『壹』 初中數學的幾何基本圖形有哪些!!
三角形:等腰三角形,直角三角形,等腰直角三角形(直角邊為a,斜邊為根號2乘a),還有你說的等邊三角形
四邊形:平行四邊形(對邊平行且相等,對角線平分),菱形(特殊的平行四邊形,對角線垂直,其面積=1/2乘兩對角線的乘積並扮遲,其他具體要看角度),矩形(特殊的平行四邊形,對角線相等),正方形(特殊的平行四邊形,對角線垂直且相等,若邊長為絕李a,其對角線=根號2乘a),梯形,等腰梯形,直角梯形(這些都具體要看角度的)
圓:(以圓的直徑為斜邊的,頂點在圓上的三角形是直角三角形;同弧或等弧的圓周角是圓心角的兩倍)
暫時只缺晌能想這么多了!
『貳』 初三上冊數學知識點總結
讀書,始讀,未知有疑;其次,則漸漸有疑;中則節節是疑。過了這一番,疑漸漸釋,以至融會貫通,都無所疑,方始是學。下面給大家分享一些初三上冊數學知識點,希望對大家有所幫助。
初三上冊數學知識點1
特殊平行四邊形
1、菱形的性質與判定
①菱形的定義:
一組鄰邊相等的平行四邊形叫做菱形。
②菱形的性質:
具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
③菱形的判別 方法 :
一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
2、矩形的性質與判定
①矩形的定義:
有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
②矩形的性質:
具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
③矩形的判定:
有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
④推論:直角三角形斜邊上的中線等於斜邊的一半。
3、正方形的性質與判定
①正方形的定義:
一組鄰邊相等的矩形叫做正方形。
②正方形的性質:
正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
③正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行邊形四者之間的關系
⑤梯形定義:
一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
兩條腰相等的梯形叫做等腰梯形。
一條腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性質:
等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
三角形的中位線平行於第三邊,並且等於第三邊的一半。
夾在兩條平行線間的平行線段相等。
在直角三角形中,斜邊上的中線等於斜邊的一半
初三上冊數學知識點2
一元二次方程
1、認識一元二次方程
只含有一個未知數的整式方程,且都可以化為ax2+bx+c=0
(a、b、c為常數,a≠0)的形式,這樣的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c為常數,a≠0)稱為一元二次方程的一般形式,a為二次項系數;b為一次項系數;c為常數項。
2、用配方法求解一元二次方程
①配方法 <即將其變為(x+m)2=0的形式>
配方法解一元二次方程的基本步驟:
把方程化成一元二次方程的一般形式;
將二次項系數化成1;
把常數項移到方程的右邊;
兩邊加上一次項系數的一半的平方;
把方程轉化成的形式;
兩邊開方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc時須先把方程化為一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括「提公因式」和「十字相乘」)
5、一元二次方程的根與系數的關系
①根與系數的關系:
當b2-4ac>0時,方程有兩個不等的實數根;
當b2-4ac=0時,方程有兩個相等的實數根;
當b2-4ac<0時,方程無實數根。
②如果一元二次方程 ax2+bx+c=0 的兩根分別為x1、x2,則有:
③一元二次方程的根與系數的關系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:
已知方程的兩根x1、x2,可以構造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知兩數x1、x2的和與積,求此兩數的問題,可以轉化為求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、應用一元二次方程
①在利用方程來解應用題時,主要分為兩個步驟:
設未知數(在設未知數時,大多數情況只要設問題為x;但也有時也須根據已知條件及等量關系等諸多方面考慮);
尋找等量關系(一般地,題目中會含有一表述等量關系的 句子 ,只須找到此句話即可根據其列出方程)。
②處理問題的過程可以進一步概括為
初三上冊數學知識點3
圖形的相似
1、成比例線段
①線段的比
如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n,或寫成
四條線段a、b、c、d中,如果a與b的比等於c與d的比,即
那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
②注意點:
a:b=k,說明a是b的k倍
由於線段 a、b的長度都是正數,所以k是正數
比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致
除了a=b之外,a:b≠b:a
比例的基本性質:若
則ad=bc; 若ad=bc, 則
2、平行線分線段成比例
平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.如圖2, l1 // l2 // l3 ,則
3. 黃金分割
如圖1,點C把線段AB分成兩條線段AC和BC,如果
那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
黃金分割點是最優美、最令人賞心悅目的點.
4.相似多邊形
① 含義:
一般地,形狀相同的圖形稱為相似圖形.
對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
②注意點:
在相似多邊形中,最為簡單的就是相似三角形.
對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
全等三角形是相似三角的特例,這時相似比等於1.
注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
相似三角形周長的比等於相似比.
相似三角形面積的比等於相似比的平方.
相似多邊形的周長等於相似比;面積比等於相似比的平方.
5、探索三角形相似的條件
①相似三角形的判定方法:
②平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。
③相似三角形的判定定理的證明
④利用相似三角形測高
⑤相似三角形的性質
⑥圖形的位似
初三上冊數學知識點 總結 相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三數學知識點考點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 初三數學知識點歸納總結
★ 初三數學知識點總結
★ 初三上冊數學知識點盤點與數學學習方法
★ 初三數學重要公式知識大全
★ 初三九年級上冊數學知識點
★ 初中數學必備知識點總結初三數學上冊一二章知識點
★ 人教版九年級數學知識點歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();『叄』 初一數學基礎知識點
學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
七年級數學 知識點
【生活中的軸對稱】
1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。
3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。
聯系:它們都是圖形沿某直線折疊可以相互重合。
2、成軸對稱的兩個圖形一定全等。
3、全等的兩個圖形不一定成軸對稱。
4、對稱軸是直線。
5、角平分線的性質
1、角平分線所在的直線是該角的對稱軸。
2、性質:角平分線上的點到這個角的兩邊的距離相等。
6、線段的垂直平分線
1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。
2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。
7、軸對稱圖形有:
等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。
8、等腰三角形性質:
①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。
9、①「等角對等邊」∵∠B=∠C∴AB=AC
②「等邊對等角」∵AB=AC∴∠B=∠C
10、角平分線性質:
角平分線上的點到角兩邊的距離相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。
∵OC垂直平分AB∴AC=BC
12、軸對稱的性質
1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。
2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。
3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。
13、鏡面對稱
1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;
2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;
3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;
學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:
(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;
(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;
(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。
初一下冊數學《三角形》知識點
一、目標與要求
1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。
2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。
3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。
4.三角形的內角和定理,能用平行線的性質推出這一定理。
5.能應用三角形內角和定理解決一些簡單的實際問題。
二、重點
三角形內角和定理;
對三角形有關概念的了解,能用符號語言表示三條形。
三、難點
三角形內角和定理的推理的過程;
在具體的圖形中不重復,且不遺漏地識別所有三角形;
用三角形三邊不等關系判定三條線段可否組成三角形。
四、知識框架
五、知識點、概念 總結
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9.三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等於和它不相鄰的兩個內角和;
推論3三角形的一個外角大於任何一個和它不相鄰的內角;
三角形的內角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11.三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等於與它不相鄰的兩個內角和;
(3)三角形的一個外角大於與它不相鄰的任一內角;
(4)三角形的外角和是360°。
12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
初一 數學學習方法
一預習
對於理科學習,預習是必不可少的。我們在預習中,應該把書上的內容看一遍,盡力去理解,對解決不了的問題適當作出標記,請教老師或課上聽講解決,並試著做一做書後的習題檢驗預習效果。
二聽講
這一環節最為重要,因為老師把知識的精華都濃縮在課堂上,聽數學課時應做到抓住老師講題的思路,方法。有問題記下來,課下整理,解決,數學課上一定要積極思考,跟著老師的思路走。
三復習
體會老師課上的例題,整理思維,想想自己是怎麼想的,與老師的思路有何異同,想想每一道題的考點,並試著一題多解,做到舉一反三。
四作業
認真完成老師留的習題,適當挑選一些課外習題作為練習,但切忌一味追求偏題,怪題,更不要打「題海戰術」。
五總結
這一步是為了更好的掌握所學知識。在學完一段知識或做了一道典型題後可總結:總結專題的數學知識;總結自己卡殼的地方;總結自己是怎麼錯的,錯在哪裡,總結題目的「陷阱」設在哪裡及總結自己或他人的想法。
如何挑選及處理習題
一市面上的習題集數不勝數,大多數的習題集互相抄襲,漏洞百出,使同學在練習的過程中費時費力。我認為歷的考試真題是的習題,它緊扣考試大綱,難度適中,不會出現偏題怪題的現象。同時也使同學們緊緊的把握考試的方向,少走彎路。
二有的同學喜歡「題海戰術」拿題就做,從不總結,感覺作的越多,成績越高。這是學習數學的弊端之一。
要記住:題不在於多而在於精。作題是必不可少的,但作完每一道題都要認真的 反思 ,這道題的考點是什麼,這道題的解題方法有多少種,哪種方法最簡便,對於作錯的習題要反復的思考,找出錯誤的原因,確保該知識點的熟練掌握。
三很多同學喜歡作偏題,難題。但卻疏忽了對書本中的定義,概念及公式的理解。從而導致了在考試中經常出現「基本題」失誤的現象。
因此,在平時的數學練習中,要對書中的每一個知識點都要深刻的理解,找出可能出現的考點,陷阱。在考試中則要做到「基本題全作對,穩作中檔題一分不浪費,盡力沖擊高檔題,即使錯了不後悔。」
初一數學基礎知識點相關 文章 :
★ 初中數學基礎知識整理歸納
★ 初一數學基礎知識有哪些?
★ 初一數學上冊知識點
★ 人教版初一數學知識點整理
★ 初中數學基礎知識點歸納總結
★ 初一數學上冊知識點歸納
★ 初中數學基礎知識點總結
★ 初一數學課本知識點總結
★ 初一數學知識點整理
★ 初一數學知識點歸納與學習方法
『肆』 平面幾何知識點初中
知識點一 相交線和平行線
1.定理與性質
對頂角的性質:對頂角相等。
2.垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
3.平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4.平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
5.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
知識點二 三角形
一、三角形相關概念
1.三角形的概念 由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形
要點:①三條線段;②不在同一直線上;③首尾順次相接.
2.三角形中的三種重要線段
(1)三角形的角平分線:三角形一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
(2)三角形的中線:在一個三角形中,連結一個頂點和它的對邊中點的線段叫做三角形的中線.
(3)三角形的高線:從三角形一個頂點向它的對邊作垂線,頂點和垂足間的限度叫做三角形的高線,簡稱三角形的高.
二、三角形三邊關系定理
①三角形兩邊之和大於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形兩邊之差小於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定這三條線段能否構成一個三角形,只需看兩條較短的線段的長度之和是否大於第三條線段即可
三、三角形的穩定性
三角形的三邊確定了,那麼它的形狀、大小都確定了,三角形的這個性質就叫做三角形的穩定性.例如起重機的支架採用三角形結構就是這個道理.
四、三角形的內角
結論1:三角形的內角和為180°.表示: 在△ABC中,∠A+∠B+∠C=180°
結論2:在直角三角形中,兩個銳角互余.
注意:①在三角形中,已知兩個內角可以求出第三個內角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三個內角和的比或它們之間的關系,求各內角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度數.
五、三角形的外角
1.意義:三角形一邊與另一邊的延長線組成的角叫做三角形的外角.
2.性質:
①三角形的一個外角等於與它不相鄰的兩個內角的和.
②三角形的一個外角大於與它不相鄰的任何一個內角.
③三角形的一個外角與與之相鄰的內角互補
六、多邊形
①多邊形的對角線條對角線;②n邊形的內角和為(n-2)×180°;③多邊形的外角和為360°
知識點三 全等三角形
一、全等三角形
1、「全等」的理解 全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;
即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。
2、全等三角形的性質
(1)全等三角形對應邊相等;(2)全等三角形對應角相等;
3、全等三角形的判定方法
(1)三邊對應相等的兩個三角形全等。(SSS)
(2)兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
(3)兩角和其中一角的對邊對應相等的兩個三角形全等。(AAS)
(4)兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
(5)斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)
4、角平分線的性質及判定
性質:角平分線上的點到這個角的兩邊的距離相等
判定:到一個角的兩邊距離相等的點在這個角平分線上
二、軸對稱圖形
(一)基本定義
1.軸對稱圖形
如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就叫做對稱軸.折疊後重合的點是對應點,叫做對稱點.
2.線段的垂直平分線
經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線
3.軸對稱變換
由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換.
4.等腰三角形
有兩條邊相等的三角形,叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
5.等邊三角形
三條邊都相等的三角形叫做等邊三角形.
(二)性質
1.如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線.或者說軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線.
2.線段垂直平分錢的性質
線段垂直平分線上的點與這條線段兩個端點的距離相等.
3.(1)點P(x,y)關於x軸對稱的點的坐標為P′(x,-y).
(2)點P(x,y)關於y軸對稱的點的坐標為P″(-x,y).
4.等腰三角形的性質
(1)等腰三角形的兩個底角相等(簡稱「等邊對等角」).
(2)等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.
(3)等腰三角形是軸對稱圖形,底邊上的中線(頂角平分線、底邊上的高)所在直線就是它的對稱軸.
(4)等腰三角形兩腰上的高、中線分別相等,兩底角的平分線也相等.
(5)等腰三角形一腰上的高與底邊的夾角是頂角的一半。
(6)等腰三角形頂角的外角平分線平行於這個三角形的底邊.
5.等邊三角形的性質
(1)等邊三角形的三個內角都相等,並且每一個角都等於60°.
(2)等邊三角形是軸對稱圖形,共有三條對稱軸.
(3)等邊三角形每邊上的中線、高和該邊所對內角的平分線互相重合.
(三)有關判定
1.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.
2.如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(簡寫成「等角對等邊」).
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
知識點四 勾股定理
1、勾股定理定義:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼
a2+b2=c2. 即直角三角形兩直角邊的平方和等於斜邊的平方
勾:直角三角形較短的直角邊
股:直角三角形較長的直角邊
弦:斜邊
勾股定理的逆定理:如果三角形的三邊長a,b,c有下面關系:a2+b2=c2,那麼這個三角形是直角三角形。
2. 勾股數:滿足a2+b2=c2的三個正整數叫做勾股數(注意:若a,b,c、為勾股數,那麼ka,kb,kc同樣也是勾股數組。)
*附:常見勾股數:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判斷直角三角形:如果三角形的三邊長a、b、c滿足a2+b2=c2 ,那麼這個三角形是直角三角形。(經典直角三角形:勾三、股四、弦五)
其他方法:(1)有一個角為90°的三角形是直角三角形。
(2)有兩個角互余的三角形是直角三角形。
用它判斷三角形是否為直角三角形的一般步驟是:
(1)確定最大邊(不妨設為c);
(2)若c2=a2+b2,則△ABC是以∠C為直角的三角形;
若a2+b2<c2,則此三角形為鈍角三角形(其中c為最大邊);
若a2+b2>c2,則此三角形為銳角三角形(其中c為最大邊)
4.注意:(1)直角三角形斜邊上的中線等於斜邊的一半
(2)在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
(3)在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30°。
5. 勾股定理的作用:
(1)已知直角三角形的兩邊求第三邊。
(2)已知直角三角形的一邊,求另兩邊的關系。
(3)用於證明線段平方關系的問題。
(4)利用勾股定理,作出長為的線段
6.勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
『伍』 初二數學上冊幾何知識歸納
一看到幾何,想必大家頭都大了。覺得幾何難學的時候,不妨整理好幾何的知識點,自己研究,慢慢的弄懂。下面是我分享給大家的初二數學上冊幾何知識,希望大家喜歡!
初二數學上冊幾何知識一
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9、三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等於和它不相鄰的兩個內角和
推論3三角形的一個外角大於任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等於與它不相鄰的兩個內角和;
(3)三角形的一個外角大於與它不相鄰的任一內角;
(4)三角形的外角和是360°。
初二數學上冊幾何知識二
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
初二數學上冊幾何知識三
菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,並且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等於兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直於底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行於三角形的第三邊並等於第三邊的一半;梯形的中位線平行於梯形的兩底並等於兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
猜你喜歡:
1. 初中數學三角形知識點總結
2. 初二數學基本知識匯總
3. 初中數學知識點歸納
4. 初二年級數學公式知識點歸納
5. 八年級上冊數學總復習題有哪些
『陸』 初中數學基礎知識點歸納總結
初中數學教學,注重培養學生正確的數學情操和幾何思維能力。下面是我為大家整理的關於初中數學基礎知識點歸納 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!
初中數學基礎知識點歸納總結
1、定理1 關於中心對稱的兩個圖形是全等的
2、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
3、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
4、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
5、等腰梯形的兩條對角線相等
6、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
7、對角線相等的梯形是等腰梯形
8、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
9、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
10、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
11、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
12、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
13、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
14、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
15、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
16、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
17、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
18、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
19、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
20、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
21、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
22、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
23、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
24、判定定理3 三邊對應成比例,兩三角形相似(SSS)
25、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
26、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
27、性質定理2 相似三角形周長的比等於相似比
28、性質定理3 相似三角形面積的比等於相似比的平方
29、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
30、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
31、圓是定點的距離等於定長的點的集合
32、圓的內部可以看作是圓心的距離小於半徑的點的集合
33、圓的外部可以看作是圓心的距離大於半徑的點的集合
34、同圓或等圓的半徑相等
35、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
36、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
37、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
38、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
39、定理 不在同一直線上的三點確定一個圓。
40、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
41、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
42、推論2 圓的兩條平行弦所夾的弧相等
43、圓是以圓心為對稱中心的中心對稱圖形
44、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
45、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
46、定理 一條弧所對的圓周角等於它所對的圓心角的一半
47、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
48、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
49、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
50、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
51、①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
52、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
53、切線的性質定理 圓的切線垂直於經過切點的半徑
54、推論1 經過圓心且垂直於切線的直線必經過切點
55、推論2 經過切點且垂直於切線的直線必經過圓心
56、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
57、圓的外切四邊形的兩組對邊的和相等
58、弦切角定理 弦切角等於它所夾的弧對的圓周角
59、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
60、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
61、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
62、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
63、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
64、如果兩個圓相切,那麼切點一定在連心線上
65、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 dr)
66、定理 相交兩圓的連心線垂直平分兩圓的公共弦
67、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
68、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
69、正n邊形的每個內角都等於(n-2)×180°/n
70、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
71、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
72、正三角形面積√3a/4 a表示邊長
73、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
74、弧長計算公式:L=n兀R/180
75、扇形面積公式:S扇形=n兀R^2/360=LR/2
76、內公切線長= d-(R-r) 外公切線長= d-(R+r) 本回答被提問者採納
怎樣學好初中數學
1、深刻理解概念,概念是數學的基石,學習概念不僅要知其然,還要知其所以然。
2、對於每個定義、定理必須在牢記其內容的基礎上知道是怎樣得來的,又是運用到何處的。
3、多看一些例題,不能只看皮毛,不看內涵。
4、要把想和看結合起來,各難度層次的例題都照顧到。
5、看例題要循序漸進,這同後面的「做練習」一樣,但看比做有一個顯著的好處,例題有現成的解答,思路清晰,只需循著思路走,就會得出結論,所以可以看一些技巧性較強、難度較大的例題。
相關 文章 :
1. 初中數學基礎知識點總結
2. 初中數學基礎知識點總結之有理數
3. 初中數學知識點整理
4. 初一數學知識點歸納與學習方法
5. 初一數學基礎知識有哪些?
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();