當前位置:首頁 » 基礎知識 » 高二數學選修12文科知識點
擴展閱讀
幼兒園講發電廠知識 2024-11-28 00:16:52

高二數學選修12文科知識點

發布時間: 2024-05-28 18:13:38

① 高二數學知識點歸納總結

想要知道高二數學學些什麼的小夥伴,趕緊來瞧瞧吧!下面由我為你精心准備了「高二數學知識點歸納總結?」,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!

高二數學知識點歸納總結

一、集合、簡易邏輯

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其毀備標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率枝余族;5.獨立重復試驗。

選修Ⅱ

十二、概率與統計

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數

1.導數的猛弊概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

十五、復數

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

拓展閱讀:高中數學高效復習方法有哪些

一、課後及時回憶

如果等到把課堂內容遺忘得差不多時才復習,就幾乎等於重新學習,所以課堂學習的新知識必須及時復習。

可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。

二、定期重復鞏固

即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網路,達到對知識和方法的整體把握。

三、科學合理安排

復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優於集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,並且與其他的學習或娛樂或休息交替進行,不至於單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,並非間隔時間越長越好,而要適合自己的復習規律。

四、重點難點突破

對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點「超市」,可隨時點擊,進行復習。

五、復習效果檢測

隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,限時完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,並適時採取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。

適合理科生的專業有哪些

一、計算機科學與技術

本專業培養從事計算機教學、科學研究和應用的計算機科學與技術學科的高級專門科學技術人才。

畢業後適合到科研部門、教育單位、企業、事業、技術和行政管理部門等單位及各系統、各行業的相關部門工作。

二、生物工程(生物科學)

本專業培養在生物技術與工程領域從事設計、生產、管理和新技術研究、新產品開發的工程技術人才。

畢業後可以在教學、科研部門,也可在農、林、漁、牧、副、醫、葯以及有關的企業與事業單位從事教學、科學研究或其他與生物學有關的技術工作。

三、生物技術

本專業培養生物技術及相關領域的理論及應用性研究,具有創新能力和實踐能力的高級專門技術人才。

畢業後主要到科研機構或高等學校從事科學研究或教學工作或在工業、醫葯、食品、農、林、牧、漁、環保、園林等行業的企業、事業和行政管理部門從事與生物技術有關的應用研究、技術開發、生產管理和行政管理等工作。

四、通信工程

本專業培養掌握光波、無線、多媒體通訊技術、通訊系統和通訊網等方面知識,在通信領域從事研究、設計、製造、運營及從事通訊技術開發與應用、管理與決策的高級工程技術人才。

畢業後到郵電部所屬各郵電管理局及公司從事科研、技術開發、經營及管理工作,也可到軍隊、鐵路、電力等部門從事相應的工作。

五、數學與應用數學

本專業是理工結合,培養具有寬厚的數學基礎,熟練的計算機應用和開發技能,較強的外語(課程)能力,並掌握一定的應用科學知識,運用數學的理論和方法解決實際問題的高級科技人才。

畢業後適合到科研、工程、經濟、金融、管理等部門和高等院校從事教學、計算機應用、軟體設計、信息管理、經濟動態分析和預測等多方面的研究和管理工作。

六、信息與計算科學

本專業培養從事研究、教學、應用軟體開發和管理工作等方面的高級專門人才。畢業後主要到科技、教育和經濟部門從事研究、教學和應用開發及管理工作。

七、應用物理學

本專業培養具有堅實的數理基礎,熟悉物理學基本理論和發展趨勢,熟悉計算機語言,掌握實驗物理基本技能和數據處理的方法,獲得技術開發以及工程技術方面的基本訓練,具有良好的科學素養和創新意識。

畢業後在應用物理、電子信息技術、材料科學與工程、計算機技術等相關科學領域從事應用研究、技術開發以及教學和管理工作。

八、應用化學

本專業以高分子材料、精細化工和計算機在化學化工中的應用技術為專業方向,培養從事相關領域的科學研究,工業開發和管理知識的高級專門人才。

畢業後主要到科研機構、高等學校及企事業單位等從事科學研究、教學及管理。

九、環境科學

本專業培養從事科研、教學、規劃與管理、環境評價和環境監測等工作的高級專業人才。

畢業後主要到科研機構、高等學校、企業事業單位及行政部門等從事科研、教學、環境保護和環境管理等工作。

十、環境工程專業

本專業培養城市和城鎮水、氣、聲、固體廢物等污染防治和給排水工程,水污染控制規劃和水資源保護等方面知識的環境工程學科高級工程技術人才。

畢業後主要到政府、規劃、經濟管理、環保部門和設計單位、工礦企業、科研單位、學校等從事規劃、設計、施工、管理、教育和研究開發方面的工作。

② 高二文科數學內容有哪些

高中數學共學習11本書,其中必修5本,選修6本。必修課本為必修1、2、3、4、5,選修課本為選修2-1,2-2,2-3,4-1(幾何證明選講),4-4(坐標系與參數方程),4-5(不等式選講)。

就教學進度來說,各個學校可根據實際情況安排。通常先學習高考考察的主幹知識,再學習零散知識,速度由慢到快,深度有難到易,難度自始至終與高考理科數學難度相當。

高二是高三的過渡期,高二文科學習成績好的話,高三復習的壓力就相對小一點。所以高二文科數學的學習十分重要。

每學期學習重點:

1、高一第一學期

剛開學不講上述11本書的內容,而是對初、高中的知識進行銜接,繼續深入探討二次函數的性質和應用,韋達定理,二次根式,因式分解等。接著進入必修1的學習,然後是選修2-2的導數部分。本學期學習的核心是函數與導數。

2、高一第二學期

學習必修5的數列部分,必修4,核心是數列、三角與平面向量。

3、高二第一學期

先學習選修4-1,再學習必修2的立體幾何部分,然後是必修2和選修2-1的解析幾何部分的直線、圓和橢圓,核心是平面幾何、立體幾何和解析幾何。

4、高二第二學期

繼續必修2和選修2-1的解析幾何部分的雙曲線、拋物線的學習,接著是隸屬與解析幾何的選修4-4,再學必修5的線形規劃部分,再學選修2-3的其餘部分(包括排列組合與二項式定理、概率與統計)。

接著完成選修2-2的其餘部分(包括定積分、數學歸納法、復數),選修2-1其餘部分(包括常見邏輯用語、空間向量),必修5和選修4-5的不等式部分,必修3(演算法)等零散知識的學習,結束高中理科數學課程。本學期的主幹是解析幾何、概率和統計、排列組合二項式定理。

5、高三全年皆是復習備考。

③ 高二數學選修一重要知識點分析

數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本 方法 是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。以下是我給大家整理的 高二數學 選修一重要知識點分析,希望大家能夠喜歡!

高二數學選修一重要知識點分析1

1、圓的定義

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(x-a)^2+(y-b)^2=r^2

(1)標准方程,圓心(a,b),半徑為r;

(2)求圓方程的方法:

一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

練習題:

2.若圓(x-a)2+(y-b)2=r2過原點,則()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】選B.因為圓過原點,所以(0,0)滿足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二數學選修一重要知識點分析2

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

二、概率定義

(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.

高二數學選修一重要知識點分析3

導數是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

對於可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。


高二數學選修一重要知識點分析相關 文章 :

★ 高二數學知識點總結選修2

★ 高二數學選修1-1圓錐曲線知識點

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點歸納總結

★ 高二數學選修2—1第一章常用邏輯用語知識點復習

★ 高二數學學習方法指導與學習方法總結

★ 高二數學選修2-1拋物線知識點總結

★ 高二數學知識點總結(人教版)

★ 高二數學知識點總結人教版

★ 高中數學知識點總結

④ 楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣

銆 #楂樹簩# 瀵艱銆戝湪瀛︿範鏂扮煡璇嗙殑鍚屾椂榪樿佸嶄範浠ュ墠鐨勬棫鐭ヨ瘑錛岃偗瀹氫細緔錛屾墍浠ヨ佹敞鎰忓姵閫哥粨鍚堛傚彧鏈夊厖娌涚殑綺懼姏鎵嶈兘榪庢帴鏂扮殑鎸戞垬錛屾墠浼氭湁浜嬪崐鍔熷嶇殑瀛︿範銆 鏃 楂樹簩棰戦亾涓轟綘鏁寸悊浜嗐婇珮浜屾暟瀛︿笂鍐屽繀淇浜岀煡璇嗙偣銆嬪笇鏈涘逛綘鐨勫︿範鏈夋墍甯鍔╋紒

1.楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣


銆銆瀵兼暟鏄寰縐鍒嗕腑鐨刞閲嶈佸熀紜姒傚康銆傚綋鍑芥暟=f(x)鐨勮嚜鍙橀噺x鍦ㄤ竴鐐箈0涓婁駭鐢熶竴涓澧為噺螖x鏃訛紝鍑芥暟杈撳嚭鍊肩殑澧為噺螖涓庤嚜鍙橀噺澧為噺螖x鐨勬瘮鍊煎湪螖x瓚嬩簬0鏃剁殑鏋侀檺a濡傛灉瀛樺湪錛宎鍗充負鍦▁0澶勭殑瀵兼暟錛岃頒綔f'(x0)鎴杁f(x0)/dx銆

銆銆瀵兼暟鏄鍑芥暟鐨勫矓閮ㄦц川銆備竴涓鍑芥暟鍦ㄦ煇涓鐐圭殑瀵兼暟鎻忚堪浜嗚繖涓鍑芥暟鍦ㄨ繖涓鐐歸檮榪戠殑鍙樺寲鐜囥傚傛灉鍑芥暟鐨勮嚜鍙橀噺鍜屽彇鍊奸兘鏄瀹炴暟鐨勮瘽錛屽嚱鏁板湪鏌愪竴鐐圭殑瀵兼暟灝辨槸璇ュ嚱鏁版墍浠h〃鐨勬洸綰垮湪榪欎竴鐐逛笂鐨勫垏綰挎枩鐜囥傚兼暟鐨勬湰璐ㄦ槸閫氳繃鏋侀檺鐨勬傚康瀵瑰嚱鏁拌繘琛屽矓閮ㄧ殑綰挎ч艱繎銆備緥濡傚湪榪愬姩瀛︿腑錛岀墿浣撶殑浣嶇Щ瀵逛簬鏃墮棿鐨勫兼暟灝辨槸鐗╀綋鐨勭灛鏃墮熷害銆

銆銆涓嶆槸鎵鏈夌殑鍑芥暟閮芥湁瀵兼暟錛屼竴涓鍑芥暟涔熶笉涓瀹氬湪鎵鏈夌殑鐐逛笂閮芥湁瀵兼暟銆傝嫢鏌愬嚱鏁板湪鏌愪竴鐐瑰兼暟瀛樺湪錛屽垯縐板叾鍦ㄨ繖涓鐐瑰彲瀵礆紝鍚﹀垯縐頒負涓嶅彲瀵箋傜劧鑰岋紝鍙瀵肩殑鍑芥暟涓瀹氳繛緇;涓嶈繛緇鐨勫嚱鏁頒竴瀹氫笉鍙瀵箋

銆銆瀵逛簬鍙瀵肩殑鍑芥暟f(x)錛寈f'(x)涔熸槸涓涓鍑芥暟錛岀О浣渇(x)鐨勫煎嚱鏁般傚繪壘宸茬煡鐨勫嚱鏁板湪鏌愮偣鐨勫兼暟鎴栧叾瀵煎嚱鏁扮殑榪囩▼縐頒負奼傚箋傚疄璐ㄤ笂錛屾眰瀵煎氨鏄涓涓奼傛瀬闄愮殑榪囩▼錛屽兼暟鐨勫洓鍒欒繍綆楁硶鍒欎篃浜庢瀬闄愮殑鍥涘垯榪愮畻娉曞垯銆傚弽涔嬶紝宸茬煡瀵煎嚱鏁頒篃鍙浠ュ掕繃鏉ユ眰鍘熸潵鐨勫嚱鏁幫紝鍗充笉瀹氱Н鍒嗐傚井縐鍒嗗熀鏈瀹氱悊璇存槑浜嗘眰鍘熷嚱鏁頒笌縐鍒嗘槸絳変環鐨勩傛眰瀵煎拰縐鍒嗘槸涓瀵逛簰閫嗙殑鎿嶄綔錛屽畠浠閮芥槸寰縐鍒嗗︿腑鏈涓哄熀紜鐨勬傚康銆

銆銆璁懼嚱鏁=f(x)鍦ㄧ偣x0鐨勬煇涓閭誨煙鍐呮湁瀹氫箟錛屽綋鑷鍙橀噺x鍦▁0澶勬湁澧為噺螖x錛(x0+螖x)涔熷湪璇ラ偦鍩熷唴鏃訛紝鐩稿簲鍦板嚱鏁板彇寰楀為噺螖=f(x0+螖x)-f(x0);濡傛灉螖涓幬攛涔嬫瘮褰撐攛鈫0鏃舵瀬闄愬瓨鍦錛屽垯縐板嚱鏁=f(x)鍦ㄧ偣x0澶勫彲瀵礆紝騫剁О榪欎釜鏋侀檺涓哄嚱鏁=f(x)鍦ㄧ偣x0澶勭殑瀵兼暟璁頒負f'(x0)錛屼篃璁頒綔鈹倄=x0鎴杁/dx鈹倄=x0

2.楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣

銆銆鍩烘湰姒傚康

銆銆鍏鐞1錛氬傛灉涓鏉$洿綰誇笂鐨勪袱鐐瑰湪涓涓騫抽潰鍐咃紝閭d箞榪欐潯鐩寸嚎涓婄殑鎵鏈夌殑鐐歸兘鍦ㄨ繖涓騫抽潰鍐呫

銆銆鍏鐞2錛氬傛灉涓や釜騫抽潰鏈変竴涓鍏鍏辯偣錛岄偅涔堝畠浠鏈変笖鍙鏈変竴鏉¢氳繃榪欎釜鐐圭殑鍏鍏辯洿綰褲

銆銆鍏鐞3錛氳繃涓嶅湪鍚屼竴鏉$洿綰誇笂鐨勪笁涓鐐癸紝鏈変笖鍙鏈変竴涓騫抽潰銆

銆銆鎺ㄨ1:緇忚繃涓鏉$洿綰垮拰榪欐潯鐩寸嚎澶栦竴鐐癸紝鏈変笖鍙鏈変竴涓騫抽潰銆

銆銆鎺ㄨ2錛氱粡榪囦袱鏉$浉浜ょ洿綰匡紝鏈変笖鍙鏈変竴涓騫抽潰銆

銆銆鎺ㄨ3錛氱粡榪囦袱鏉″鉤琛岀洿綰匡紝鏈変笖鍙鏈変竴涓騫抽潰銆

銆銆鍏鐞4錛氬鉤琛屼簬鍚屼竴鏉$洿綰跨殑涓ゆ潯鐩寸嚎浜掔浉騫寵屻

銆銆絳夎掑畾鐞嗭細濡傛灉涓涓瑙掔殑涓よ竟鍜屽彟涓涓瑙掔殑涓よ竟鍒嗗埆騫寵屽苟涓旀柟鍚戠浉鍚岋紝閭d箞榪欎袱涓瑙掔浉絳夈

3.楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣


銆銆1銆佸嚑浣曟傚瀷鐨勫畾涔夛細濡傛灉姣忎釜浜嬩歡鍙戠敓鐨勬傜巼鍙涓庢瀯鎴愯ヤ簨浠跺尯鍩熺殑闀垮害錛堥潰縐鎴栦綋縐錛夋垚姣斾緥錛屽垯縐拌繖鏍風殑姒傜巼妯″瀷涓哄嚑浣曟傜巼妯″瀷錛岀畝縐板嚑浣曟傚瀷銆

銆銆2銆佸嚑浣曟傚瀷鐨勬傜巼鍏寮忥細P錛圓錛=鏋勬垚浜嬩歡A鐨勫尯鍩熼暱搴︼紙闈㈢Н鎴栦綋縐錛夛紱

銆銆璇曢獙鐨勫叏閮ㄧ粨鏋滄墍鏋勬垚鐨勫尯鍩熼暱搴︼紙闈㈢Н鎴栦綋縐錛

銆銆3銆佸嚑浣曟傚瀷鐨勭壒鐐癸細

銆銆1錛夎瘯楠屼腑鎵鏈夊彲鑳藉嚭鐜扮殑緇撴灉錛堝熀鏈浜嬩歡錛夋湁鏃犻檺澶氫釜錛

銆銆2錛夋瘡涓鍩烘湰浜嬩歡鍑虹幇鐨勫彲鑳芥х浉絳夈

銆銆4銆佸嚑浣曟傚瀷涓庡彜鍏告傚瀷鐨勬瘮杈冿細涓鏂歸潰錛屽彜鍏告傚瀷鍏鋒湁鏈夐檺鎬э紝鍗寵瘯楠岀粨鏋滄槸鍙鏁扮殑錛涜屽嚑浣曟傚瀷鍒欐槸鍦ㄨ瘯楠屼腑鍑虹幇鏃犻檺澶氫釜緇撴灉錛屼笖涓庝簨浠剁殑鍖哄煙闀垮害錛堟垨闈㈢Н銆佷綋縐絳夛級鏈夊叧錛屽嵆璇曢獙緇撴灉鍏鋒湁鏃犻檺鎬э紝鏄涓嶅彲鏁扮殑銆傝繖鏄浜岃呯殑涓嶅悓涔嬪勶紱鍙︿竴鏂歸潰錛屽彜鍏告傚瀷涓庡嚑浣曟傚瀷鐨勮瘯楠岀粨鏋滈兘鍏鋒湁絳夊彲鑳芥э紝榪欐槸浜岃呯殑鍏辨с

4.楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣


銆銆涓銆佷笉絳夊叧緋誨強涓嶇瓑寮忕煡璇嗙偣

銆銆1.涓嶇瓑寮忕殑瀹氫箟

銆銆鍦ㄥ㈣備笘鐣屼腑錛岄噺涓庨噺涔嬮棿鐨勪笉絳夊叧緋繪槸鏅閬嶅瓨鍦ㄧ殑錛屾垜浠鐢ㄦ暟瀛︾﹀彿銆併佽繛鎺ヤ袱涓鏁版垨浠f暟寮忎互琛ㄧず瀹冧滑涔嬮棿鐨勪笉絳夊叧緋伙紝鍚鏈夎繖浜涗笉絳夊彿鐨勫紡瀛愶紝鍙鍋氫笉絳夊紡.

銆銆2.姣旇緝涓や釜瀹炴暟鐨勫ぇ灝

銆銆涓や釜瀹炴暟鐨勫ぇ灝忔槸鐢ㄥ疄鏁扮殑榪愮畻鎬ц川鏉ュ畾涔夌殑錛屾湁a-baa-b=0a-ba0錛屽垯鏈塧/baa/b=1a/ba

銆銆3.涓嶇瓑寮忕殑鎬ц川

銆銆(1)瀵圭О鎬э細ab

銆銆(2)浼犻掓э細ab錛宐a

銆銆(3)鍙鍔犳э細aa+cb+c錛宎b錛宑a+c

銆銆(4)鍙涔樻э細ab錛宑acb0錛宑0bd;

銆銆(5)鍙涔樻柟錛歛0bn(nN錛宯

銆銆(6)鍙寮鏂癸細a0

銆銆(nN錛宯2).

銆銆娉ㄦ剰錛

銆銆涓涓鎶宸

銆銆浣滃樊娉曞彉褰㈢殑鎶宸э細浣滃樊娉曚腑鍙樺艦鏄鍏抽敭錛屽父榪涜屽洜寮忓垎瑙f垨閰嶆柟.

銆銆涓縐嶆柟娉

銆銆寰呭畾緋繪暟娉曪細奼備唬鏁板紡鐨勮寖鍥存椂錛屽厛鐢ㄥ凡鐭ョ殑浠f暟寮忚〃紺虹洰鏍囧紡錛屽啀鍒╃敤澶氶」寮忕浉絳夌殑娉曞垯奼傚嚭鍙傛暟錛屾渶鍚庡埄鐢ㄤ笉絳夊紡鐨勬ц川奼傚嚭鐩鏍囧紡鐨勮寖鍥.

5.楂樹簩鏁板︿笂鍐屽繀淇浜岀煡璇嗙偣


銆銆絳夊樊鏁板垪

銆銆瀵逛簬涓涓鏁板垪{an}錛屽傛灉浠繪剰鐩擱偦涓ら」涔嬪樊涓轟竴涓甯告暟錛岄偅涔堣ユ暟鍒椾負絳夊樊鏁板垪錛屼笖縐拌繖涓瀹氬煎樊涓哄叕宸,璁頒負d;浠庣涓欏筧1鍒扮琻欏筧n鐨勬誨拰錛岃頒負Sn銆

銆銆閭d箞錛岄氶」鍏寮忎負錛屽叾奼傛硶寰堥噸瑕侊紝鍒╃敤浜嗏滃彔鍔犲師鐞嗏濈殑鎬濇兂錛

銆銆灝嗕互涓妌-1涓寮忓瓙鐩稿姞錛屼究浼氭帴榪炴秷鍘誨緢澶氱浉鍏崇殑欏癸紝鏈緇堢瓑寮忓乏杈逛綑涓媋n,鑰屽彸杈瑰垯浣欎笅a1鍜宯-1涓猟,濡傛や究寰楀埌涓婅堪閫氶」鍏寮忋

銆銆姝ゅ栵紝鏁板垪鍓峮欏圭殑鍜岋紝鍏跺叿浣撴帹瀵兼柟寮忚緝綆鍗曪紝鍙鐢ㄤ互涓婄被浼肩殑鍙犲姞鐨勬柟娉曪紝涔熷彲浠ラ噰鍙栬凱浠g殑鏂規硶錛屽湪姝わ紝涓嶅啀澶嶈堪銆

銆銆鍊煎緱璇存槑鐨勬槸錛屽墠n欏圭殑鍜孲n闄や互n鍚庯紝渚垮緱鍒頒竴涓浠a1涓洪栭」錛屼互d/2涓哄叕宸鐨勬柊鏁板垪錛屽埄鐢ㄨ繖涓鐗圭偣鍙浠ヤ嬌寰堝氭秹鍙奡n鐨勬暟鍒楅棶棰樿繋鍒冭岃В銆

銆銆絳夋瘮鏁板垪

銆銆瀵逛簬涓涓鏁板垪{an}錛屽傛灉浠繪剰鐩擱偦涓ら」涔嬪晢(鍗充簩鑰呯殑姣)涓轟竴涓甯告暟錛岄偅涔堣ユ暟鍒椾負絳夋瘮鏁板垪錛屼笖縐拌繖涓瀹氬煎晢涓哄叕姣攓;浠庣涓欏筧1鍒扮琻欏筧n鐨勬誨拰錛岃頒負Tn銆

銆銆閭d箞錛岄氶」鍏寮忎負(鍗砤1涔樹互q鐨(n-1)嬈℃柟錛屽叾鎺ㄥ間負鈥滆繛涔樺師鐞嗏濈殑鎬濇兂錛

銆銆a2=a1_q,

銆銆a3=a2_q,

銆銆a4=a3_q,

銆銆````````

銆銆an=an-1_q,

銆銆灝嗕互涓(n-1)欏圭浉涔橈紝宸﹀彸娑堝幓鐩稿簲欏瑰悗錛屽乏杈逛綑涓媋n,鍙寵竟浣欎笅a1鍜(n-1)涓猶鐨勪箻縐錛屼篃鍗沖緱鍒頒簡鎵榪伴氶」鍏寮忋

銆銆姝ゅ栵紝褰搎=1鏃惰ユ暟鍒楃殑鍓峮欏瑰拰Tn=a1_n

銆銆褰搎鈮1鏃惰ユ暟鍒楀墠n欏圭殑鍜孴n=a1_(1-q^(n))/(1-q).

⑤ 數學選修1-2 知識點

1,命題:用語言,符號或式子表達的,可以判斷真假的陳述句.
真命題:判斷為真的語句.
假命題:判斷為假的語句.
2,"若,則"形式的命題中的稱為命題的條件,稱為命題的結論.
3,對於兩個命題,如果一個命題的條件和結論分別是另一個命題的結論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.
若原命題為"若,則",它的逆命題為"若,則".
4,對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.
若原命題為"若,則",則它的否命題為"若,則".
5,對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的結論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為"若,則",則它的否命題為"若,則".
6,四種命題的真假性:
原命題
逆命題
否命題
逆否命題
















四種命題的真假性之間的關系:
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
7,若,則是的充分條件,是的必要條件.
若,則是的充要條件(充分必要條件).
8,用聯結詞"且"把命題和命題聯結起來,得到一個新命題,記作.
當,都是真命題時,是真命題;當,兩個命題中有一個命題是假命題時,是假命題.
用聯結詞"或"把命題和命題聯結起來,得到一個新命題,記作.
當,兩個命題中有一個命題是真命題時,是真命題;當,兩個命題都是假命題時,是假命題.
對一個命題全盤否定,得到一個新命題,記作.
若是真命題,則必是假命題;若是假命題,則必是真命題.
9,短語"對所有的","對任意一個"在邏輯中通常稱為全稱量詞,用""表示.
含有全稱量詞的命題稱為全稱命題.
全稱命題"對中任意一個,有成立",記作",".
短語"存在一個","至少有一個"在邏輯中通常稱為存在量詞,用""表示.
含有存在量詞的命題稱為特稱命題.
特稱命題"存在中的一個,使成立",記作",".
10,全稱命題:,,它的否定:,.全稱命題的否定是特稱命題.
11,平面內與兩個定點,的距離之和等於常數(大於)的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.
12,橢圓的幾何性質:
焦點的位置
焦點在軸上
焦點在軸上
圖形
標准方程
范圍


頂點
,
,
,
,
軸長
短軸的長 長軸的長
焦點
,
,
焦距
對稱性
關於軸,軸,原點對稱
離心率
准線方程
13,設是橢圓上任一點,點到對應准線的距離為,點到對應准線的距離為,則.
14,平面內與兩個定點,的距離之差的絕對值等於常數(小於)的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.
15,雙曲線的幾何性質:
焦點的位置
焦點在軸上
焦點在軸上
圖形
標准方程
范圍
或,
或,
頂點
,
,
軸長
虛軸的長 實軸的長
焦點
,
,
焦距
對稱性
關於軸,軸對稱,關於原點中心對稱
離心率
准線方程
漸近線方程
16,實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17,設是雙曲線上任一點,點到對應准線的距離為,點到對應准線的距離為,則.
18,平面內與一個定點和一條定直線的距離相等的點的軌跡稱為拋物線.定點稱為拋物線的焦點,定直線稱為拋物線的准線.
19,過拋物線的焦點作垂直於對稱軸且交拋物線於,兩點的線段,稱為拋物線的"通徑",即.
20,焦半徑公式:
若點在拋物線上,焦點為,則;
若點在拋物線上,焦點為,則;
若點在拋物線上,焦點為,則;
若點在拋物線上,焦點為,則.
21,拋物線的幾何性質:
標准方程
圖形
頂點
對稱軸


焦點
准線方程
離心率
范圍
22,空間向量的概念:
在空間,具有大小和方向的量稱為空間向量.
向量可用一條有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.
向量的大小稱為向量的模(或長度),記作.
模(或長度)為的向量稱為零向量;模為的向量稱為單位向量.
與向量長度相等且方向相反的向量稱為的相反向量,記作.
方向相同且模相等的向量稱為相等向量.
23,空間向量的加法和減法:
求兩個向量和的運算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點為起點的兩個已知向量,為鄰邊作平行四邊形,則以起點的對角線就是與的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.
求兩個向量差的運算稱為向量的減法,它遵循三角形法則.即:在空間任取一點,作,,則.
24,實數與空間向量的乘積是一個向量,稱為向量的數乘運算.當時,與方向相同;當時,與方向相反;當時,為零向量,記為.的長度是的長度的倍.
25,設,為實數,,是空間任意兩個向量,則數乘運算滿足分配律及結合律.
分配律:;結合律:.
26,如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,並規定零向量與任何向量都共線.
27,向量共線的充要條件:對於空間任意兩個向量,,的充要條件是存在實數,使.
28,平行於同一個平面的向量稱為共面向量.
29,向量共面定理:空間一點位於平面內的充要條件是存在有序實數對,,使;或對空間任一定點,有;或若四點,,,共面,則.
30,已知兩個非零向量和,在空間任取一點,作,,則稱為向量,的夾角,記作.兩個向量夾角的取值范圍是:.
31,對於兩個非零向量和,若,則向量,互相垂直,記作.
32,已知兩個非零向量和,則稱為,的數量積,記作.即.零向量與任何向量的數量積為.
33,等於的長度與在的方向上的投影的乘積.
34,若,為非零向量,為單位向量,則有;
;,,;
;.
35,向量數乘積的運算律:;;
.
36,若,,是空間三個兩兩垂直的向量,則對空間任一向量,存在有序實數組,使得,稱,,為向量在,,上的分量.
37,空間向量基本定理:若三個向量,,不共面,則對空間任一向量,存在實數組,使得.
38,若三個向量,,不共面,則所有空間向量組成的集合是
.這個集合可看作是由向量,,生成的,
稱為空間的一個基底,,,稱為基向量.空間任意三個不共面的向量都可以構成空間的一個基底.
39,設,,為有公共起點的三個兩兩垂直的單位向量(稱它們為單位正交基底),以,,的公共起點為原點,分別以,,的方向為軸,軸,軸的正方向建立空間直角坐標系.則對於空間任意一個向量,一定可以把它平移,使它的起點與原點重合,得到向量.存在有序實數組,使得.把,,稱作向量在單位正交基底,,下的坐標,記作.此時,向量的坐標是點在空間直角坐標系中的坐標.
40,設,,則.
.
.
.
若,為非零向量,則.
若,則.
.
.
,,則.
41,在空間中,取一定點作為基點,那麼空間中任意一點的位置可以用向量來表示.向量稱為點的位置向量.
42,空間中任意一條直線的位置可以由上一個定點以及一個定方向確定.點是直線上一點,向量表示直線的方向向量,則對於直線上的任意一點,有,這樣點和向量不僅可以確定直線的位置,還可以具體表示出直線上的任意一點.
43,空間中平面的位置可以由內的兩條相交直線來確定.設這兩條相交直線相交於點,它們的方向向量分別為,.為平面上任意一點,存在有序實數對,使得,這樣點與向量,就確定了平面的位置.
44,直線垂直,取直線的方向向量,則向量稱為平面的法向量.
45,若空間不重合兩條直線,的方向向量分別為,,則
,.
46,若直線的方向向量為,平面的法向量為,且,則
,.
47,若空間不重合的兩個平面,的法向量分別為,,則
,.
48,設異面直線,的夾角為,方向向量為,,其夾角為,則有
.
49,設直線的方向向量為,平面的法向量為,與所成的角為,與的夾角為,則有.
50,設,是二面角的兩個面,的法向量,則向量,的夾角(或其補角)就是二面角的平面角的大小.若二面角的平面角為,則.
51,點與點之間的距離可以轉化為兩點對應向量的模計算.
52,在直線上找一點,過定點且垂直於直線的向量為,則定點到直線的距離為.
53,點是平面外一點,是平面內的一定點,為平面的一個法向量,則點到平面的距離為.

⑥ 高二數學知識點及公式整理

只有高效的 學習 方法 ,才可以很快的掌握知識的重難點。有效的讀書方式根據規律掌握方法,不要一來就死記硬背,先找規律,再記憶,然後再學習,就能很快的掌握知識。以下是我給大家整理的 高二數學 知識點及公式整理,希望大家能夠喜歡!

高二數學知識點及公式整理1

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即「共同起點,指向被減」

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

註:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:①如果實數λ≠0且λa=λb,那麼a=b。②如果a≠0且λa=μa,那麼λ=μ。

3、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數學知識點及公式整理2

1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

高二數學知識點及公式整理3

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。


高二數學知識點及公式整理相關 文章 :

★ 高二數學知識點總結

★ 高二數學知識點及公式2020

★ 高二數學知識點及公式

★ 高中數學知識點總結及公式大全

★ 高二數學知識點總結全

★ 高二數學函數知識點總結

★ 最新高二數學公式知識點匯總

★ 高二數學必背知識點總結

★ 高二數學知識點全總結

⑦ 高中必修二數學知識點總結

高中數學一直是一個難點,想要學好數學一定要回歸課本,學好基礎知識。下面我給大家分享一些高中必修二數學知識點,希望能夠幫助大家,歡迎閱讀!

高中必修二數學知識點1

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

(4)平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直於已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有無數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解.

高中必修二數學知識點2

1、柱、錐、台、球的結構特徵

(1)稜柱:

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方.

(3)稜台:

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形.

(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑.

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、

俯視圖(從上向下)

註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

4、柱體、錐體、台體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

高中必修二數學知識點3

圓的方程

1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

2、圓的方程

(1)標准方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形.

(3)求圓方程的 方法 :

一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.

3、高中數學必修二知識點 總結 :直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓.

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

5、空間點、直線、平面的位置關系

公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.

應用:判斷直線是否在平面內

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a.

符號語言:

公理2的作用:

①它是判定兩個平面相交的方法.

②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點.

③它可以判斷點在直線上,即證若干個點共線的重要依據.

公理3:經過不在同一條直線上的三點,有且只有一個平面.

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據

公理4:平行於同一條直線的兩條直線互相平行

高中必修二數學知識點4

【一】

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

【二】

兩個平面的位置關系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

【三】

棱錐

棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的棱錐的高與遠棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中必修二數學知識點總結相關 文章 :

★ 高中數學必修二知識點總結(復習提綱)

★ 高中數學必修二知識點總結

★ 高中數學必修二知識點總結

★ 高一數學必修二所有公式總結

★ 高中數學必修2空間幾何體知識點歸納總結

★ 高一數學必修二公式總結全

★ 高二數學必修二知識點總結

★ 高一數學必修2知識點總結

★ 高中數學填空題的常用解題方法與必修二知識點全面總結

★ 高一數學必修2知識總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑧ 求高中數學選修知識點

選修課程
(一)選修1-1
本模塊包括常用邏輯用語、圓錐曲線與方程、導數及其應用。
1.常用邏輯用語
(1)命題及其關系

(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞

2.圓錐曲線與方程
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
(2)經歷從具體情境中抽象出橢圓模型的過程,掌握橢圓的定義、標准方程、幾何圖形及簡單性質。
(3)了解拋物線、雙曲線的定義、幾何圖形和標准方程,知道它們的簡單幾何性質。
(4)通過圓錐曲線與方程的學習,進一步體會數形結合的思想。
(5)了解圓錐曲線的簡單應用。

3.導數及其應用
(1)導數概念及其幾何意義

(2)導數的運算
① 能根據導數定義
(3)導數在研究函數中的應用

(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流,體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中,可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的過程,得到對導數概念抽象和形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述,應當避免過量的形式化運算練習。
利用導數判斷函數的單調性,是導數應用的重點,教學中應多選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
(二)選修1-2
本模塊包括統計案例、推理與證明、數系擴充及復數的引入、框圖。
1.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例 (如「肺癌與吸煙有關嗎」 等)的探究,了解獨立性檢驗 (只要求2×2列聯表) 的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容的《課程標准》要求都是了解,因此教學中要注意難度的把握,宜採用案例教學的方式。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求,避免學生單純記憶和機械套用公式。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
在統計案例中,還應介紹所學統計方法在社會生活中的廣泛應用,以豐富學生對數學文化價值的認識。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
在本部分內容中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及二者之間的聯系與差異;體會數學證明的特點,了解數學證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法);感受邏輯證明在數學以及日常生活中的作用,養成言之有理、論證有據的習慣。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
4.框圖
(1)流程圖
① 通過具體實例,進一步認識程序框圖。
② 通過具體實例,了解工序流程圖(即統籌圖)。
③ 能繪制簡單實際問題的流程圖,體會流程圖在解決實際問題中的作用。
(2)結構圖
① 通過實例,了解結構圖;運用結構圖梳理已學過的知識、整理收集到的資料信息。
② 結合做出的結構圖與他人進行交流,體會結構圖在揭示事物聯系中的作用。
框圖是表示一個系統各部分和各環節之間關系的圖示,它的作用在於能夠清晰地表達比較復雜的系統各部分之間的關系。框圖已經廣泛應用於演算法、計算機程序設計、工序流程的表述、設計方案的比較等方面,也是表示數學計算與證明過程中主要邏輯步驟的工具,並將成為日常生活和各門學科中進行交流的一種常用表達方式。
框圖是新增內容,通過框圖的學習過程能夠提高學生的抽象概括能力和邏輯思維能力,能幫助學生清晰地表達和交流思想。尤其對希望在人文、社會科學方面發展的學生是十分必要的。
框圖的教學,應從分析實例入手,結合必修中的演算法,引導學生運用框圖表示數學計算與證明過程中的主要思路與步驟、實際問題中的工序流程、某一數學知識系統的結構關系等。使學生在運用框圖的過程中理解流程圖和結構圖的特徵,掌握框圖的用法,體驗用框圖表示解決問題過程的優越性。
(三)選修2-1
本模塊包括常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
1.常用邏輯用語
(1)命題及其關系
① 了解命題的逆命題、否命題與逆否命題。
② 理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。
(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞
① 通過生活和數學中的豐富實例,理解全稱量詞與存在量詞的意義。
② 能正確地對含有一個量詞的命題進行否定。
本部分教學的目的是讓學生體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流,而不是進行邏輯學的教學。因此,教學中要注意把握尺度,不宜過難。
這里考慮的命題是指明確地給出條件和結論的命題,對逆命題、否命題、逆否命題的概念,只要求作一般性的了解,重點關注四種命題的相互關系和命題的必要條件、充分條件、充要條件。
教學中要多用實例,通過實例理解邏輯聯結詞及量詞的含義,避免對邏輯用語的機械記憶和抽象解釋,也不要求使用真值表。注意引導學生使用常用邏輯用語,在運用的過程中,加深對常用邏輯用語的認識,糾正出現的邏輯錯誤,體會運用常用邏輯用語表述數學內容的准確性、簡潔性,感受數學的美。
對於部分感興趣的同學,還可以引導他們進一步選修「開關電路與布爾代數」,繼續接觸有關命題的一些知識。
2.圓錐曲線與方程
(1)圓錐曲線
① 了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
② 經歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標准方程、幾何圖形及簡單性質。
③ 了解雙曲線的定義、幾何圖形和標准方程,知道它的有關性質。
④ 能用坐標法解決一些與圓錐曲線有關的簡單幾何問題(直線與圓錐曲線的位置關系)和實際問題。
⑤ 通過圓錐曲線的學習,進一步體會數形結合的思想。
(2)曲線與方程
結合已學過的曲線及其方程的實例,了解曲線與方程的對應關系,進一步感受數形結合的基本思想。
本部分內容所滲透的幾何直觀和數形結合的思想,對於後續的數學學習是很有幫助的,教學中要充分地重視這一點。
教學中可通過多種方式向學生介紹圓錐曲線的背景和應用,有意識地強調數學的科學價值、文化價值和美學價值,一方面引發學生學習的興趣,另一方面,也可以對曲線和方程的關系有進一步的認識。
圓錐曲線在實踐中的應用相當廣泛,是體現數學應用價值的好素材,因此,教學中可以通過豐富的實例,使學生了解其背景和應用。
在學習了橢圓之後,可引導學生運用類比的方法去研究拋物線,雙曲線的幾何性質。對於感興趣的學生,教師也可以引導學生了解圓錐曲線的離心率與統一方程。
有條件的學校,要充分發揮現代教育技術的作用,通過一些軟體演示方程中參數的變化對曲線的影響,使學生進一步理解曲線和方程的關系,把握好曲線的「幾何性質」與方程的「數量關系」之間的對應關系。
3.空間向量與立體幾何
(1)空間向量及其運算
① 經歷向量及其運算由平面向空間推廣的過程。
② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示。
③ 掌握空間向量的線性運算及其坐標表示。
④ 掌握空間向量的數量積及其坐標表示;能運用向量的數量積判斷向量的共線與垂直。
(2)空間向量的應用
① 理解直線的方向向量與平面的法向量。
② 能用向量語言表述線線、線面、面面的垂直、平行關系。
③ 能用向量方法證明有關線、面位置關系的一些定理(包括三垂線定理)。
④ 能用向量方法解決線線、線面、面面的夾角的計算問題。
空間向量的教學應引導學生運用類比的方法,經歷向量及其運算由平面向空間推廣的過程,體會維數增加所帶來的影響。
在必修的基礎上繼續學習立體幾何,可以鼓勵學生靈活選擇運用向量方法與綜合方法,從不同角度解決立體幾何問題。
用空間向量處理立體幾何問題,關鍵在於理解直線的方向向量、平面的法向量、兩個向量的數量積的定義,以及實數與向量乘積的幾何意義——平行向量。
向量是代數的,它可以進行豐富的運算,通過這些運算可以解決很多問題;向量又是幾何的,向量可以描述、刻畫幾何中的基本研究對象:點、線、面以及它們之間的關系。向量所發揮的作用,是用代數方法處理幾何問題思想的集中反映。向量不僅僅是一個計算的工具,更重要的是,它還是連接代數與幾何的天然「橋梁」。教學中要讓學生體會向量方法在研究幾何問題中的作用,發展學生的幾何直觀和數形結合的能力,並充分挖掘向量的實際背景,如向量的物理學背景等。
(四)選修2—2
本模塊包括導數及其應用、推理與證明、數系擴充與復數的引入。
1.導數及其應用
(1)導數概念及其幾何意義
① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵。
② 通過函數圖象直觀地理解導數的幾何意義。
(2)導數的運算
① 能根據導數定義求函數 , , , , , 的導數。
② 能利用給出的基本初等函數的導數公式和導數的四則運演算法則求簡單函數的導數,能求簡單的復合函數(僅限於形如 )的導數。
③ 會使用導數公式表。
(3)導數在研究函數中的應用
① 結合實例,藉助幾何直觀探索並了解函數的單調性與導數的關系;能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。
② 結合函數的圖象,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。
(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)定積分與微積分基本定理
① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;藉助幾何直觀體會定積分的基本思想,初步了解定積分的概念。
② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。
(6)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流;體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的認識過程,得到對導數概念形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述。
利用導數判斷函數的單調性是導數應用的重點,也是本部分內容的重點之一。教學中應選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
教師應引導學生在解決具體問題的過程中,將研究函數的導數方法與初等方法作比較,以體會導數方法在研究函數性質中的一般性和有效性。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
(4)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不必追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教師應藉助具體實例讓學生了解數學歸納法的原理,對證明的問題要控制難度。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
(五)選修2—3
本模塊包括計數原理、統計案例、概率。
1.計數原理
(1)分類加法計數原理、分步乘法計數原理
通過實例,總結出分類加法計數原理、分步乘法計數原理;能根據具體問題的特徵,選擇分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題。
(2)排列與組合
通過實例,理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,並能解決簡單的實際問題。
(3)二項式定理
能用計數原理證明二項式定理; 會用二項式定理解決與二項展開式有關的簡單問題.
教學中要突出分類加法計數原理、分步乘法計數原理的基礎性作用。分類加法計數原理、分步乘法計數原理是處理計數問題的兩種基本方法。當面臨一個復雜問題時,通過分類或分步將它分解成為一些簡單的問題,先解決簡單問題,然後再將它們整合起來得到整個問題的解決,這是一種重要而基本的思想方法。
引導學生體會兩個計數原理在排列數公式、組合數公式和二項式定理推導中的工具性作用。以上知識的學習都是兩個計數原理的重要應用,這樣有利於避免學生單純記憶和機械套用公式進行計算。
通過學生熟悉和感興趣的實例,理解排列組合的概念,區分排列問題中元素的「有序」和組合問題中元素的「無序」,這是解決這兩類問題的關鍵,也是初學者容易犯錯誤的地方。
教學中,應避免繁瑣的、技巧性過高的計數問題。
對於有興趣和能力的學生可自主探究組合數的兩個性質,但在教學中不作統一要求。
在二項式定理的教學過程中可介紹我國古代數學成就「楊輝三角」及數學家楊輝其人其事,激發學生的學習熱情,豐富學生對數學文化價值的認識。
2.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例(如「肺癌與吸煙有關嗎」等)的探究,了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容《課程標准》規定的要求都是了解,應採用案例教學的方式,教學中要注意控制難度。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
3.概率
(1)在對具體問題的分析中,理解取有限值的離散型隨機變數及其分布列的概念,認識分布列對於刻畫隨機現象的重要性。
(2)通過實例(如彩票抽獎),理解超幾何分布及其導出過程,並能進行簡單的應用。
(3)在具體情境中,了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,並能解決一些簡單的實際問題。
(4)通過實例,理解取有限值的離散型隨機變數均值、方差的概念,能計算簡單離散型隨機變數的均值、方差,並能解決一些實際問題。
(5)通過實際問題,藉助直觀(如實際問題的直方圖),認識正態分布曲線的特點及曲線所表示的意義。
研究一個隨機現象,就是要了解它所有可能出現的結果和每一個結果出現的概率,分布列正是描述了離散型隨機變數取值的概率規律。因此本部分內容的重點是隨機變數的分布列。為了能正確求出隨機變數對應的概率值,教學中應適當復習必修課所學的概率知識。
在學習了離散型隨機變數的基礎上,通過實例,重點研究二項分布和超幾何分布,這些都是應用廣泛的重要的概率模型。對於這些概率模型的教學,注重通過實例引入,讓學生對這些概率模型直觀認識,不追求形式化的描述。
正態分布在自然界中大量存在,因此正態分布是一個重要的數學模型。但高中階段正態分布的教學要注意把握好教學深度。正態分布涉及到連續型隨機變數的總體密度曲線,本部分教學內容只要求簡單介紹。
結合本部分教學內容特點和教學方式,應引導學生利用所學知識解決一些實際問題。讓學生自行選擇一些實際問題,建立恰當的概率模型,培養學生實踐能力,努力提高學生分析和解決問題的能力。體會數學的實際應用價值,努力提高學生數學學習興趣。