A. 2017高中數學常用導數公式
導數是高中數學微積分中的重要基礎概念,需要高中生重點學習。下面我給高中生帶來數學常用導數公式,希望對你有幫助。
高中數學常用導數公式
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
高中數學有關導數的知識點
一、早期導數概念----特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函數極值的 方法 1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)-f(A),發現的因子E就是我們所說的導數f'(A)。
二、17世紀----廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變數為流量稱變數的變化率為流數相當於我們所說的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計演算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在於一個變數的函數而不在於多變數的方程在於自變數的變化與函數的變化的比的構成最在於決定這個比當變化趨於零時的極限。
三、19世紀導數----逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《 網路 全書》第五版寫的“微分”條目中提出了關於導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函數y=f(x)在變數x的兩個給定的界限之間保持連續並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值那麼是使變數得到一個無窮小增量。19世紀60年代以後魏爾斯特拉斯創造了ε-δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。
四、實無限將異軍突起微積分第二輪初等化或成為可能 微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年後來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題後來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。
高中 數學 學習方法
1、填空題後幾題可能涉及向量數量積(以三角形、平行四邊形、梯形、正六邊形和圓錐曲線為載體,數形結合求數量積和參數)、基本不等式求最值及參數范圍、數列與圓錐曲線基本量的計算,運用抽象函數的性質求函數值與解不等式、三角形的計算與三角求值,命題的否定與必要不充分條件也是易錯點。
2、三角復習,應重視以圖形為載體運用三角變換求角的方法與注意點,已知三角形的中線、角平分線或高等如何解三角形。
3、立體幾何復習應關注符號語言表述的命題的真假判斷,共(異)面的判斷與證明、用性質定理尋找平行線與垂線的方法,運用三棱錐體積求點面距離。
4、解析幾何要圍繞主幹知識——橢圓的方程和性質,運用圓心的軌跡、圓錐曲線的定義、性質、橢圓標准方程的變形、直線斜率、圓的性質和平面幾何知識推證橢圓的一些基本性質,會對圓錐曲線中的存在性、唯一性、不變性、恆成立等性質進行論證、運用。
5、數列復習應重視對差、等比數列的綜合運用。掌握證明一個數列不是等差(比)數列的方法,會用整數的基本性質和求不定方程整數解的方法求解數列的基本量,證明數列的一些基本性質(如無窮子數列項的整除性質和不等關系)。
6、應用題可從解三角形、概率、數列求和、函數、立幾等模型出發構建數學模型,概率應用題應注意解題規范。
7、關注高等數學知識與競賽試題在解題中的指導作用。
B. 數與代數知識網路圖
如圖所示:
代數的基本思想:研究當對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。代數的研究對象不僅是數字,而是各種抽象化的結構。
在其中只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構類型有群、環、域、模、線性空間等。
(2)2017數學知識點擴展閱讀:
「代數」作為一個數學專有名詞、代表一門數學分支在我國正式使用,最早是在1859年。那年,清代數學家李善蘭和英國人韋列亞力共同翻譯了英國人棣么甘所寫的一本書,譯本的名稱就叫做《代數學》。當然,代數的內容和方法,我國古代早就產生了,比如《九章算術》中就有方程問題。
代數的起源可以追溯到古巴比倫的時代,當時的人們發展出了較之前更進步的算術系統,使其能以代數的方法來做計算。經由此系統地被使用,他們能夠列出含有未知數的方程並求解,這些問題在今日一般是使用線性方程、二次方程和不定線性方程等方法來解答的。
相對地,這一時期大多數的埃及人及西元前1世紀大多數的印度、希臘和中國等數學家則一般是以幾何方法來解答此類問題的,如在蘭德數學紙草書、繩法經、幾何原本及九章算術等書中所描述的一般。
希臘在幾何上的工作,以幾何原本為其經典,提供了一個將解特定問題解答的公式廣義化成描述及解答代數方程之更一般的系統之架構。
C. 高一數學必修二知識點總結
高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都碧盯等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數如扮),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,
;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必悔橡和在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
D. 2017年高一數學隨機事件及其概率知識點
學好數學就是要掌握主要知識點,那高一數學中隨機事件的一些知識點需要同學們理解,下面是我給大家帶來的2017年高一數學隨機事件及其概率知識點,希望對你有幫助。
隨機事件及其概率知識點一
隨機事件的定義:
在隨機試驗中,可能出現也可能不出現,而在大量重復試驗中具有某種規律性的事件叫做隨機事件,隨機事件通常用大寫英文字母A、B、C等表示。
必然事件的定義:
必然會發生的事件叫做必然事件;
不可能事件:
肯定不會發生的事件叫做不可能事件;
概率的定義:
在大量進行重復試驗時,事件A發生的頻率
總是接近於某個常數,在它附近擺動。這時就把這個常數叫做事件A的概率,記作P(A)。
m,n的意義:事件A在n次試驗中發生了m次。
因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率為1,不可能發生的事件的概率0。
隨機事件概率的定義:
對於給定的隨機事件A,隨著試驗次數的增加,事件A發生的頻率
總是接近於區間[0,1]中的某個常數,我們就把這個常數叫做事件A的概率,記作P(A)。
頻率的穩定性:
即大量重復試驗時,任何結果(事件)出現的頻率盡管是隨機的,卻“穩定”在某一個常數附近,試驗的次數越多,頻率與這個常數的偏差大的可能性越小,這一常數就成為該事件的概率;
“頻率”和“概率”這兩個概念的區別是:
頻率具有隨機性,它反映的是某一隨機事件出現的頻繁程度,它反映的是隨機事件出現的可能性;概率是一個客觀常數,它反映了隨機事件的屬性。
隨機事件及其概率知識點二
1、隨機事件的概念
在一定的條件下所出現的某種結果叫做事件。
(1)隨機事件:在一定條件下可能發生也可能不發生的事件;
(2)必然事件:在一定條件下必然要發生的事件;
(3)不可能事件:在一定條件下不可能發生的事件。
2、隨機事件的概率
事件A的概率:在大量重復進行同一試驗時,事件A發生的頻率
總接近於某個常數,在它附近擺動,這時就把這個常數叫做事件A的概率,記作P(A)。
由定義可知0≤P(A)≤1,顯然必然事件的概率是1,不可能事件的概率是0。
3、事件間的關系
(1)互斥事件:不能同時發生的兩個事件叫做互斥事件;
(2)對立事件:不能同時發生,但必有一個發生的兩個事件叫做互斥事件;
4、事件間的運算
(1)並事件(和事件)
若某事件的發生是事件A或事件B發生,則此事件稱為事件A與事件B的並事件。
註:當A和B互斥時,事件A+B的概率滿足加法公式:
P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+
)=P(A)+P(
)=1。
(2)交事件(積事件)
若某事件的發生是事件A和事件B同時發生,則此事件稱為事件A與事件B的交事件。
5、古典概型
(1)古典概型的兩大特點:1)試驗中所有可能出現的基本事件只有有限個;2)每個基本事件出現的可能性相等;
(2)古典概型的概率計算公式:P(A)=
;
一次試驗連同其中可能出現的每一個結果稱為一個基本事件,通常此試驗中的某一事件A由幾個基本事件組成.如果一次試驗中可能出現的結果有n個,即此試驗由n個基本事件組成,而且所有結果出現的可能性都相等,那麼每一基本事件的概率都是
。如果某個事件A包含的結果有m個,那麼事件A的概率P(A)=
。
6、隨機數的概念
隨機數是在一定范圍內隨機產生的數,並且得到這個范圍內任何一個數的機會是均等的。
7、隨機數的產生方法
(1)利用函數計算器可以得到0~1之間的隨機數;
(2)在Scilab語言中,應用不同的函數可產生0~1或a~b之間的隨機數。
8、幾何概型的概念
如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
9、幾何概型的概率公式:
P(A)=
。
10、幾種常見的幾何概型
(1)設線段l是線段L的一部分,向線段L上任投一點.若落在線段l上的點數與線段L的長度成正比,而與線段l在線段L上的相對位置無關,則點落在線段l上的概率為:
P=l的長度/L的長度
(2)設平面區域g是平面區域G的一部分,向區域G上任投一點,若落在區域g上的點數與區域G的面積成正比,而與區域g在區域G上的相對位置無關,則點落在區域g上概率為:P=g的面積/G的面積
(3)設空間區域上v是空間區域V的一部分,向區域V上任投一點。若落在區域v上的點數與區域V的體積成正比,而與區域v在區域V上的相對位置無關,則點落在區域v上的概率為:P=v的體積/V的體積
E. 2017年高考數學平面向量必考知識點
平面向量是在二維平面內既有方向又有大小的量,物理學中也稱作矢量,與之相對的是只有大小、沒有方向的數量。以下是我為您整理的關於2017年高考數學平面向量必考知識點的相關資料,希望對您有所幫助。
高考數學必考知識點平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比較大小,但向量的模可以比較大小。
(2)零向量:長度為0的向量,記為0,其方向是任意的,0與任意向量平行。
(3)單位向量:模為1個單位長度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:長度相等且方向相同的向量
高考數學必考知識點平面向量數量積解析
1、平面向量數量積:已知兩個非零向量a、b,那麼|a||b|cosθ(θ是a與b的夾角)叫做a與b的數量積或內積,記作a·b。零向量與任意向量的數量積為0。數量積a·b的幾何意義是:a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。即:若a=(x1,y1),b=(x2,y2),則a·b=x1·x2+y1·y2
2、平面向量數量積具有以下性質:
1、a·a=|a|2≥0
2、a·b=b·a
3、k(a·b)=(ka)b=a(kb)
4、a·(b+c)=a·b+a·c
5、a·b=0<=>a⊥b
6、a=kb<=>a//b
7、e1·e2=|e1||e2|cosθ
高考數學必考知識點平面向量加法解析
已知向量AB、BC,再作向量AC,則向量AC叫做AB、BC的和,記作AB+BC,即有:AB+BC=AC。
註:向量的加法滿足所有的加法運算定律,如:交換律、結合律。
高考數學必考知識點平面向量減法解析
1、AB-AC=CB,這種計演算法則叫做向量減法的三角形法則,簡記為:共起點、指被減。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式匯總
1、定比分點
定比分點公式(向量P1P=λ?向量PP2)
設P1、P2是直線上的兩點,P是l上不同於P1、P2的任意一點。則存在一個實數 λ,使 向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
2、三點共線定理
若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a?b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量.
設a=(x,y),b=(x',y')。
3、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
4、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
5、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣?∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)?b=λ(a?b)=(a?λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
6、向量的的數量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a?b。若a、b不共線,則a?b=|a|?|b|?cos〈a,b〉;若a、b共線,則a?b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a?b=x?x'+y?y'。
向量的數量積的運算律
a?b=b?a(交換律);
(λa)?b=λ(a?b)(關於數乘法的結合律);
(a+b)?c=a?c+b?c(分配律);
向量的數量積的性質
a?a=|a|的平方。
a⊥b 〈=〉a?b=0。
|a?b|≤|a|?|b|。
7、向量的數量積與實數運算的主要不同點
(1)向量的數量積不滿足結合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。
(2)向量的數量積不滿足消去律,即:由 a?b=a?c (a≠0),推不出 b=c。
(3)|a?b|≠|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
(1)向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
(2)向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
註:向量沒有除法,“向量AB/向量CD”是沒有意義的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號。
∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當且僅當a、b同向時,左邊取等號;