當前位置:首頁 » 基礎知識 » 初一數學第二章代數式知識點總結
擴展閱讀
如何暗示老同學還錢 2024-11-27 22:39:54
初中同學之間送什麼好 2024-11-27 22:33:45

初一數學第二章代數式知識點總結

發布時間: 2024-06-01 07:37:54

❶ 初一數學知識點總結歸納大全

很多同學蠢局在復習初一數學時找不到重點,因為沒有做過系統的總結,導致復習效率不高。下面是由我為大家整理的「初一數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

七年級數學知識點總結

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個槐檔蘆特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反鉛帶數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

拓展閱讀:初一數學考試答題技巧

選擇題的答題技巧

掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。

首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

填空題答題技巧

要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。

對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

❷ 七年級數學上冊知識點總結第二章

勤奮至關重要!只有勤奮學習,才能成就美好人生!勤奮出天才,這是一面永不褪色的旗幟,它永遠激勵我們不斷追求不斷探索。下面給大家分享一些關於 七年級數學 上冊知識點 總結 第二章,希望對大家有所幫助。

整式的加減

一.用字母表示數(代數初步知識)

1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式;用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。

2. 代數式書寫規范:

(1)數與字母相乘,或字母與字母相乘中通常使用「· 」 乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「· 」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .

出現除式時,用分數表示;

(7)若運算結果為加減的式子,當後面有單位時,要用括弧把整個式子括起來。

3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數可以是:2n ,奇數可以是:2n+1;三個連續整數可以是: n-1、n、n+1 ;

(4)若b>0,若正數是:a2+b ,負數是: -a2-b ,非負數可以是: a2 ,非正數可以是:-a2 .

二.整式

1.單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。

2.單項式的系數:單項式中的數字因數;單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;

3.單項式的次數:一個單項式中,所有字母的指數和

4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。

多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。

注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

5整式:單項式和多項式統稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式. 整式分類為: .

注意:分母上含有字母的不是整式。

6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.

三.整式的加減

1.合並同類項

2同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

3合並同類項的法則:同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。

4合並同類項的步驟:(1)准確的找出同類項;(2)運用加法交換律,把同類項交換位置後結合在一起;(3)利用法則,把同類項的系數相加,字母和字母的指數不變;(4)寫出合並後的結果。

5去括弧

去括弧的法則:

(1)括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項的符號都不變;

(2)括弧前面是「—」號,把括弧和它前面的「—」號去掉,括弧里各項的符號都要改變。

6添括弧法則:添括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

7整式的加減:進行整式的加減運算時,如果有括弧先去括弧,再合並同類項;整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.

8整式加減的步驟:(1)列出代數式;(2)去括弧;(3)添括弧(4)合並同類項。


七年級數學上冊知識點總結第二章相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊第二章的總結手抄報

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊知識要點

★ 數學初一第二章整式的加減

★ 初一數學上冊知識點總結

★ 七年級上冊數學知識點總結三篇

★ 初一數學上冊重點知識整理

★ 七年級上冊數學全冊概念總結復習

★ 初中七年級數學知識點歸納整理

❸ 七年級數學知識點總結歸納大全

經過一年的學習,你掌握了哪些知識點呢,一起來查漏補缺吧!下面是由我為大家整理的「七年級數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

七年轎晌級數學知識點總結歸納大全

七年級數學知識點總結1

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數仿神是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結2

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一閉大鋒次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結3

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

❹ 代數式知識點總結

引導語:代數式是初中數學學習中一個非常重要的組成部分,那麼代數式應該怎麼學呢?接下來是我為你帶來收集整理的代數式知識點總結,歡迎閱讀!

一、代數式的定義:

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

注意:(1)單個數字與字母也是代數式;(2)代數式與公式、等式的區別是代數式中不含等號,而公式和等式中都含有等號;(3)代數式可按運算關系和運算結果兩種情況理解。

三、整式:單項式與多項式統稱為整式。

1.單項式:數與字母的積所表示的代數式叫做單項式,單項式中的數字因數叫做單項式的系數;單項式中所有字母的指數的和叫做單項式的次數。特別地,單獨一個數或者一個字母也是單項式。

2.多項式:幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項;在多項式里,次數最高項的次數就是這個多項式的次數。

四、升(降)冪排列:

把一個多項式按某一個字母的指數從小到大(或從大到小)的順序排列起來,叫做把多項式按這個字母升(降)冪排列。

五、代數式書寫要求:

1.代數式中出現的乘號通常用「·」表示或者省略不寫;數與字母相乘時,數應寫在字母前面;數與數相乘時,仍用「×」號;

2.數字與字母相乘、單項式與多項式相乘時,一般按照先寫數字,再寫單項式,最後寫多項式的書寫順序.如式子(a+b)·2·a 應寫成2a(a+b);

3.帶分數與字母相乘時,應先把帶分數化成假分數後再與字母相乘;

4.在代數式中出現除法運算時,按分數的寫法來寫;

5.在一些實際問題中,有時表示數量的代數式有單位名稱,如果代數式是積或商的形式,則單位直接寫在式子後面;如果代數式是和或差的形式,則必須先把代數式用括弧括起來,再將單位名稱寫在式子的後面,如2a米,(2a-b)kg。

六、系數與次數

單項式的'系數和次數,多項式的項數和次數。

1.單項式的系數:單項式中的數字因數叫做單項式的系數。

注意:(1)單項式的系數包括它前面的符號;

(2)若單項式的系數是"1」或-1「時,"1"通常省略不寫,但「-」號不能省略。

2.單項式的次數:單項式中所有字母的指數和叫做單項式的次數。

注意:(1)單項式的次數是它含有的所有字母的指數和,只與字母的指數有關,與其系數無關;

(2)單項式中字母的指數為1時,1通常省略不寫,在確定單項式的次數時,一定不要忘記被省略的1。

3.多項式的次數:多項式中次數最高的項的次數就是多項式的次數.

4.多項式的項數:在多項式中,每個單項式都叫做多項式的項,其中不含字母的項稱為常數項。一個多項式有幾項,就叫幾項式,它的項數就是幾。多項式的項數實質是「和」 中單項式的個數。

七、列代數式:

用含有數、字母和運算符號的式子把問題中的數量表示出來就是列代數式。

正確列出代數式,要掌握以下幾點:

(1)列代數式的關鍵是理解和找出問題中的數量關系;

(2)要掌握一些常見的數量關系如行程問題、工程問題、濃度問題、數字問題等;

(3)要善於抓住問題中的關鍵詞語,如和、差、積、商、大、小、幾倍、平方、多、少等。

八、代數式求值:

一般地,用數值代替代數式中的字母,按照代數式中指明的運算計算的結果叫做代數式求值。

代數式求值的三種方法:1.直接代入求值;2.化簡代入求值;3.整體代入求值。

常見考法

列代數式與代數式求值是中考的必考知識點,它涉及的知識范圍廣,可與實際問題(如乘車,購物、儲蓄、稅收等)相結合,特別的探索規律列代數式這類考題為中考命題者提供了廣泛的空間,是近幾年的熱點,這類題通常是從一列數、一個數陣、一個等式、一組圖形中,觀察出規律,並嘗試歸納出代數式或公式,再加以驗證。

誤區提醒

(1)列代數式時,由於審題不清,對條件理解不透,很容易搞錯運算順序而列錯代數式;(2)求代數式的值,將代數式中字母用相應的數值後,代數式就變成了實數的混合運算。如果沒有對實數運算掌握好,就會出現運算順序搞錯的現象。(3)在進行規律探索中,由於在審題中沒有抓住問題的性質,常常得出不能完全反映全部規律的錯誤規律,出現以點概面,以偏概全的現象。

❺ 初一數學代數式知識點有哪些

初一數學代數式知識點有:

一、代數式基礎

1.代數式:用運算符號(加、減、乘、除、乘方、開方)把數或表示數的字母連接所成的式子,叫做代數式。單獨的一個數或一個字母也是代數式,代數式中不含「=」、「>」、「<」、「≠」等符號。

2.代數式的書寫規范

(1)字母與數字或字母與字母相乘時,通常把乘號寫成「· 」或省略不寫。

(2)除法運算一般寫成分數的形式。

(3)字母與數字相乘時,通常把數字寫在字母的前面。

(4)字母前面的數字是分數的,如果既能寫成帶分數又能寫成假分數,一般寫成假分數的形式。

(5)如果字母前面的數字是1或-1,「1」通常省略不寫,如1×ab寫作ab,-1×ab寫作-ab。

3.代數式的值

一般地,用數值代替代數式里的字母,按照代數式中的運算關系計算得出的結果,叫做代數式的值,常用的方法有:(1)直接代入法;(2)整體代入法。

二、整式的概念

1.單項式

表示數與字母或字母與字母的積式子叫單項式,特別地,單獨的一個數或一個字母也是單項式。單項式中「只含乘或乘方,不含加減」,單項式中的數字因數叫做這個單項式的系數。圓周率π是常數,單項式中出現π時應看作系數。

一個單項式中,所有字母的指數的和叫做這個單項式的次數,不包括系數的指數,單獨一個非零的數是零次單項式。

2.多項式

幾個單項式的和叫做多項式,多項式中的每個單項式叫做多項式的項,不含字母的項叫做常數項。多項式中次數最高項的次數,叫做這個多項式的次數。

為便於多項式的運算,可以用加法交換律將多項式中各項按照某個字母的指數的大小順序重新排列。把一個多項式按某一個字母的指數從大到小的順序排列起來稱為降冪排列;把一個多項式按某一個字母的指數從小到大的順序排列起來稱為升冪排列。

3.整式

單項式與多項式統稱為整式,所有的整式的分母中不含字母。

❻ 七年級上冊數學重點知識點總結

為了方便大家更好的學習以及復習初一上冊的數學知識,下面總結了七年級上冊數學知識點,供大家參考。

代數式

1.用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2.用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

三角形

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

❼ 初一數學代數式知識點有哪些

初一數學代數式知識點如下:

1、0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數。

2、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

初一數學的方法:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

❽ 2022七年級數學知識點歸納 初一數學知識點總結

很多初中生都被數學成績而困惱著,數學是學霸的專屬,但菜鳥也可以在短期內提高數學成績,應付考試綽綽有餘,為幫助大家能夠提高數學成績。下面,我特意為大家整理了七年級數學知識點歸納,希望能幫助到大家。

代數初步知識

1.代數式:用運算符號"+-×÷……"連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用"·"乘,或省略不寫;

(2)數與數相乘,仍應使用"×"乘,不用"·"乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.

3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.

有理數負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

一元一次方程

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3.條件:一元一次方程必須同時滿足4個條件:

(1)它是等式;

(2)分母中不含有未知數;

(3)未知數最高次項為1;

(4)含未知數的項的系數不為0.

以上就是我為大家整理的七年級數學知識點歸納,希望能幫助到大家,更多中考信息可以繼續關注本站!