。

總之,在初三數學總復習中,發掘教材,夯實基礎是根本;共同參與,注重過程是前提;精選習題,提質減負是核心;強化訓練,發展能力是目的。只有這樣,才能以不變應萬變,以一題帶一片,達到事半功倍的效果。

1.初三上冊數學知識點總結

2.中考數學知識點總結大全

3.初中數學重點知識點

4.初三數學知識點整理

5.初三數學總復習知識點

③ 初三數學知識點梳理

以下是 為大家整理的關於初三數學知識點梳理的文章,供大家學習參考!
第一章 實數

一、 重要概念 1.數的分類及概念 數系表:

說明:"分類"的原則:1)相稱(不重、不漏) 2)有標准

2.非負數:正實數與零的統稱。(表為:x≥0)

性質:則含若伏盯虧干個非負數的和為0,則每個非負數均為0。

3.倒數: ①定義及表示法

②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。

4.相反數: ①定義及缺神表示法

②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:①定義("三要素")

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數-自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│≥0,符號"││"是"非負數"的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。

二、 實數的運算

1. 運演算法則(加、減、乘、除、乘方、開方)

2. 運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]

分配律)

3. 運算順序:A.高級運算到低級運算;B.(同級運算)從"左"

到"右"(如5÷ ×5);C.(有括弧時)由"小"到"中"到"大"。

三、 應用舉例(略)

附:典型例題

1. 已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

第二章 代數式

重點代數式的有關概念及性質,代數式的運算

☆內容提要☆

一、 重要概念

分類:

1.代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨

的一個數或字母也是代數式。

整式和分式統稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積-包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,

=x, =│x│等。

4.系數與指數

區別與聯系:①從位置上看;②從表示的意義上看

5.同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律

6.根式

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。

注意:①從外形上判斷;②區別: 、 是根式,但不是無理式(是無理數)。

7.算術平方根

⑴正數a的正的平方根( [a≥0-與"平方根"的區別]);

⑵算術平方根與絕對值

① 聯系:都是非負數, =│a│

②區別:│a│中,a為一切實數; 中,a為非負數。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。

滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。

把分母中的根號劃去叫做分母有理化。

9.指數

⑴ ( -冪,乘方運算)

① a>0時, >0;②a0(n是偶數), <0(n是奇數)

⑵零指數: =1(a≠0)

負整指數: =1/ (a≠0,p是正整數)

二、 運算定律、性質、法則

1.分式的加、減、乘、除、乘方、開方法則

2.分式的性質

⑴基本性質: = (m≠0)

⑵符號法則:

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運演算法則(去括弧、添括弧法則)

4.冪的運算性質:① o = ;② ÷ = ;③ = ;④ = ;⑤

技巧:

5.乘法法則:⑴單×單;⑵單×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b) =

7.除法法則:⑴單÷單;⑵多÷單。

8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

9.算術根的性質: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .

11.科學記數法: (1≤a<10,n是整數=

三、 應用舉例(略)

四、 數式綜合運算(略)

第三章 統計初步

重點

☆ 內容提要☆

一、 重要概念

1.總體:考察對象的全體。

2.個體:總體中每一個考察對象。

3.樣本:從總體中抽出的一部分個體。

4.樣本容量:樣本中個體的數目。

5.眾數:一組數據中,出現次數最多的數據。

6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)

二、 計算方法

1.樣本平均數:⑴ ;⑵若 , ,…, ,則 (a-常數, , ,…, 接近較整的常數a);⑶加權平均數: ;⑷平均數是刻劃數據的集中趨勢(集中位置)的特徵數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越准確。

2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a-接近 、 、…、 的平均數的較"整"的常數);若 、 、…、 較"小"較"整",則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特徵數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

3.樣本標准差:

三、 應用舉例(略)

第四章 直線形

重點相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆ 內容提要☆

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從"圖形"、"表示法"、"界限"、"端點個數"、"基本性質"等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用"線段的基本性質"論證"三角形兩邊之和大於第三邊")

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明"直角三角形中斜邊大於直角邊")

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②××線的交點-三角形的×心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形--↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常"平移一腰"、"平移對角線"、"作高"、"連結頂點和對腰中點並延長與底邊相交"轉化為三角形。

6.作圖:任意等分線段。

四、 應用舉例(略)

第五章 方程(組)

重點一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)

☆ 內容提要☆

一、 基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

2. 分類:

二、 解方程的依據-等式性質

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括弧→移項→合並同類項→

系數化成1→解。

2. 元一次方程組的解法:⑴基本思想:"消元"⑵方法:①代入法

②加減法

四、 一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特徵)

⑵配方法(注意步驟-推倒求根公式)

⑶公式法:

⑷因式分解法(特徵:左邊=0)

3.根的判別式:

4.根與系數頂的關系:

逆定理:若 ,則以 為根的一元二次方程是: 。

5.常用等式:

五、 可化為一元二次方程的方程

1.分式方程

⑴定義

⑵基本思想:

⑶基本解法:①去分母法②換元法(如, )

⑷驗根及方法

2.無理方程

⑴定義

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、 列方程(組)解應用題

一概述

列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解應用題的關鍵。

二常用的相等關系

1. 行程問題(勻速運動)

基本關系:s=vt

⑴相遇問題(同時出發):

⑵追及問題(同時出發):

若甲出發t小時後,乙才出發,而後在B處追上甲,則

⑶水中航行: ;

2. 配料問題:溶質=溶液×濃度

溶液=溶質+溶劑

3.增長率問題:

4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位"1")。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。

三注意語言與解析式的互化

如,"多"、"少"、"增加了"、"增加為(到)"、"同時"、"擴大為(到)"、"擴大了"、……

又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。

四注意從語言敘述中寫出相等關系。

如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

如,"小時""分鍾"的換算;s、v、t單位的一致等。

七、應用舉例(略)

第六章 一元一次不等式(組)

重點一元一次不等式的性質、解法

☆ 內容提要☆

1. 定義:a>b、a

2. 一元一次不等式:ax>b、ax

3. 一元一次不等式組:

4. 不等式的性質:⑴a>b←→a+c>b+c

⑵a>b←→ac>bc(c>0)

⑶a>b←→ac

⑷(傳遞性)a>b,b>c→a>c

⑸a>b,c>d→a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)

7.應用舉例(略)

第七章 相似形

重點相似三角形的判定和性質

☆內容提要☆

一、本章的兩套定理

第一套(比例的有關性質):

涉及概念:①第四比例項②比例中項③比的前項、後項,比的內項、外項④黃金分割等。

第二套:

注意:①定理中"對應"二字的含義;

②平行→相似(比例線段)→平行。

二、相似三角形性質

1.對應線段…;2.對應周長…;3.對應面積…。

三、相關作圖

①作第四比例項;②作比例中項。

四、證(解)題規律、輔助線

1."等積"變"比例","比例"找"相似"。

2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來

3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

4.對比例問題,常用處理方法是將"一份"看著k;對於等比問題,常用處理辦法是設"公比"為k。

5.對於復雜的幾何圖形,採用將部分需要的圖形(或基本圖形)"抽"出來的辦法處理。

五、 應用舉例(略)

第八章 函數及其圖象

重點正、反比例函數,一次、二次函數的圖象和性質。

☆ 內容提要☆

一、平面直角坐標系

1.各象限內點的坐標的特點

2.坐標軸上點的坐標的特點

3.關於坐標軸、原點對稱的點的坐標的特點

4.坐標平面內點與有序實數對的對應關系

二、函數

1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

2.確定自變數取值范圍的原則:⑴使代數式有意義;⑵使實際問題有

意義。

3.畫函數圖象:⑴列表;⑵描點;⑶連線。

三、幾種特殊函數

(定義→圖象→性質)

1. 正比例函數

⑴定義:y=kx(k≠0) 或y/x=k。

⑵圖象:直線(過原點)

⑶性質:①k>0,…②k<0,…

2. 一次函數

⑴定義:y=kx+b(k≠0)

⑵圖象:直線過點(0,b)-與y軸的交點和(-b/k,0)-與x軸的交點。

⑶性質:①k>0,…②k<0,…

⑷圖象的四種情況:

3. 二次函數

⑴定義: 特殊地, 都是二次函數。

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。

⑶性質:a>0時,在對稱軸左側…,右側…;a<0時,在對稱軸左側…,右側…。

4.反比例函數

⑴定義: 或xy=k(k≠0)。

⑵圖象:雙曲線(兩支)-用描點法畫出。

⑶性質:①k>0時,圖象位於…,y隨x…;②k<0時,圖象位於…,y隨x…;③兩支曲線無限接近於坐標軸但永遠不能到達坐標軸。

四、重要解題方法

1.用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,並應充分運用拋物線關於對稱軸對稱的特點,尋找新的點的坐標。如下圖:

2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。

六、應用舉例(略)

第九章 解直角三角形

重點解直角三角形

☆ 內容提要☆

一、三角函數

1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= .

2. 特殊角的三角函數值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余兩角的三角函數關系:sin(90°-α)=cosα;…

4. 三角函數值隨角度變化的關系

5.查三角函數表

二、解直角三角形

1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

2. 依據:①邊的關系:

②角的關系:A+B=90°

③邊角關系:三角函數的定義。

注意:盡量避免使用中間數據和除法。

三、對實際問題的處理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

四、應用舉例(略)

第十章 圓

重點①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆ 內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3."三點定圓"定理

4.垂徑定理及其推論

5."等對等"定理及其推論

5. 與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.三種位置及判定與性質:

2.切線的性質(重點)

3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…

4.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:

內角的一半: (右圖)

(解Rt△OAM可求出相關元素, 、 等)

六、 一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側面展開圖及相關計算

七、 點的軌跡

六條基本軌跡

八、 有關作圖

1.作三角形的外接圓、內切圓

2.平分已知弧

3.作已知兩線段的比例中項

4.等分圓周:4、8;6、3等分

九、 基本圖形

十、 重要輔助線

1.作半徑

2.見弦往往作弦心距

3.見直徑往往作直徑上的圓周角

4.切點圓心莫忘連

5.兩圓相切公切線(連心線)

6.兩圓相交公共弦

④ 人教版初三數學知識點歸納

初三數學知識點歸納人教版有哪些?初中數學學習是對學生邏輯計算能力的培養,學好初三數學的關鍵就在於要適時適量地進行 總結 歸類,下面是我整理的初三數學知識點,歡迎大家閱讀學習!

初三數學知識點總結

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從圖形、表示法、界限、端點個數、基本性質等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大於第三邊)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示 方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明直角三角形中斜邊大於直角邊)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點-三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的`四邊形各邊中點得矩形。

⑶外角和:360

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形平行四邊形矩形正方形

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結頂點和對腰中點並延長與底邊相交轉化為三角形。

6.作圖:任意等分線段。

初三數學知識點歸納大全

第四章直線形

★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆內容提要☆

一、直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點―三角形的×心③性質

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法―反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形――↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。

6.作圖:任意等分線段。

初中數學知識點總結歸納

代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

1、實數的分類

有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,,0.231,0.737373...

無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。

實數:有理數和無理數統稱為實數。

2、無理數

在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:

(1)開方開不盡的數,如等;

(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;

(3)有特定結構的數,如0.1010010001...等;

(4)某些三角函數,如sin60o等。

注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.

3、非負數:正實數與零的統稱。(表為:x≥0)

常見的非負數有:

性質:若干個非負數的和為0,則每個非負擔數均為0。

4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

5、相反數

實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

即:(1)實數的相反數是。

初三數學知識點歸納人教版相關 文章 :

★ 人教版九年級數學知識點歸納

★ 人教版初三數學知識點復習資料備戰中考

★ 初中數學知識點總結

★ 人教版必修3數學演算法初步知識點歸納

★ 人教版八年級數學上冊知識點總結

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 人教版九年級歷史下冊知識點歸納

★ 人教版高三年級數學知識點總結

★ 人教版高三年級數學必考知識點

★ 人教版數學三年級下冊知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑤ 初三數學知識點歸納

想了解初中數學知識,想提高數學成績的小夥伴,趕緊過來瞧一瞧吧。下面由我為你精心准備了「初三數學知識點歸納」,本文僅供參考,持續關注本站將可以持續獲取更多的知識點!

初三數學知識點歸納

一、有理數。

1、大於0的數叫做正數。

2、在正數前面加上負號「-」的數叫做負數。

3、整數和分數統稱為有理數。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸。

5、在直線上任取一個點表示數0,這個點叫做原點。

6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

8、正數大於0,0大於負數,正數大於負數。

9、兩個負數,絕對值大的反而小。

10、有理數加法法則。

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

二、整式的加減。

1、都是數或字母的積的式子叫做單項式,單獨的一個數或一個字母也是單項式。

2、單項式中的數字因數叫做這個單項式的系數。

3、一個單項式中,所有字母的指數的和叫做這個單項式的次數。

4、幾個單項的和叫做多項式,其中,每個單項式叫做多項式的項,不含字母的項叫做常數項。

5、多項式里次數最高項的次數,叫做這個多項式的次數。

6、把多項式中的同類項合並成一項,叫做合並同類項。

合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。

7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。

8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

9、一般地,幾個整式相加減,如果有括弧就梁橘罩先去括弧,然後再合並同類項。

三、一元一次方程。

1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程。

2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。

3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。

4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

6、把等式一邊的某項變號後移到另一邊,叫做移項。

7、應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間。

盈虧問題:利潤=售價-成本利率=利潤÷成本×100%。

售價=標價×折扣數×10%儲蓄利潤問題:利息=本金橡鬧×利率×時間。

本息和=本金+利息。

四、圖形初步認識。

1、我們把實物中抽象的各種圖形統稱為幾何圖形。

2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形。

3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形。

4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

5、幾何體簡稱為體。

6、包圍著體的是面,面有平的面和曲的面兩種。

7、面與面相交的地方形成線,線和線相交的地方是點。

8、點動成面,面動成線,線動成體。

9、經過探究可以得到一個基本事實:經過兩伍做點有一條直線,並且只有一條直線。

簡述為:兩點確定一條直線(公理)。

10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

拓展閱讀:數學學習方法

1.求教與自學相結合。

在學習過程中,即要爭取教師的指導和幫助,但是又不能處處依賴教師,必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。

2.學習與思考相結合。

在學習過程中,對課本的內容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因後果、內在聯系,以及蘊含於推導過程中的數學思想和方法。在解決問題時,要盡量採用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學習方法。

3.學用結合,勤於實踐。

在學習過程中,要准確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用於實踐。

4.博觀約取,由博返約。

課本是學生獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本以外,還要閱讀有關的課外資料,來擴大知識領域。同時在廣泛閱讀的基礎上,進行認真研究,掌握其知識結構。

5.既有模仿,又有創新。

模仿是數學學習中不可缺少的學習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開動腦筋,提出自己的見解和看法,而不拘泥於已有的框框,不囿於現成的模式。

6.及時復習增強記憶。

課堂上學習的內容,必須當天消化,要先復習,後做練習,復習工作必須經常進行,每一單元結束後,應將所學知識進行概括整理,使之系統化、深刻化。

7.閱讀理解。

目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

8.提高聽課質量要培養會聽課,聽懂課的習慣。

注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。

初中數學速記口訣

1.最簡根式的條件。

最簡根式三條件,號內不把分母含。

冪指(數)根指(數)要互質,冪指比根指小一點。

2.特殊點的坐標特徵。

坐標平面點(x,y),橫在前來縱在後。

(+,+),(-,+),(-,-)和(+,-),四個象限分前後。

x軸上y為0,x為0在y軸。

3.象限角的平分線。

象限角的平分線,坐標特徵有特點。

一、三橫縱都相等,二、四橫縱確相反。

4.平行某軸的直線。

平行某軸的直線,點的坐標有講究。

直線平行x軸,縱坐標相等橫不同。

直線平行於y軸,點的橫坐標仍照舊。

5.對稱點的坐標。

對稱點坐標要記牢,相反數位置莫混淆。

x軸對稱y相反,y軸對稱,x前面添負號。

原點對稱最好記,橫縱坐標變符號。

6.自變數的取值范圍。

分式分母不為零,偶次根下負不行。

零次冪底數不為零,整式、奇次根全能行。

7.函數圖象的移動規律。

左右平移在括弧,上下平移在末稍。

左正右負須牢記,上正下負錯不了。

8.一次函數的圖象與性質的口訣。

一次函數是直線,圖象經過三象限。

正比例函數更簡單,經過原點一直線。

兩個系數k與b,作用之大莫小看。

k是斜率定夾角,b與y軸來相見。

k為正來右上斜,x增減y增減。

k為負來左下展,變化規律正相反。

k的絕對值越大,線離橫軸就越遠。

9.二次函數的圖象與性質的口訣。

二次函數拋物線,圖象對稱是關鍵。

開口、頂點和交點,它們確定圖象現。

開口、大小由a斷,c與y軸來相見。

b的符號較特別,符號與a相關聯。

10.反比例函數的圖象與性質的口訣。

反比例函數有特點,雙曲線相背離得遠。

k為正,圖在一、三(象)限,k為負。

圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。

圖在二、四正相反,兩個分支分別增。

11.平行四邊形的判定。

要證平行四邊形,兩個條件才能行。

一證對邊都相等,或證對邊都平行。

一組對邊也可以,必須相等且平行。

對角線,是個寶,互相平分「跑不了」。

對角相等也有用,「兩組對角」才能成。

12.二次函數拋物線。

選定需要三個點,a的正負開口判。

c的大小y軸看,△的符號最簡便。

x軸上數交點,a、b同號軸左邊。

拋物線平移a不變,頂點牽著圖象轉。

三種形式可變換,配方法作用最關鍵。

⑥ 初三數學知識點整理歸納

學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

初三年級下學期數學知識點

【二次函數的圖像與性質】

二次函數的概念:一般地,形如ax^2+bx+c=0的函數,叫做二次函數。

這里需要強調:和一元二次方程類似,二次項系數a≠0,而b,c可以為零.二次函數的定義域是全體實數.

二次函數圖像與性質口訣

二次函數拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象限;

開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

【二次函數的應用】

在公路、橋梁、隧道、城市建設等很多方面都有拋物線型;生產和生活中,有很多「利潤」、「用料最少」、「開支最節約」、「線路最短」、「面積」等問題,它們都有可能用到二次函數關系,用到二次函數的最值。

那麼解決這類問題的一般步驟是:

第一步:設自變數;

第二步:建立函數解析式;

第三步:確定自變數取值范圍;

第四步:根據頂點坐標公式或配方法求出最值(在自變數的取值范圍內)。

初 三年級數學 知識點

【函數的圖像與一元二次方程】

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

初三年級數學知識點蘇科版

一.知識框架

二.知識概念

1.圓:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意

意兩點的線段叫做弦。經過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4.內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。

7.圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO

8.直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有公共點為相切,這條直線叫做圓的切線,這個的公共點叫做切點。

9.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r

10.切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。

11.切線的性質:(1)經過切點垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。

13.有關定理:

平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

14.圓的計算公式1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/180

15.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl


初三數學知識點整理歸納相關 文章 :

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學知識點歸納人教版

★ 初三數學知識點上冊總結歸納

★ 初三數學知識點歸納

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點整理

★ 最新初三數學知識點總結大全

★ 九年級上冊數學知識點歸納整理

★ 初三數學復習知識點總結

⑦ 九年級數學知識點北師大版

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。

九年級上冊數學單元知識點北師大版

第一章證明

一、等腰三角形

1、定義:有兩邊相等的三角形是等腰三角形。

2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)

3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)

4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半

6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)

7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸

3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

特殊的等腰三角形

等邊三角形

1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。

(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。

2、性質:⑴等邊三角形的內角都相等,且均為60度。

⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。

⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。

3、判定:⑴三邊相等的三角形是等邊三角形。

⑵三個內角都相等的三角形是等邊三角形。

⑶有一個角是60度的等腰三角形是等邊三角形。

⑷有兩個角等於60度的三角形是等邊三角形。

二、直角三角形全等

1、直角三角形全等的判定有5種:

(1)、兩角及其夾邊對應相等的兩個三角形全等;(ASA)

(2)、兩邊及其夾角對應相等的兩個三角形全等;(SAS)

(3)、三邊對應相等的兩個三角形全等;(SSS)

(4)、兩角及其中一角的對邊對應相等的兩個三角形全等;(AAS)

(5)、斜邊及一條直角邊對應相等的兩個三角形全等;(HL)

2、在直角三角形中,如有一個內角等於30o,那麼它所對的直角邊等於斜邊的一半

3、在直角三角形中,斜邊上的中線等於斜邊的一半

4垂直平分線:垂直於一條線段並且平分這條線段的直線。

性質:線段垂直平分線上的點到這一條線段兩個端點距離相等。

判定:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。

5、三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等,交點為三角形的外心。

6、角平分線上的點到角兩邊的距離相等。

7、在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。

8、角平分線是到角的兩邊距離相等的所有點的集合。

9、三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。

10、三角形三條中線交於一點,交點為三角形的重心。

11、三角形三條高線交於一點,交點為三角形的垂心。

九年級下冊數學知識點 總結

直線與圓的位置關系

①直線和圓無公共點,稱相離。AB與圓O相離,d>r。

②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的方程

如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1

當x=-C/Ax2時,直線與圓相離;

初三年級上冊數學復習計劃

一、復習目標:通過總復習應達到以下目標:

(1使所學知識系統化、結構化、讓學生將三年的數學知識連成一個有機整體,更利於學生理解;

(2精講多練,鞏固基礎知識,掌握基本技能;

(3抓好方法教學,引導學生歸納、總結解題的方法,適應各種題型的變化;

(4做好綜合題訓練,提高學生綜合運用知識分析問題的能力。

二、 復習方法 與 措施 :

1、挖掘教材,夯實基礎,重視對基礎知識的理解和基本方法的指導

通過兩年多的學習,學生已經掌握了一定的基礎知識、基本方法和基本技能,但對教材的理解是零碎的、解題規律的探究是膚淺的。因此,在組織學生進行總復習時,首先引導學生系統梳理教材、構建知識結構,讓各種概念、公理、定理、公式、常用結論及解題方法技巧,都能在學生的頭腦中再現。教學中,教學中,要立足課本,充分挖掘和發揮教材例、習題的潛在功能,引導學生歸納、整理教材中的基礎知識、基本方法,使之形成結構。堅決克服那種重難題、重技巧、輕課本、輕基礎的做法。

2、共同參與,注重過程

中考復習切忌教師大包大攬,在復習中要充分發揮學生的主體作用,突出學生的主體地位,使他們成為復習活動的主角,給予學生充分發揮的學習時間,讓他們去說、去做,暴露他們的思維過程,激發學生的思維潛能。只有這樣,教師的主導作用才能得到體現,教師的指導才能真正落到實處。因此,在基礎復習時,我們給學生盡可能多的動手、動腦、討論的時間去探索,使各層次的學生都得到知識的滿足,提高學習效果。特別是綜合題的教學過程中,點中要害,透徹理解,及時總結。一定要把思路與方法教給學生,同時教師要評析到位,從細微處入手,讓學生分析,弄清錯誤原因,清楚自己薄弱環節,熟悉一般分析思路,並與學生一起深入研討,要注重為什麼要這樣解?說明思路,如何設計解題格式?如何找尋問題的突破口?

3、強化訓練,注重應用,發展能力

數學教學的最終目的,是培養學生的創新意識、應用意識,及綜合能力。教師可以自覺地、有目的地加以培養。這樣,就可以大大地加快數學能力的形成和發展,使各種思維方法合理、簡捷,限度地發揮學生創造性能力。分析近幾年來各省市的中考能力題:在學生已有的基礎上,可以通過閱讀理解,推理分析,總結規律,歸納其結論;聯系實際,注重應用,培養探索、發現、創新能力是中考命題必然趨勢。因此在組織學生進行復習時,利用創意新穎、貼近學生生活的應用性、實踐性、創造性、開放性問題來激活學生的思維。

4、落實各種數學思想與數學方法的訓練,提高學生的數學素質

理解掌握各種數學思想和方法是形成數學技能技巧,提高數學的能力的前提。初中數學中已經出現和運用了不少數學思想和方法。如轉化的思想,函數的思想,方程思想,數形結合的思想等。數學方法有:換元法、配方法、圖象法、解析法、待定系數法、分析法、綜合法。這些方法要按要求靈活運用。因此復習中針對要求,分層訓練。

(1採取不同訓練形式。一方面應經常改變題型:填空題、判斷題、選擇題、簡答題、證明題等交換使用,使學生認識到,雖然題變了,但解答題目的本質方法未變,增強學生訓練的興趣,另一方面改變題目的結構,如變更問題,改變條件等。

(2適當進行題組訓練。用一定時間對一方法進行專題訓練,能使這一方法得到強化,學生印象深,掌握快、牢。

5、抓好教材中例題、習題的歸類、變式的教學

在數學復習課教學中,挖掘教材中的例題、習題等的功能,既是大面積提高教學質量的需要,又是對付考試的一種手段。因此在復習中根據教學的目的、教學重點和學生實際,引導學生對相關例題進行分析、歸類,總結解題規律,提高復習效率。對具有可變性的例習題,引導學生進行變式訓練,使學生從多方面感知數學的方法、提高學生綜合分析問題、解決問題的能力。教師在講解中,應該引導學生對有代表性的問題進行靈活變換,使之觸類旁通,培養學生的應變能力,提高學生的技能技巧,挖掘教材中的例題、習題功能,可從以下幾方面入手:⑴尋找 其它 解法;⑵改變題目形式;⑶題目的條件和結論互換;⑷改變題目的條件;⑸把結論進一步推廣與引伸;⑹串聯不同的問題;⑺.類比編題等。

6、面向全體學生,實行分層教學

根據學生學習數學能力差異較大,我們具體研究現階段各層次學生最欠缺什麼知識與能力,最需要提高哪方面的數學技能,尋找出他們存在的差異和問題,進而有選擇、有重點地實行突破性分層教學,對不同層次的學生提出不同的要求,優等生可鼓勵他們超前學習,中等生進行引導,後進生進行幫扶,特別要關心數學學習困難的學生,通過學習興趣的培養和學習方法的指導,使他們達到最基本學習要求。


九年級數學知識點北師大版相關 文章 :

★ 北師大版初中數學知識點提綱

★ 北師大初中數學知識總結

★ 北師大初中數學知識點

★ 初三北師大數學知識點歸納有哪些

★ 北師大初中數學知識點下冊

★ 初二數學知識點北師大版

★ 北師大版初一下冊數學知識點復習總結

★ 北師大版九年級數學教案

★ 初一數學北師大版上冊知識點

★ 九年級上冊數學書北師大版

⑧ 初三數學知識點總結歸納

只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

目錄

初三新學期數學知識點

初三數學上冊知識點歸納

初三數學復習五大方法

初三新學期數學知識點

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小於半圓周的弧。

(2)優弧:大於半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。


初三數學上冊知識點歸納

1.數的分類及概念數系表:

說明:分類的原則:1)相稱(不重、不漏)2)有標准

2.非負數:正實數與零的統稱。(表為:x0)

性質:若干個非負數的和為0,則每個非負數均為0。

3.倒數:

①定義及表示法

②性質:A.a1/a(a1);B.1/a中,aC.0

4.相反數:

①定義及表示法

②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:

①定義(三要素)

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:

①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│0,符號││是非負數的標志;

③數a的絕對值只有一個;

④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。


初三數學復習五大方法

一、回歸課本,夯實基礎,做好預習。

數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之後,再聽老師講課,就會在記憶上對老師講的內容有所取捨,把重點放在自己還未掌握的內容上,提高學習效率。

二、抓住關鍵,突出重點,不以題量論英雄

學好數學要做大量的題,但反過來做了大量的題,數學不一定好。「不要以題量論英雄」,題海戰術,有時候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的,但是要有針對性地做題,突出重點,抓住關鍵。

復習中,所謂突出重點,主要是指突出教材中的重點知識,突出不易理解或尚未理解深透的知識,突出數學思想與解題方法。數學思想與方法是數學的精髓,是聯系數學中各類知識的紐帶。要抓住教材中的重點內容,掌握分析方法,從不同角度出發思索問題,由此探索一題多解、一題多變和一題多用之法。培養正確地把日常語言轉化為代數、幾何語言。並逐步掌握聽、說、讀、寫譯的數學語言技能。

三、提高復習興趣,克服「高原現象」

高原現象在數學復習階段表現得十分明顯。平時授新課,新鮮有趣;搞復習,要重復已學的內容,有的同學會覺得單調、枯燥無味,致使成績提高緩慢,甚至下降。針對這種情況,提醒同學們,一方面要從思想上提高對復習的認識,主動進行復習;另一方面,要以「新」提高復習的積極性。諸如制訂新的復習計劃;採用靈活的 復習方法 ;抓住新穎有趣的內容和習題,把知識串連起來,使書「由厚變薄」。

四、提高課堂聽課效率,多動腦,勤動手

初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對於老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

五、要養成良好的解題習慣

如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由於過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因並加以改正。這些同學到了考場上常會出現心理性錯誤,導致「會而不對」,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。「會而不對」是初三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,後患無窮。


初三數學知識點 總結 歸納相關 文章 :

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學知識點歸納人教版

★ 初三數學知識點上冊總結歸納

★ 最新初三數學知識點總結大全

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學復習知識點總結

★ 初三中考數學知識點歸納總結

★ 中考數學知識點總結最全提綱

★ 初三數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑨ 初三數學知識點魯教版

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

初三年級下學期數學知識點歸納

【篇一:反比例函數】

形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)

當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)

由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

【篇二:二次函數】

知識點一、平面直角坐標系

1,平面直角坐標系

在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。

其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點,不屬於任何象限。

2、點的坐標的概念

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

知識點二、不同位置的點的坐標的特徵

1、各象限內點的坐標的特徵

點P(x,y)在第一象限

點P(x,y)在第二象限

點P(x,y)在第三象限

點P(x,y)在第四象限

2、坐標軸上的點的特徵

點P(x,y)在x軸上,x為任意實數

點P(x,y)在y軸上,y為任意實數

點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)

3、兩條坐標軸夾角平分線上點的坐標的特徵

點P(x,y)在第一、三象限夾角平分線上x與y相等

點P(x,y)在第二、四象限夾角平分線上x與y互為相反數

4、和坐標軸平行的直線上點的坐標的特徵

位於平行於x軸的直線上的各點的縱坐標相同。

位於平行於y軸的直線上的各點的橫坐標相同。

5、關於x軸、y軸或遠點對稱的點的坐標的特徵

點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數

點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數

點P與點p』關於原點對稱橫、縱坐標均互為相反數

6、點到坐標軸及原點的距離

點P(x,y)到坐標軸及原點的距離:

(1)點P(x,y)到x軸的距離等於

(2)點P(x,y)到y軸的距離等於

(3)點P(x,y)到原點的距離等於

初三數學知識點整理

軸對稱知識點

1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

3.角平分線上的點到角兩邊距離相等。

4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。

5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

6.軸對稱圖形上對應線段相等、對應角相等。

7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。

8.點(x,y)關於x軸對稱的點的坐標為(x,-y)

點(x,y)關於y軸對稱的點的坐標為(-x,y)

點(x,y)關於原點軸對稱的點的坐標為(-x,-y)

9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。

10.等腰三角形的判定:等角對等邊。

11.等邊三角形的三個內角相等,等於60,

12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。

有一個角是60的等腰三角形是等邊三角形

有兩個角是60的三角形是等邊三角形。

13.直角三角形中,30角所對的直角邊等於斜邊的一半。

不等式

1.掌握不等式的基本性質,並會靈活運用:

(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那麼a+c>b+c,a-c>b-c。

(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即:如果a>b,並且c>0,那麼ac>bc。

(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:如果a>b,並且c<0,那麼ac

2.比較大小:(a、b分別表示兩個實數或整式)

一般地:

如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;

如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;

如果a

即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。

3.不等式的解集:能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。

4.不等式的解集在數軸上的表示:用數軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。

九年級上冊數學復習資料

知識點1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數項是-2。

2、一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。

3、一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

知識點2:直角坐標系與點的位置

1、直角坐標系中,點A(3,0)在y軸上。

2、直角坐標系中,x軸上的任意點的橫坐標為0。

3、直角坐標系中,點A(1,1)在第一象限。

4、直角坐標系中,點A(-2,3)在第四象限。

5、直角坐標系中,點A(-2,1)在第二象限。

知識點3:已知自變數的值求函數值

1、當x=2時,函數y=的值為1。

2、當x=3時,函數y=的值為1。

3、當x=-1時,函數y=的值為1。

知識點4:基本函數的概念及性質

1、函數y=-8x是一次函數。

2、函數y=4x+1是正比例函數。

3、函數是反比例函數。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標是(1,2)。

7、反比例函數的圖象在第一、三象限。

知識點5:數據的平均數中位數與眾數

1、數據13,10,12,8,7的平均數是10。

2、數據3,4,2,4,4的眾數是4。

3、數據1,2,3,4,5的中位數是3。


初三數學知識點魯教版相關 文章 :

★ 初三數學知識點整理

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納

★ 初三數學知識點歸納總結

★ 初三數學知識點上冊總結歸納

★ 初中數學知識點整理:

★ 初三數學知識點總結

★ 最新初三數學知識點總結大全

★ 初三數學總復習知識點

★ 初三數學復習知識點總結