當前位置:首頁 » 基礎知識 » 數學七年級下冊的知識
擴展閱讀
有什麼沒有續集的動漫 2025-02-10 09:50:14
如何拼唱歌詞 2025-02-10 09:50:07
兒童如何畫男孩 2025-02-10 09:36:00

數學七年級下冊的知識

發布時間: 2024-06-01 15:44:09

① 初一下數學重點

七年級下冊要點總結

第一章 整式的運算

一、單項式、單項式的次數:

只含有數字與字母的積的代數式叫做單項式。單獨的一個數或一個字母也是單項式。

一個單項式中,所有字母的指數的和叫做這個單項式的次數。

二、多項式

1、多項式、多項式的次數、項

幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。

三、整式:單項式和多項式統稱為整式。

四、整式的加減法:

整式加減法的一般步驟:(1)去括弧;(2)合並同類項。

五、冪的運算性質:

1、同底數冪的乘法:a

2、冪的乘方:

3、積的乘方:

4、同底數冪的除法:

六、零指數冪和負整數指數冪:

1、零指數冪:

2、負整數指數冪:

七、整式的乘除法:

1、單項式乘以單項式:

法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘的字母連同它的指數不變,作為積的因式。

2、單項式乘以多項式:

法則:單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

3、多項式乘以多項式:

多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

4、單項式除以單項式:

單項式相除,把系數、同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同它的指數一起作為商的一個因式。

5、多項式除以單項式:

多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

八、整式乘法公式:

1、平方差公式:

2、完全平方公式:

第二章 平行線與相交線

一、餘角和補角:

1、餘角:

定義:如果兩個角的和是直角,那麼稱這兩個角互為餘角。

性質:同角或等角的餘角相等。

2、補角:

定義:如果兩個角的和是平角,那麼稱這兩個角互為補角。

性質:同角或等角的補角相等。

二、對頂角:

我們把兩條直線相交所構成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。

對頂角的性質:對頂角相等。

三、同位角、內錯角、同旁內角:

直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。

四、平行線的判定:

1、兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。簡稱:同位角相等,兩直線平行。

2、兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。簡稱:內錯角相等,兩直線平行。

3、兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。簡稱:同旁內角互補,兩直線平行。

補充平行線的判定方法:

(1)平行於同一條直線的兩直線平行。

(2)在同一平面內,垂直於同一條直線的兩直線平行。

(3)平行線的定義。

五、平行線的性質:

(1)兩直線平行,同位角相等。

(2)兩直線平行,內錯角相等。

(3)兩直線平行,同旁內角互補。

六、尺規作圖:

1、作一條線段等於已知線段。

2、作一個角等於已知角。

第三章 生活中的數據

一、科學記數法:

一般地,一個絕對值較小的數可以表示成 的形式,其中 ,n是負整數。

二、近似數和有效數字:

1、近似數:

利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位。

2、有效數字:對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個近似數的有效數字。

三、形象統計圖:

第四章 概率

一、事件發生的可能性;

人們通常用1(或100)來表示必然事件發生的可能性,用0來表示不可能事件發生的可能性。

二、游戲是否公平:

游戲對雙方公平是指雙方獲勝的可能性相同。

三、摸到紅球的概率:

1、概率的意義

P(摸到紅球=

2、確定事件和不確定事件的概率:

(1)必然事件發生的概率為1記作P(必然事件)=1

(2)不可能事件發生的概率為0,P(不可能事件)=0

(3)如果A為不確定事件 ,那麼0<P(A)<1

3、概率的求法:

一般地,如果在一次試驗中,有n種可能的結果,並且它們發生的可能性都相等,事件A包含其中的m個結果,那麼事件A發生的概率為P(A)=

第五章 三角形

一、三角形及其有關概念

1、三角形:

由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內角,簡稱三角形的角。

2、三角形的表示:

三角形用符號「 」表示,頂點是A、B、C的三角形記作「 ABC」,讀作「三角形ABC」。

3、三角形的三邊關系:

(1)三角形的兩邊之和大於第三邊。

(2)三角形的兩邊之差小於第三邊。

(3)作用:

①判斷三條已知線段能否組成三角形

②當已知兩邊時,可確定第三邊的范圍。

③證明線段不等關系。

4、三角形的內角的關系:

(1)三角形三個內角和等於180°。

(2)直角三角形的兩個銳角互余。

5、三角形的穩定性:

三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定性。

6、三角形的分類:

(1)三角形按邊分類:

不等邊三角形

三角形 底和腰不相等的等腰三角形

等腰三角形

等邊三角形

(2)三角形按角分類:

直角三角形(有一個角為直角的三角形)

三角形 銳角三角形(三個角都是銳角的三角形)

斜三角形

鈍角三角形(有一個角為鈍角的三角形)

把邊和角聯系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

7、三角形的三種重要線段:

(1)三角形的角平分線:

定義:在三角形中,一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

性質:三角形的三條角平分線交於一點。交點在三角形的內部。

(2)三角形的中線:

定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。

性質:三角形的三條中線交於一點,交點在三角形的內部。

(3)三角形的高線:

定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

性質:三角形的三條高所在的直線交於一點。銳角三角形的三條高線的交點在它的內部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部;

8、三角形的面積:

三角形的面積= ×底×高

二、全等圖形:

定義:能夠完全重合的兩個圖形叫做全等圖形。

性質:全等圖形的形狀和大小都相同。

三、全等三角形

1、全等三角形及有關概念:

能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

2、全等三角形的表示:

全等用符號「≌」表示,讀作「全等於」。如△ABC≌△DEF,讀作「三角形ABC全等於三角形DEF」。

註:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。

3、全等三角形的性質:全等三角形的對應邊相等,對應角相等。

4、三角形全等的判定:

(1)邊邊邊:有三邊對應相等的兩個三角形全等(可簡寫成「邊邊邊」或「SSS」)。

(2)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成「角邊角」或「ASA」)

(3)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成「角角邊」或「AAS」)

(4)邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成「邊角邊」或「SAS」)

直角三角形全等的判定:

對於特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成「斜邊、直角邊」或「HL」)

第六章 變數之間的關系

1、變數、自變數、因變數:

2、函數的三種表示法:

(1)關系式法

(2)列表法

(3)圖像法

第七章 生活中的軸對稱

一、軸對稱

1、軸對稱圖形:

如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:

對於兩個圖形,如果沿一條直線對折後,它們能夠完全重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。

3、性質:

(1)對應點所連的線段被對稱軸垂直平分。

(2)對應線段相等,對應角相等。

二、角平分線的性質:

角平分線上的點到這個角的兩邊的距離相等。

三、線段的垂直平分線(簡稱中垂線):

定義:垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。

性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。

四、等腰三角形

1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。

2、等腰三角形的性質:

(1)等腰三角形的兩個底角相等

(2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱「三線合一」),

(3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。

3、等腰三角形的判定:

(1)有兩條邊相等的三角形是等腰三角形。

(2)如果一個三角形有兩個角相等,那麼它們所對的邊也相等

五、等邊三角形:

1、等邊三角形:三邊都相等的三角形叫做等邊三角形。

2、等邊三角形的性質:

(1)具有等腰三角形的所有性質。

(2)等邊三角形的各個角都相等,並且每個角都等於60°。

3、等邊三角形的判定

(1)三邊都相等的三角形是等邊三角形。

(2):三個角都相等的三角形是等邊三角形

(3):有一個角是60°的等腰三角形是等邊三角形。

② 初一下冊數學重點知識點總結歸納

在初一階段,初一下冊數學重點知識點總結歸納有哪些呢?以下是我分享給大家的初一下冊數學重點知識點,希望可以幫到你!
初一下冊數學重點知識點
1、 單項式:數字與字母的積,叫做單項式。

2、 多項式:幾個單項式的和,叫做多項式。

3、 整式:單項式和多項式統稱整式。

4、 單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、 多項式的次數:多項式中次數最高的項的次數,就是這個多項式的次數。

6、 餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、 補角:兩個角的和為180度,這兩個角叫做互為補角。

8、 對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、 同位角:在“三線八角”中,位置相同的角,就是同位角。

10、內錯角:在“三線八角”中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在“三線八角”中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

18、全等圖形:兩個能夠重合的圖形稱為全等圖形。

19、變數:變化的數量,就叫變數。

20、自變數:在變化的量中主動發生變化的,變叫自變數。

21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
初一下冊數學重點試題
1.某中學七年級學生外出進行社會實踐活動,如果每輛車坐45人,那麼有15個學生沒車坐;如果每輛車坐60人,那麼可以空出一輛車。問共有幾輛車,幾個學生?

2.福建欣欣電子有限公司向工商銀行申請了甲、乙兩種貸款,共計68萬元,每年需付出利息8.42萬元.甲種貸款每年的利率是12%,乙種貸款每年的利率是13%,求這兩種貸款的數額各是多少?

3.某服裝廠要生產一批某種型號的學生服裝,已知3米長的布料可做上衣2件或褲子3條,一件上衣和一條褲子為一套,計劃用600米長的這種布料生產,應分別用多少布料生產上衣和褲子才能恰好配套?共能生產多少套?

4.某商場按定價銷售某種電器時,每台可獲利48元,按定價的九折銷售該電器6台與將定價降低30元銷售該電器9台所獲得的利潤相等.求該電器每台的進價、定價各是多少元?

5.一張方桌由1個桌面,4條桌腿組成,如果1m3木料可以做方桌的桌面50個或做桌腿300條,現有10m3木料,那麼用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面與桌腿,恰好能配成方桌?能配成多少張方桌.

6.甲、乙二人在上午8時,自A、B兩地同時相向而行,上午10時相距36km,二人繼續前行,到12時又相距36km,已知甲每小時比乙多走2km,求A,B兩地的距離.

7.某中學組織學生春遊,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數量的60座客車,則多出一輛車,且其餘客車恰好坐滿,已知45座客車每日每輛租金為220元,60座客車每日每輛租金為300元.試問:

(1)春遊學生共多少人?原計劃租45座客車多少輛?

(2)若租用同一種車,要使每位同學都有座位,怎樣租車更合算?

8.光明中學9年級甲、乙兩班為希望工程捐款活動中,兩班捐款的總數相同,均多於300元且少於400元,已知甲班有一人捐6元,其餘每人捐9元;乙班有一人捐13元,其餘每人捐8元,求甲、乙兩班學生總人數共是多少人?

9.曉躍汽車銷售公司到某汽車製造廠選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛,用300萬元也可以購進A型轎車8輛,B型轎車18輛.

(1)求A、B兩種型號的轎車每輛分別為多少萬元?

(2)若該汽車銷售公司銷售1輛A型轎車可獲取8000元,銷售1輛B型轎車可獲利5000元,該汽車銷售公司准備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出後總獲利不低於20.4萬元,問有幾種購車方案?在這幾種購車方案中,該汽車銷售公司將這些轎車全部售出後,分別獲利多少萬元?

10.雙蓉服裝店老闆到廠家選購A、B兩種型號的服裝,若購進A種型號服裝9件,B種型號服裝10件,需要1810元;若購進A種型號服裝12件,B種型號服裝8件,需要1880元.

(1)求A、B兩種型號的服裝每件分別為多少元?

(2)若銷售1件A型號服裝可獲利18元,銷售1件B型號服裝可獲利30元,根據市場需求,服裝店老闆決定,購進A型服裝的數量要比購進B型服裝數量的2倍還多4件,且A型服裝最多可購進28件,這樣服裝全部售出後,可使總的獲利不少於699元,問有幾種進貨方案?如何進貨?

11.武漢市江漢一橋維修工程中擬由甲、乙兩個工程隊共同完成某項目,從兩個工程隊的資料可以知道:若兩個工程隊合做24天恰好完成;若兩隊工程隊合做18天後,甲工程隊再單獨做10天,也恰好完成,請問:

(1)甲、乙兩個工程隊單獨完成該項目各需多少天?

(2)已知甲工程隊每天的施工費為0.6萬元,乙工程隊每天的施工費為0.35萬元,要使該項目總的施工費不超過22萬元,則乙工程隊最少施工多少天?

12.某企業在蜀南竹海收購毛竹進行粗加工,每天可加工8噸,每噸獲利800元,如果對毛竹進行精加工,每天可加工1噸,每噸獲利4000元.由於受條件限制,每天只能採用一種方式加工,要求在一月內(30天)將這批毛竹全部銷售.為此企業廠長召集職工開會,讓職工們討論如何加工銷售更合算.甲說:將毛竹全部進行粗加工銷售;乙說:30天都進行精加工,未加工的毛竹直接銷售;丙說:30天中可以幾天粗加工,再用幾天精加工後銷售,請問廠長採用哪位說的方案獲利最大?
初一數學學習方法
一、注重學習內容的銜接

1.初一數學是在小學數學的基礎上進行拓展和提高的。難度適中,廣度有所加大。它與小學數學的最大的不同在於,初一數學的概念明顯增多。小學對於一些概念只要求讀懂就可以了,初一的數學概念要求牢牢掌握,要有一種敢於較真的精神,抓住本質細摳內容,在理解的基礎上掌握概念、運用概念,它貫穿中學數學學習的始終。

2.小學數學的計算相對簡單,中學數學的計算相對繁雜。要盡量培養准確而迅速的計算習慣。這首先需要對前面概念和定義較好的理解和熟練,其次還需要專心和細致,嚴格要求自己不犯粗心大意的錯誤,不要為考試低分找客觀原因,養成凡事認真仔細的習慣。

3.在小學學習的基礎上,培養自己攻克難題的能力。有些學生小學學習過奧數,中學的學習中也會遇到難題,要發揚一種釘子精神,對習題做到一題多解、舉一反三,要知難而上,勇於探索。

二、注重學習方法的培養

1.首先要會學習,好的學習方法是努力抓好學習中的各個環節:預習、聽講、復習、總結、考試。課前預習,才能做到有針對性的聽講,帶著問題聽講,高質量的聽課是中學數學學習的基礎和關鍵,課後復習總結是學習過程的升華,認真完成作業時它的重要體現,不要忽視每一天的作業,正所謂細節決定成敗!只有落實好前面的學習任務,加之以一顆平常心、自信心對待考試,才可能在考試中立於不敗之地。

2.積極培養自主學習習慣。初一課程設置較小學要多出很多,作為老師,要培養學生獨立自主的學習習慣,作為學生更要主動適應學習習慣的改變,要及時主動地發現問題,解決問題,不要將今天的問題過夜!否則後患無窮,要總結出一套適合自己的學習計劃,定期檢查和回顧其實施情況。

3.學會取人之長,補己之短。在你的身邊一定有一些學習較輕松,成績又好的同學,多向他們學習好的學習方法。要做的一項具體的工作時,准備一個"好題本",隨時收錄一些解題的好方法,以及自己曾做錯的習題改正。幾年下來你會發現,你的學習會有飛速的提高,你的解題思路也被有效的打開了,更可貴的事,到中考前,你可以拿出來有針對性的復習,對你來說,只有"它"才是最有針對性的!這樣豈不是事半而功倍。

猜你喜歡:

1. 初一數學上冊知識點匯總整理

2. 初一數學知識點整理

3. 初一數學必考知識點

4. 初中數學知識點全總結

5. 初一下學期數學所有知識點

③ 初一數學下冊知識點匯總

學習,是每個學生每天都在做的事情,學生們從學習中獲得大量的知識,下面是我整理的關於初一數學下冊知識點匯總,歡迎閱讀,希望能幫助到大家,謝謝!



初一數學下冊知識點匯總

一、三角形的基本概念:

1、三角形的概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形。

三角形ABC記作:△ABC。

2、相關概念:

三角形的邊:組成三角形的三條線段。記作:AB、AC、BC。

三角形的內角:每兩條邊所組成的角(簡稱三角形的角)。

記作:∠A、∠B、∠C

3、三角形的分類:

二、三角形三邊關系:

1、三角形任何兩邊的和大於第三邊。

幾何語言:若a、b、c為△ABC的三邊,則a+b>c,a+c>b,b+c>a.

想一想:這個在實際解題中該怎樣應用?

2、三邊關系也可表述為:三角形任何兩邊的差都小於第三邊。

三、三角形的內角和定理:

三角形三個內角的和等於1800。

幾何語言:△ABC中,∠A+∠B+∠C=1800。

四、三角形的三線:

問題1、如何作三角形的高線、角平分線、中線?

問題2、三角形的高線、角平分線、中線各有多少條,它們的交點在什麼位置?

問題3、三角形的中線有什麼應用?

初一數學下冊知識點匯總

1.已知面積和底邊長求高

回想三角形的面積公式。三角形的面積公式是A=1/2bh。

A=三角形的面積

b=三角形底邊長

h=三角形底邊的高

看一下你的三角形,確定哪些變數是已知的。在本例中,你已經知道了面積,可以將面積的數值代入公式中的A。你也已知底邊長的大小,可以將數值代入公式中的"'b'"。如果你不知道面積或底邊長,那麼你只能嘗試 其它 的 方法 了。

無論三角形是如何繪制的,三角形的任意一邊都可以作為底邊。為了更形象地展示它,你可以想像把三角形進行旋轉,直到已知邊長位於底部。

例如,如果已知三角形面積是20,一邊長為4,那麼帶入得A=20,b=4。

將數值代入公式A=1/2bh,然後進行計算。首先將底邊長(b)乘以1/2,然後用面積(A)除以它。運算得到的結果應該就是三角形的高!

本例中:20=1/2(4)h

20=2h

10=h

2.求等邊三角形的高

回憶等邊三角形的特徵。等邊三角形有三條相等大小的側邊,每個夾角都是60度。如果你將等邊三角形分成兩半,就會得到兩個相同的直角三角形。

在本例中,我們使用邊長為8的等邊三角形。

回憶勾股定理。勾股定理將兩個直角邊描述為a和b、斜邊為c:a2+b2=c2。我們可以使用這個定理求出等邊三角形的高!

將等邊三角形對半切開,並將數值代入變數a、b和c。斜邊c等於原始的斜邊長。直角邊a的長度就變成了邊長的1/2,直角邊b就是所求的三角形的高。

以邊長為8的等邊三角形為例,其中c=8,a=4。

將數值代入勾股定理的公式,求出b2。邊長c和a分別乘以自身求平方值。然後用c2減去a2。

42+b2=82

16+b2=64

b2=48

求出b2的開方值就得到三角形的高了!使用計算機的開根號計算求得Sqrt(2)。得到的結果就是等邊三角形的高!

b=Sqrt(48)=6.93

3.已知邊長和角求高

確定你已知的變數。如果你知道三角形的一個夾角和一條邊長,如果這個角是底邊和已知側邊的夾角,或是已知三條邊長,你就能求出三角形的高。我們將三角形的三邊稱之為a、b和c,三角為A、B和C。

如果你已知三角形的三邊邊長,可以使用海倫公式來求出三角形的高。

如果你已知兩條邊長和一個角,可以使用面積公式A=1/2ab(sinC)來求解。

如果你已知三條邊長也可以使用海倫公式。海倫公式分為兩部分。首先,你必須求解出變數s,它等於三角形周長的一半。你可以使用這個公式:s=(a+b+c)/2求出。

例如,三角形三邊長為a=4、b=3和c=5,故而s=(4+3+5)/2,也就是s=(12)/2。求出s=6。

然後使用海倫公式的第二部分。面積=sqr(s(s-a)(s-b)(s-c)。再將面積代入含有高的面積公式:1/2bh(或1/2ah、1/2ch)。

計算求出高。在本例中,就是1/2(3)h=sqr(6(6-4)(6-3)(6-5)。化簡得3/2h=sqr(6(2)(3)(1),也就是3/2h=sqr(36)。使用計算器計算開方,得到3/2h=6。因此,使用邊長b作為底邊,得出,三角形的高等於4。

如果已知一條邊長和一個夾角,使用兩邊和一角的面積公式來求解。用三角形面積公式1/2bh來代替上述公式中的面積。公式就變成了1/2bh=1/2ab(sinC),化簡得到h=a(sinC),這樣可以消除一條未知邊長的變數。

根據已知變數來求解等式。例如,已知a=3、C=40度,代入公式得「h=3(sin40)。使用計算器來計算等式,得到高h約等於1.928。

初一數學下冊知識點匯總

從一個角的頂點引出一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的角平分線(bisectorofangle).三角形三個角平分線的交點叫做內心.

角平分線的性質

1.角平分線上的一點到角的兩邊距離相等.2.角的內部到角的兩邊距離相等的點在角的平分線上.(逆運用)三角形頂點到其內角的角平分線交對邊的點連的一條線段,叫三角形的角平分線.三角形的角平分線不是角的平分線:一個是線段,一個是射線.三角形角平分線有個有趣的性質:三角形ABC中角A的平分線為AD,則AB:AC=BD:CD.三角形的三條角平分線相交於一點,該點為三角形的內心,且內心到三條邊的距離相等.

3.角平分線是到角兩邊距離相等的所有點的集合.

中線

連接一個頂點與它對邊中點的線段,叫做三角形的中線.中線的交點為重心,重心分中線2:1(頂點到重心:重心到對邊中點).中線:三角形中,連結一個頂點和它所對邊的中點的連線段叫做三角形的中線.中線也是線段,一個三角形有3條中線.在一個角為30°直角三角形中.60°角所對應的邊上的中線為斜邊的一半.在一個三角形中,其一短邊為斜邊的一半,且這個三角形為30°的直角三角行,那麼,60°角所對的邊上的中線在此三角形中有三個等量.

圖形變換的簡單應用

考點一、平移(3~5分)

1、定義

把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。

2、性質

(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動

(2)連接各組對應點的線段平行(或在同一直線上)且相等。

考點二、軸對稱(3~5分)

1、定義

把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線成軸對稱,該直線叫做對稱軸。

2、性質

(1)關於某條直線對稱的兩個圖形是全等形。

(2)如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線。

(3)兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上。

3、判定

如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。

4、軸對稱圖形

把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

考點三、旋轉(3~8分)

1、定義

把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。

2、性質

(1)對應點到旋轉中心的距離相等。

(2)對應點與旋轉中心所連線段的夾角等於旋轉角。

考點四、中心對稱(3分)

1、定義

把一個圖形繞著某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

2、性質

(1)關於中心對稱的兩個圖形是全等形。

(2)關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。

(3)關於中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。

3、判定

如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱。

4、中心對稱圖形

把一個圖形繞某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。

考點五、坐標系中對稱點的特徵(3分)

1、關於原點對稱的點的特徵

兩個點關於原點對稱時,它們的坐標的符號相反,即點P(x,y)關於原點的對稱點為P』(-x,-y)

2、關於x軸對稱的點的特徵

兩個點關於x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關於x軸的對稱點為P』(x,-y)

3、關於y軸對稱的點的特徵

兩個點關於y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關於y軸的對稱點為P』(-x,y)

初一數學下冊知識點匯總相關 文章 :

★ 初一數學下冊基本知識點總結

★ 初一數學下冊知識點

★ 初一數學下冊知識點歸納總結

★ 初一下期數學知識點總結

★ 初一下冊數學預習方法以及知識點匯總

★ 初一數學知識點歸納與學習方法

★ 初一下冊數學重點知識點總結歸納

★ 初一數學下冊知識點總結

★ 初一下數學知識點歸納

★ 初一數學課本知識點總結

④ 初一數學下冊課本知識點

課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9. 三角形內角和定理:三角形三個內角的和等於180°

推論1 直角三角形的兩個銳角互余;

推論2 三角形的一個外角等於和它不相鄰的兩個內角和;

推論3 三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10. 三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

初一數學知識點整理

1.有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)其中a表示橫軸,b表示縱軸。

2.平面直角坐標系:在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與垂直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,豎直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

6.特殊位置的點的坐標的特點

(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。

(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。

(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。

(4)點到軸及原點的距離。

點到x軸的距離為|y|;點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;

7.在平面直角坐標系中對稱點的特點

(1)關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。(橫同縱反)

(2)關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。(橫反縱同)

(3)關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。(橫縱皆反)

8.各象限內和坐標軸上的點和坐標的規律

第一象限:(+,+)正正

第二象限:(-,+)負正

第三象限:(-,-)負負

第四象限:(+,-)正負

x軸正方向:(+,0)

x軸負方向:(-,0)

y軸正方向:(0,+)

y軸負方向:(0,-)

x軸上的點的縱坐標為0,y軸上的點的橫坐標為0.

原點:(0,0)

註:以數對形式(x,y)表示的坐標系中的點(如2,-4),"2"是x軸坐標,"-4"是y軸坐標。

數學知識點七年級

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1)

2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題

相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題

追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題

順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題

溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 長度單位換算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升


初一數學下冊課本知識點相關 文章 :

★ 初一數學課本知識點總結

★ 初一數學下冊知識點

★ 初一數學下冊基本知識點總結

★ 初一數學下冊知識點歸納總結

★ 初一數學下冊知識點匯總

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 初一下學期數學所有知識點

★ 初中七年級數學課文知識點

★ 七年級下冊數學的知識點

★ 初一下冊數學知識點總結

⑤ 七年級數學下冊知識點整理

每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些 七年級數學 知識點的學習資料,希望對大家有所幫助。

七年級數學知識點歸納

變數之間的關系

一理論理解

1、若Y隨X的變化而變化,則X是自變數Y是因變數。

自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量,數值保持不變的量叫做常量。

3、若等腰三角形頂角是y,底角是x,那麼y與x的關系式為y=180-2x.

2、能確定變數之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間

二、列表法:採用數表相結合的形式,運用表格可以表示兩個變數之間的關系。列表時要選取能代表自變數的一些數據,並按從小到大的順序列出,再分別求出因變數的對應值。列表法的特點是直觀,可以直接從表中找出自變數與因變數的對應值,但缺點是具有局限性,只能表示因變數的一部分。

三.關系式法:關系式是利用數學式子來表示變數之間關系的等式,利用關系式,可以根據任何一個自變數的值求出相應的因變數的值,也可以已知因變數的值求出相應的自變數的值。

四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點

八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:

1.隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而增加(大));

2.隨著自變數x的逐漸增加(大),因變數y逐漸減小(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而減小).

注意:如果在整個過程中事物的變化趨勢不一樣,可以採用分段描述.例如在什麼范圍內隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)等等.

九、估計(或者估算)對事物的估計(或者估算)有三種:

1.利用事物的變化規律進行估計(或者估算).例如:自變數x每增加一定量,因變數y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;

2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變數y的值;

3.利用關系式:首先求出關系式,然後直接代入求值即可.

初一數學下冊知識點 總結

一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13、解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的方法並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

14、一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路:

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

初一數學方法技巧

我們怎樣預習呢?

曰:「先 說說 學習的目標:

(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:

(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。


七年級數學下冊知識點相關 文章 :

★ 初一數學下冊知識點歸納總結

★ 初一數學下冊知識點

★ 初一數學下冊基本知識點總結

★ 七年級下冊數學復習提綱

★ 初一下期數學知識點總結

★ 初中數學七年級下冊知識點提綱

★ 2021七年級下冊數學復習提綱

★ 七年級下數學知識點總結

★ 七年級數學下冊知識點及練習題

★ 人教版初一數學下冊知識點

⑥ 初一下冊數學知識點總結

初一是我們邁入中學的第一步,那麼初一下冊數學知識點那麼總結過嗎?如果沒有請來我這里瞧瞧。下面是由我為大家整理的「初一下冊數學知識點總結」,僅供參考,歡迎大家閱讀。

初一下冊數學知識點總結

1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。鄰補角的性質:鄰補角互補。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。

5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。

②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。

7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

性質4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則a∥c。

拓展閱讀:初二下冊數學知識點總結

初二下冊數學知識點:第一章 一元一次不等式和一元一次不等式組

一、一般地,用符號「<」(或「≤」),「>」(或「≥」)連接的式子叫做不等式。

能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.

由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。

等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.

二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (注:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac

不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c

三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1八年級數學下冊全冊復習提綱八年級數學下冊全冊復習提綱。

四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。

六、常考題型: 1、 求4x-6>7x-12的非負數解. 2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.

3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。

初二下冊數學知識點:第二章 分解因式

一、公式:1、 ma+mb+mc=m(a+b+c) 2、a2-b2=(a+b)(a-b) 3、a2±2ab+b2=(a±b)2

二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解與整式乘法是相反方向的變形。

三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.

四、分解因式的一般步驟為:(1)若有「-」先提取「-」,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.

五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法八年級數學下冊全冊復習提綱學習總結。2、運用公式法。

初二下冊數學知識點:第三章 分式

注:1°對於任意一個分式,分母都不能為零.

2°分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.

3°分式的值為零含兩層意思:分母不等於零;分子等於零。( 中B≠0時,分式有意義;分式A/B中,當B=0分式無意義;當A=0且B≠0時,分式的值為零。)

常考知識點:1、分式的意義,分式的化簡。2、分式的加減乘除運算。3、分式方程的解法及其利用分式方程解應用題。

初二下冊數學知識點:第四章 相似圖形

一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=k•CD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 ≈0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形。 相似比:相似多邊形對應邊的比叫做相似比.

二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼 .如果(b,d都不為0),那麼ad=bc.2、合比性質:如果 ,那麼 。3、等比性質:如果 =…= (b+d+…+n≠0),那麼 。4、更比性質:若 那麼 。5、反比性質:若 那麼

三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.

四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比。相似多邊形的周長比等於相似比,面積比等於相似比的平方.

五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL

六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似。5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.

七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比。 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比八年級數學下冊全冊復習提綱八年級數學下冊全冊復習提綱。

八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質。2、相似三角形的性質及判定。相似多邊形的性質。

初二下冊數學知識點:第五章 數據的收集與處理

(1)普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查.(2)總體:其中所要考察對象的全體稱為總體。(3)個體:組成總體的每個考察對象稱為個體(4)抽樣調查:(sampling investigation):從總體中抽取部分個體進行調查,這種調查稱為抽樣調查.(5)樣本(sample):其中從總體中抽取的一部分個體叫做總體的一個樣本。(6) 當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查.為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性.還要注意關注樣本的大小. (7)我們稱每個對象出現的次數為頻數。而每個對象出現的次數與總次數的比值為頻率。

數據波動的統計量:極差:指一組數據中最大數據與最小數據的差。方差:是各個數據與平均數之差的平方的平均數。標准差:方差的算術平方根。識記其計算公式。一組數據的極差,方差或標准差越小,這組數據就越穩定。還要知平均數,眾數,中位數的定義。

刻畫平均水平用:平均數,眾數,中位數。 刻畫離散程度用:極差,方差,標准差。

常考知識點:1、作頻數分布表,作頻數分布直方圖。2、利用方差比較數據的穩定性。3、平均數,中位數,眾數,極差,方差,標准差的求法。3、頻率,樣本的定義

第六章 證明

一、對事情作出判斷的句子,就叫做命題. 即:命題是判斷一件事情的句子。一般情況下:疑問句不是命題.圖形的作法不是命題. 每個命題都有條件(condition)和結論(conclusion)兩部分組成. 條件是已知的事項,結論是由已知事項推斷出的事項. 一般地,命題都可以寫成「如果……,那麼……」的形式.其中「如果」引出的部分是條件,「那麼」引出的部分是結論. 要說明一個命題是一個假命題,通常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論.這種例子稱為反例。

二、三角形內角和定理:三角形三個內角的和等於180度八年級數學下冊全冊復習提綱學習總結。1、證明三角形內角和定理的思路是將原三角形中的三個角「湊」到一起組成一個平角.一般需要作輔助線.既可以作平行線,也可以作一個角等於三角形中的一個角.2、三角形的外角與它相鄰的內角是互為補角.

三、三角形的外角與它不相鄰的內角關系是:(1)三角形的一個外角等於和它不相鄰的兩個內角的和.(2)三角形的一個外角大於任何一個和它不相鄰的內角.

四、證明一個命題是真命題的基本步驟是:(1)根據題意,畫出圖形.(2)根據條件、結論,結合圖形,寫出已知、求證.(3)經過分析,找出由已知推出求證的途徑,寫出證明過程. 在證明時需注意:(1)在一般情況下,分析的過程不要求寫出來.(2)證明中的每一步推理都要有根據. 如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。30

所對的直角邊是斜邊的一半。斜邊上的高是斜邊的一半。

常考知識點:1、三角形的內角和定理,及三角形外角定理。2兩直線平行的性質及判定。命題及其條件和結論,真假命題的定義。

⑦ 初一數學下冊知識點

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面是我為大家整理的初一數學下冊知識點,希望能幫助到大家。

目錄

初一數學下冊知識點

初一數學下冊知識點:實數

初一數學學習方法

初一數學下冊知識點

相交線與平行線

一、知識網路結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是

鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,

與 互為鄰補角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;

= 。

5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣

的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;

與 是同位角; 與 是同位角; 與 是同位角。

②在兩條直線(被截線) 之間 ,並且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。

③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。

7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

平行線的性質:

性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,

則 = ; = ; = ; = 。

性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。

性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;

+ = 180°。

性質4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。

8、平行線的判定:

判定1:同位角相等,兩直線平行。如圖5所示,如果 =

或 = 或 = 或 = ,則a∥b。

判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。

判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;

+ = 180°,則a∥b。

判定4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。

9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那麼結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那麼結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。

10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。

平移後,新圖形與原圖形的 形狀 和 大小 完全相同。平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

平移性質:平移前後兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。


初一數學下冊知識點:實數

【知識點一】實數的分類

1、按定義分類: 2.按性質符號分類:

註:0既不是正數也不是負數.

【知識點二】實數的相關概念

1.相反數

(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.

(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關於原點對稱.

(3)互為相反數的兩個數之和等於0.a、b互為相反數 a+b=0.

2.絕對值 |a|≥0.

3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .

4.平方根

(1)如果一個數的平方等於a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.

(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .

5.立方根

如果x3=a,那麼x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.

【知識點三】實數與數軸

數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.

【知識點四】實數大小的比較

1.對於數軸上的任意兩個點,靠右邊的點所表示的數較大.

2.正數都大於0,負數都小於0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.

3.無理數的比較大小:

【知識點五】實數的運算

1.加法

同號兩數相加,取相同的符號,並把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.

2.減法:減去一個數等於加上這個數的相反數.

3.乘法

幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.

4.除法

除以一個數,等於乘上這個數的倒數.兩個數相除,同號得正,異號得負,並把絕對值相除.0除以任何一個不等於0的數都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.

(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.

(3)零指數與負指數

【知識點六】有效數字和科學記數法

1.有效數字:

一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.

2.科學記數法:

把一個數用 (1≤ <10,n為整數)的形式記數的 方法 叫科學記數法.

平面直角坐標系

一、知識網路結構

二、知識要點

1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。

2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3、橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4、坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標,記作P(a,b)。

5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。

7、坐標軸上點的坐標特點①x軸正半軸上的點:橫坐標 0,縱坐標 0;②x軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐

標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填「>」、「<」或「=」)

8、點P(a,b)到x軸的距離是 |b| ,到y軸的距離是 |a| 。

9、對稱點的坐標特點①關於x軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關於y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關於原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。

10、點P(2,3) 到x軸的距離是 ; 到y軸的距離是 ; 點P(2,3) 關於x軸對稱的點坐標為( , );點P(2,3) 關於y軸對稱的點坐標為( , )。

11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與x軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與x軸平行、與y軸垂直 。如果點P(2,3)、Q(2,6),這兩點橫坐標相同,則PQ∥y軸,PQ⊥x軸;如果點P(-1,2)、Q(4,2),這兩點縱坐標相同,則PQ∥x軸,PQ⊥y軸。

12、平行於x軸的直線上的點的縱坐標相同;平行於y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點P(a,b) 在一、三象限角平分線上,則P點的橫坐標與縱坐標相同,即 a = b ;如果點P(a,b) 在二、四象限角平分線上,則P點的橫坐標與縱坐標互為相反數,即 a = -b 。

13、表示一個點(或物體)的位置的方法:一是准確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。

14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按「左減右加、上加下減」的規律進行。如將點P(2,3)向左平移2個單位後得到的點的坐標為( , );將點P(2,3)向右平移2個單位後得到的點的坐標為( , );將點P(2,3)向上平移2個單位後得到的點的坐標為( , );將點P(2,3)向下平移2個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向下平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向下平移5個單位後得到的點的坐標為( , )。


初一 數學 學習方法

一、多看

主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎麼閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:

1. 課前預習 閱讀。預習課文時,要准備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助於理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。

2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批註,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。

3.課後復習閱讀。課後復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課後,必須先閱讀課本,然後再做作業;一個單元後,應全面閱讀課本,對本單元的內容前後聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。

二、多想

主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。

同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納 總結 數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。

三、多做

主要是指做習題,學數學一定要做習題,並且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什麼方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。

四、多問

是指在學習過程中要善於發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有 經驗 的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那麼,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不願意動腦筋,不去思考,當然發現不了什麼問題,也提不出疑問。發現問題後,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善於提出問題、虛心學習的人,才有可能成為真正的學習上的強者。


初一數學下冊知識點相關 文章 :

★ 數學七年級下冊知識點

★ 七年級下冊數學知識點

★ 七年級數學下冊復習知識點

★ 初一下冊數學知識點歸納總結

★ 初一數學下冊單元知識點總結

★ 七年級下冊數學的知識點

★ 初一下冊數學重點知識點總結歸納

★ 新版初一數學下冊知識點歸納

★ 初一數學下冊知識點歸納

★ 七年級下數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();