當前位置:首頁 » 基礎知識 » 寫的好的數學知識點題目
擴展閱讀
腎綜如何落實基礎護理 2024-11-27 22:12:49

寫的好的數學知識點題目

發布時間: 2024-05-31 14:52:37

① 初中數學知識點及精選試題

精選試題
1、一個六位數,如果它的前三位數碼與後三位數碼完全相同,順序也相同,由此六位數可以被()整除。
A. 111 B. 1000 C. 1001 D. 1111
解:依題意設六位數為 ,則 =a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整數,所以能被1001整除。故選C
方法二:代入法
2、若 ,則S的整數部分是____________________
解:因1981、1982……2001均大於1980,所以 ,又1980、1981……2000均小於2001,所以 ,從而知S的整數部分為90。

3、設有編號為1、2、3……100的100盞電燈,各有接線開關控制著,開始時,它們都是關閉狀態,現有100個學生,第1個學生進來時,凡號碼是1的倍數的開關拉了一下,接著第二個學生進來,由號碼是2的倍數的開關拉一下,第n個(n≤100)學生進來,凡號碼是n的倍數的開關拉一下,如此下去,最後一個學生進來,把編號能被100整除的電燈上的開關拉了一下,這樣做過之後,請問哪些燈還亮著。
解:首先,電燈編號有幾個正約數,它的開關就會被拉幾次,由於一開始電燈是關的,所以只有那些被拉過奇數次的燈才是亮的,因為只有平方數才有奇數個約數,所以那些編號為1、22、32、42、52、62、72、82、92、102共10盞燈是亮的。

4、某商店經銷一批襯衣,進價為每件m元,零售價比進價高a%,後因市場的變化,該店把零售價調整為原來零售價的b%出售,那麼調價後每件襯衣的零售價是 ()
A. m(1+a%)(1-b%)元 B. m•a%(1-b%)元
C. m(1+a%)b%元 D. m(1+a%b%)元
解:根據題意,這批襯衣的零售價為每件m(1+a%)元,因調整後的零售價為原零售價的b%,所以調價後每件襯衣的零售價為m(1+a%)b%元。
應選C
5、如果a、b、c是非零實數,且a+b+c=0,那麼 的所有可能的值為 ()
A. 0 B. 1或-1 C. 2或-2 D. 0或-2

解:由已知,a,b,c為兩正一負或兩負一正。
①當a,b,c為兩正一負時:

②當a,b,c為兩負一正時:

由①②知 所有可能的值為0。
應選A

6、在△ABC中,a、b、c分別為角A、B、C的對邊,若∠B=60°,則 的值為 ()
A. B.
C. 1 D.
解:過A點作AD⊥CD於D,在Rt△BDA中,則於∠B=60°,所以DB= ,AD= 。在Rt△ADC中,DC2=AC2-AD2,所以有(a- )2=b2- C2,整理得a2+c2=b2+ac,從而有
應選C

7、設a<b<0,a2+b2=4ab,則 的值為 ()
A. B. C. 2 D. 3
解:因為(a+b)2=6ab,(a-b)2=2ab,由於a<b<0,得 ,故 。
應選A
8.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,則多項式a2+b2+c2-ab-bc-ca的值為 ()
A. 0 B. 1 C. 2 D. 3

9、已知abc≠0,且a+b+c=0,則代數式 的值是 ()
A. 3 B. 2 C. 1 D. 0

10、某商品的標價比成本高p%,當該商品降價出售時,為了不虧損成本,售價的折扣(即降價的百分數)不得超過d%,則d可用p表示為_____
解:設該商品的成本為a,則有a(1+p%)(1-d%)=a,解得

11、已知實數z、y、z滿足x+y=5及z2=xy+y-9,則x+2y+3z=_______________
解:由已知條件知(x+1)+y=6,(x+1)•y=z2+9,所以x+1,y是t2-6t+z2+9=0的兩個實根,方程有實數解,則△=(-6)2-4(z2+9)=-4z2≥0,從而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=8

12.氣象愛好者孔宗明同學在x(x為正整數)天中觀察到:①有7個是雨天;②有5個下午是晴天;③有6個上午是晴天;④當下午下雨時上午是晴天。則x等於()
A. 7 B. 8 C. 9 D. 10
選C。設全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由題可得關系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,於x=a+b+c+d=9。

13、有編號為①、②、③、④的四條賽艇,其速度依次為每小時 、 、 、 千米,且滿足 > > > >0,其中, 為河流的水流速度(千米/小時),它們在河流中進行追逐賽規則如下:(1)四條艇在同一起跑線上,同時出發,①、②、③是逆流而上,④號艇順流而下。(2)經過1小時,①、②、③同時掉頭,追趕④號艇,誰先追上④號艇誰為冠軍,問冠軍為幾號?
解:出發1小時後,①、②、③號艇與④號艇的距離分別為

各艇追上④號艇的時間為

對 > > > 有 ,即①號艇追上④號艇用的時間最小,①號是冠軍。

14.有一水池,池底有泉水不斷湧出,要將滿池的水抽干,用12台水泵需5小時,用10台水泵需7小時,若要在2小時內抽干,至少需水泵幾台?

解:設開始抽水時滿池水的量為 ,泉水每小時湧出的水量為 ,水泵每小時抽水量為 ,2小時抽干滿池水需n台水泵,則

由①②得 ,代入③得:
∴ ,故n的最小整數值為23。
答:要在2小時內抽干滿池水,至少需要水泵23台

15.某賓館一層客房比二層客房少5間,某旅遊團48人,若全安排在第一層,每間4人,房間不夠,每間5人,則有房間住不滿;若全安排在第二層,每3人,房間不夠,每間住4人,則有房間住不滿,該賓館一層有客房多少間?

解:設第一層有客房 間,則第二層有 間,由題可得

由①得: ,即
由②得: ,即
∴原不等式組的解集為
∴整數 的值為 。
答:一層有客房10間。

16、某生產小組開展勞動競賽後,每人一天多做10個零件,這樣8個人一天做的零件超過200個,後來改進技術,每人一天又多做27個零件,這樣他們4個人一天所做零件就超過勞動競賽中8個人做的零件,問他們改進技術後的生產效率是勞動競賽前的幾倍?
解:設勞動競賽前每人一天做 個零件
由題意
解得
∵ 是整數∴ =16
(16+37)÷16≈3.3
故改進技術後的生產效率是勞動競賽前的3.3倍。

② 初一上冊的20道數學題,最好囊括每章知識點,要答案(不要計算題,最好是應用題)

1.巡邏車每天行駛200千米,每輛巡邏車可以裝載供行駛14天的汽油。現有5輛巡邏車,同時從A地出發,為了讓其中三輛車盡可能向更遠的地方巡邏(然後一起返回),甲乙兩車行至B處後,僅留足自己返回基地的汽油,將多餘的汽油供給其他車使用,問其他三輛車最遠行駛距離是多少?
甲乙跑4天。留下返回用的4天的油,其餘的12天的油給另外3輛車,這樣另外3輛車還可以跑5天,於是最遠可跑
200千米乘以9等於1800千米哦
2.甲、乙兩人今年年齡之和為63,當甲的年齡是乙現在年齡的一半時,乙恰是甲現在的年齡,甲、乙兩人今年各是多少歲?一:解:設甲今年的年齡是x歲,乙今年的年齡是y歲,依題意,得
x + y = 63

y-(x-1/2 y)= x
解之,得
x = 27

y = 36

答:甲今年的年齡是27歲,乙今年的年齡是36歲
二:解:設甲今年的年齡是x歲,乙今年的年齡是y歲,經過m年甲年齡是乙今年年齡的一半,依題意,得
x + y = 63
x + m = 1/2 y
y + m = x
解之,得
x = 27
y = 36
答:甲今年的年齡是27歲,乙今年的年齡是36歲
三:解:設乙今年的年齡是x歲,所以甲今年的年齡是(63-x)歲,依題意,得
1/2 x-(63-x)= 63-2x
解之,得 x = 36
所以 63-x = 63-36 = 27
答:甲今年的年齡是27歲,乙今年的年齡是36歲
學生四:解:依題意,得乙今年的年齡是:
63 ÷( 1/2 ÷ 2 + 1/2 + 1) = 36 (歲)
所以甲今年的年齡是 63-36 = 27(歲)
答:甲今年的年齡是27歲,乙今年的年齡是36歲
3..國家某部委有A,B,C三個機關,這三個機關的公務員依次為88人,52人,60人.在今年機構改革中,要求三個機關按相同比例裁員,使三個機關共留下公務員150人,那麼C機關流下的人數是多少人?
解法一:x+52x/60+88x/60=150 則x=45
解法二:x+52x/60+88x/60=(88+52+60)-150 則x=15
4.抄寫一份材料,如果每分鍾抄30個字 ,則若干小時可抄完,當抄寫到2\5的時候,由於改變方法,將工作效率提高40%,結果提前半小時抄完,問這份材料共有多少字?
設這份材料共有x字,則:x/30-30=(x/30)*(2/5)+(x*3/5)/(30*140%)
解得:x=5250
5..現有含鹽15%的鹽水400g,張老師要求鹽水濃度變為12%,某同學通過計算後加進了110g水,請你通過列方程求解驗證該同學加進的水量是否正確
設需加水x克,則:(400+x)*12%=400*15% 解得x=100