當前位置:首頁 » 基礎知識 » 初中數學上冊有理數的知識點
擴展閱讀
幼兒園講發電廠知識 2024-11-28 00:16:52

初中數學上冊有理數的知識點

發布時間: 2024-05-27 18:12:27

⑴ 請具體總結初一上學期數學第二章有理數的所有知識點,一定要詳細詳細,准確准確。

《有理數》知識點復習
知識網路:
知識點 知識鏈 課標要求及自我體會 處理方式
與小學 與初中 與高中
正數 小學學過整數、分數(小數)的知識,即正有理數及0的知識,還學過用字母表示數。 將小學中的「算術數」擴充到有理數 ①理解有理數的意義,能用數軸上的點表示有理數,會比較有理數的大小.
②藉助數軸理解相反數和絕對值的意義,會求有理數的相反數與絕對值(絕對值符號內不含字母).
③理解乘方的意義,掌握有理數的加、減、乘、除、乘方及簡單的混合運算(以三步為主).
④理解有理數的運算律,並能運用運算律簡化運算.
⑤能運用有理數的運算解決簡單的問題.
⑥能對含有較大數字的信息作出合理的解釋和推斷.
⑦了解整數指數冪的意義和基本性質,會用科學記數法表示數(包括在計算器上表示).
負數 利用具有相反意義的量引入負數
有理數
數軸 為學習平面直角坐標系做准備;數形結合的初步認識及應用 通過描述位置的問題引出,並讓學生通過溫度計加深對數軸的認識,進而具體講述
絕對值 藉助數軸
相反數 藉助數軸。分別利用幾何意義和代數意義讓學生理解
倒數 乘積為1的兩個數 把倒數的范圍擴充到有理數范圍內 小學知識遷移
有理數加法法則 將兩個數合並為一個數的運算 初中階段運算的基礎 首先通過實例明確有理數加法的意義;引入有理數加法的法則,接著舉例說明小學階段學過的加法運算律對有理數加法同樣適用。在此基礎上,從有理數減法的意義得出有理數減法法則。進一步根據減法法則,可以把加減法運算統一成加法。
有理數減法法則
有理數乘法法則 藉助數軸研究有理數的乘法,引入有理數乘法的法則並通過例子說明,如何利用法則進行計算。然後從具體運算的例子出發,指出乘法的運算律對有理數同樣適用。在乘法之後,從有理數除法的意義出發,結合具體例子引入有理數除法的法則,並通過例子說明如何利用法則進行計算。
有理數除法法則
乘方 在小學階段接觸過平方、立方 冪的運算的基礎 冪函數的基礎 結合計算正方形面積、正方體體積的實例引出乘方的概念
有理數混合運算 小學四則混合運算的順序是基礎 有理數的運算是數學中其他運算的基礎,初中有理數運算在前兩個學段的基礎上增加了乘方的運算。也是後面有關整式運算的基礎。 在復習小學階段數的四則運算順序的基礎上,結合新學習的乘方,按照先乘方,再乘除,最後加減的運算順序進行。
科學計數法 為較大數字和較小的數據的表示提供了一種更科學的方法

⑵ 初一數學有理數知識點的歸納

初一數學的有理數是初中數學的一大重點,所以想要考好數學,不能不學好有理數。以下是我分享給大家的初一數學有理數知識點,希望可以幫到你!
初一數學有理數知識點
一.知識框架

二.知識概念

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

(2)有理數的分類:①②

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0a+b=0a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:或;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.

7.有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10.有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11.有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.
初一數學角的知識點
角的種類:角的大小與邊的長短沒有關系;角的大小決定於角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

銳角:大於0°,小於90°的角叫做銳角。

直角:等於90°的角叫做直角。

鈍角:大於90°而小於180°的角叫做鈍角。

平角:等於180°的角叫做平角。

優角:大於180°小於360°叫優角。

劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。

周角:等於360°的角叫做周角。

負角:按照順時針方向旋轉而成的角叫做負角。

正角:逆時針旋轉的角為正角。

0角:等於零度的角。

餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。

對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。

還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)!
初一數學幾何圖形分類知識點
(1)立體幾何圖形可以分為以下幾類:

第一類:柱體;

包括:圓柱和稜柱,稜柱又可分為直稜柱和斜稜柱,稜柱體按底面邊數的多少又可分為三稜柱、四稜柱、N稜柱;

稜柱體積統一等於底面面積乘以高,即V=SH,

第二類:錐體;

包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;

棱錐體積統一為V=SH/3,

第三類:球體;

此分類只包含球一種幾何體,

體積公式V=4πR3/3,

其他不常用分類:圓台、稜台、球冠等很少接觸到。

大多幾何體都由這些幾何體組成。

(2)平面幾何圖形如何分類

a.圓形

b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……

註:正方形既是矩形也是菱形。

猜你喜歡:

1. 初一數學第1章有理數知識點總結

2. 初一數學有理數知識點

3. 人教版七年級數學復習知識點

4. 七年級數學上冊“有理數”的知識點

5. 初一數學知識點整理

6. 初一有理數知識點匯總

⑶ 初一數學有理數的要點歸納

初一的有理數是重點也是難點,那麼同學們應該如何把握好這個知識點呢?以下是我分享給大家的初一數學有理數的要點,希望可以幫到你!
初一數學有理數的要點
一、知識要點

本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運演算法則,二是運算律,三是運算順序,四是近似計算。

基礎知識

1、正數(positionnumber):大於0的數叫做正數。

2、負數(negationnumber):在正數前面加上負號"-"的數叫做負數。

3、0既不是正數也不是負數。

4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。

5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。

數軸滿足以下要求:

(1)在直線上任取一個點表示數0,這個點叫做原點(origin);

(2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

(3)選取適當的長度為單位長度。

6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。

7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.正數大於0,0大於負數,正數大於負數;兩個負數,絕對值大的反而小。

8、有理數加法法則

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.

(3)一個數同0相加,仍得這個數。

加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。

加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把後兩個數相加,和不變。

表達式:(a+b)+c=a+(b+c)

9、有理數減法法則:減去一個數,等於加這個數的相反數。表達式:a-b=a+(-b)

10、有理數乘法法則

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數同0相乘,都得0.

乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba

乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。表達式:(ab)c=a(bc)

乘法分配律:一般地,一個數同兩個的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

表達式:a(b+c)=ab+ac

11、倒數

1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那麼這兩個數的積等於1。

12、有理數除法法則:兩數相除,同號得負,異號得正,並把絕對值相除。0除以任何一個不等於0的數,都得0.

13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。

根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。

14、有理數的混合運算順序

(1)"先乘方,再乘除,最後加減"的順序進行;

(2)同級運算,從左到右進行;

(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

15、科學技術法:把一個大於10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即016、近似數(approximatenumber):

17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。

拓展知識:

1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。

(1)所有有理數組成的數集叫做有理數集;

(2)所有的整數組成的數集叫做整數集。

2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。

3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。

4、比較兩個有理數大小的方法有:

(1)根據有理數在數軸上對應的點的位置直接比較;

(2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;

(3)做差法:a-b>0——a>b;

(4)做商法:a/b>1,b>0——a>b.
初一數學有理數必考要點
(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

5.a-b=a+(-b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。

(七)乘方

1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)

2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。

3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

第二章整式(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變

整理了知識點,我們來看看相關的練習題吧。根據做題的情況分析有哪些知識點是自己還沒有掌握的。

1,從數軸上看,0是()

A,最小整數B,最大的負數C,最小的有理數D最小的非負數

2,一個數的相反數小於它本身,這個數是()

A,非負數B,正數C,0D,負數

3,冬季某天我國三個城市的最高氣溫分別是-10℃,1℃,-7℃,把它們從高到低排列正確的是()

A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃

4,下列說法正確的有()

A,正數和負數統稱為有理數B,有理數是指整數、分數、正有理數、負有理數和0五類C,一個有理數不是整數就是分數D,整數包括正整數和負整數

5,若a、b為有理數,a>0,b<0,且|a|<|b|,那麼下列說法不正確的是()

A,若將數a、b在數軸上表示出來,則a在原點右側,b在原點左側。

B,因正數大於一切負數,所以a>b。

C,若將數a、b在數軸上表示出來,則數a與原點的距離比較b與原點的距離小。

D,在數軸上,表示a,|a|,b的點從左到右依次為a,b,|a|

6,在下列代數式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多項式有()A.2個B.3個C.4個D5個

A、-3x2B、(5a-4b)/7C、(3a+2)/5xD、-2005
初一數學上冊重點知識點
實數:

—有理數與無理數統稱為實數。

有理數:

整數和分數統稱為有理數。

無理數:

無理數是指無限不循環小數。

自然數:

表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:

規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:

符號不同的兩個數互為相反數。

倒數:

乘積是1的兩個數互為倒數。

絕對值:

數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式

有理數的運演算法則

⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

⑵減法法則:減去一個數,等於加上這個數的相反數。

⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。

⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。

角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。

數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成“把一個角的兩邊反向延長而形成的兩個角叫做對頂角”。

猜你喜歡:

1. 初中數學知識點全總結

2. 最新七年級數學上冊知識點總結

3. 初一數學基本知識點總結

4. 初一數學期末復習題有哪些

5. 初一數學重要知識點總結

⑷ 七年級上冊數學第一章《有理數》知識點總結

有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。下面是由我為你精心編輯的七年級上冊數學第一章《有理數》知識點總結,歡迎閱讀!

一、正數與負數

1.在實際中表示意義相反的量 上升5米記為5米; -8米則表示下降8米。

2.正數:大於0的數。

3.負數:在正數的前面加上「-」。

4.0的含義:

①既不是正數也不是負數;

②0在計數時表示沒有,比如0元;

③0表示某種量的基準,比如0℃表示溫度的基準

5.有理數的分類

②分數概念

(1)小學學的分數,百分數,有限小數,無限循環小數都可以轉化為分數,現統稱分數;

(2)無限不循環小數不屬於有理數,如:π=3.141592... 2.010010001...

③、「非」的概念

非負數:正數和0 非正分數:負分數

非正數:負數和0 非負分數:正分數

非負整數:正整數和0

非正整數:負整數和0

二、數軸

1.三要素:原點、正方向、單位長度。通常原點用「O」表示,向右的方向為正方向,單位長度為1.

2.如何畫數軸

①畫直線(一般畫成水平的),定原點,標出原點「O」;

②取原點向右的方向為正方向,並標出箭頭;

③選適當的長度為單位長度,並標出-3,-2,-1,1,2,3……各點。

3.數軸上的點與有理數:

(1)數軸上的點與有理數一一對應 (2)左邊的數0>負數;

2.兩個負數比較

①右邊的點表示的數比左邊的點表示的數大。

②絕對值大的反而小。

三、有理數的運算

1.有理數的加法:

加法一般步驟:

①確定符號:同號取相同的符號。

異號取絕對值大的.加數的符號。

②確定絕對值:同號將絕對值相加。

異號用較大的絕對值減去較小的絕對值。

互為相反數的兩個數相加得0。一個數與0相加,仍得這個數。

用字母表示加法的交換律a+b=b+a;加法結合律a+b+c=(a+b)+c=a+(b+c)。

三個或三個以上有理數相加,可以寫成這些數的連加式,對於連加式,根據加法

交換律和加法結合律,可以任意交換加數的位置,也可先把其中的某幾個數相加。

根據算式的特徵,恰當地運用運算律,可以使運算簡便:

①符號相同的數先相加--同號結合法

②互為相反數的先相加--相反數結合法

③分母相同的數先相加--同分母結合法

④正數與正數,小數與小數相加--同形結合法

2.有理數的減法:

減法法則:減去一個數,等於加上這個數的相反數。

加減法混合運算,把減法轉化為加法再計算。

3.代數和:有理數加減混合運算時,將加減法統一成加法運算,轉化為求幾個正數或負數的和。

在一個和式中,可以把各個加數的括弧和括弧前面的加號省略不寫,寫成省略加號的和的形式。

4.有理數的乘法:

乘法步驟:1、確定符號:同號正,異號負。

2、絕對值:求積。

任何數與0相乘,都得0。任何數與-1相乘都得這個數的相反數。

多個有理數相乘的運算:

幾個非0有理數相乘時,當負因數個數是偶數時,積為正;負因數個數是奇數時,積為負;

乘法交換律,乘法結合律,乘法分配律;

5.有理數的除法:

除法步驟:1、確定符號:同號正,異號負。

2、絕對值:相除。

除以一個不等於0的數等於乘上這個數的倒數。

0除以任何一個不等於0的數都得0。

四、倒數

①乘積是1的兩個數叫作互為倒數。

②a的倒數是a分之1(a≠0)

③a與b互為倒數 ab=1

④正數的倒數還是正數,負數的倒數還是負數,0沒有倒數。

五、乘方

①求幾個相同因數的積的運算叫做乘方

a·a·…·a=an

②底數、指數、冪

⑸ 七年級數學上冊、下冊重要知識點總結

初一數學上冊主要包括四個章節的內容;下冊主要包括相六章內容。為幫助大家更好地掌握 七年級數學 每個章節的重要內容,我整理了一些知識點以供學習復習參考!

七年級數學上冊知識點:第一章 有理數

一、知識框架

二.知識概念

1.有理數:

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

七年級數學上冊知識點:第二章 整式的加減

一.知識框架二.知識概念

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1. 理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2. 理解同類項概念,掌握合並同類項的 方法 ,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。

七年級數學上冊知識點:第三章 一元一次方程

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

2.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用於“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法: ………… 多用於“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

七年級數學上冊知識點:第四章 圖形的認識初步

一、知識框架

本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系.在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角.

二、本章書涉及的數學思想:

1.分類討論思想。在過平面上若干個點畫直線時,應注意對這些點分情況討論;在畫圖形時,應注意圖形的各種可能性。

2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。

3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。

4.化歸思想。在進行直線、線段、角以及相關圖形的計數時,總要劃歸到公式n(n-1)/2的具體運用上來。

>>>下一頁更多精彩“七年級數學下冊知識點”

⑹ 華師版七年級上冊數學知識點

在數學課堂教學中,教師應有意識而且有必要地還原數學知識的生活背景,書本上的知識放在生活中來學習,把讓數學問題生活化。這次我給大家整理了華師版七年級上冊數學知識點,供大家閱讀參考。

目錄

七年級上冊數學知識點

蘇教版七年級上冊數學知識點

七年級數學知識點

七年級上冊數學知識點

第一章 有理數

(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

5. ab = a +(b) 減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab= ba

4.乘法結合律:(ab)c = a (b c)

5.乘法分配律:a(b +c)= a b+ ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。

(七)乘方

1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)

2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

第二章 整式

(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數:一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(二)整式加減

整式加減運算時,如果遇到括弧先去括弧,再合並同類項。

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。

如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變

第三章 一元一次方程

分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的`一種 方法 。

(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。

(二)一元一次方程:

1.一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。

2.解:求出的方程中未知數的值叫做方程的解。

(二)等式的性質

1.等式兩邊加(或減)同一個數(或式子),結果仍相等。

如果a= b,那麼a± c= b± c

2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

如果a= b,那麼a c= b c;

如果a= b,(c0),那麼a ∕c = b ∕ c。

(三)解方程的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。

1.去分母:把系數化成整數。

2.去括弧

3.移項:把等式一邊的某項變號後移到另一邊。

4.合並同類項

5.系數化為1

第四章 圖形認識初步

一、圖形認識初步

1.幾何圖形:把從實物中抽象出來的各種圖形的統稱。

2.平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。

3.立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。

4.展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

5.點,線,面,體

①圖形是由點,線,面構成的。

②線與線相交得點,面與 面相 交得線。

③點動成線,線動成面,面動成體。

二、直線、線段、射線

1.線段:線段有兩個端點。

2.射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。

3.直線:將線段的兩端無限延長就形成了直線。直線沒有端點。

4.兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。

5.相交:兩條直線有一個公共點時,稱這兩條直線相交。

6.兩條直線相交有一個公共點,這個公共點叫交點。

7.中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。

8.線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)

9.距離:連接兩點間的線段的長度,叫做這兩點的距離。

三、角

1.角:有公共端點的兩條射線組成的圖形叫做角。

2.角的度量單位:度、分、秒。

3.角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。

4.角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。

③平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

④工具:量角器、三角尺、經緯儀。

5.餘角和補角

①餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。

②補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。

③補角的性質:等角的補角相等

④餘角的性質:等角的餘角相等

<<<

蘇教版七年級上冊數學知識點

射線:

1、射線的定義:直線上一點和它們的一旁的部分叫做射線。

2、射線的特徵:「向一方無限延伸,它有一個端點。」

線段:

1、線段的定義:直線上兩點和它之間的部分叫做線段,這兩點叫做線段的端點。

2、線段的性質(公理):所有連接兩點的線中,線段最短。

<<<

七年級數學 知識點

1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(註:單獨一個數字或字母也是代數式)

2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。

3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠-------。

4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式.

單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)

單項數的次數:是指單項式中所有字母的指數的和.(注意指數1)

5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式.特別注意多項式的項包括它前面的性質符號.它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、代數式分為整式和分式(分母里含有字母);整式分為單項式和多項式。

<<<


華師版七年級上冊數學知識點相關 文章 :

★ 七年級上冊數學知識點總結三篇

★ 七年級數學上冊知識點總結歸納

★ 七年級數學教案華師大版

★ 初一上冊數學知識點總結最新

★ 七年級上冊數學知識提綱

★ 七年級數學的知識點歸納總結

★ 七年級數學下冊知識點華師大版

★ 初一數學上冊知識點歸納

★ 七年級數學上冊知識點總結第一章

★ 初一數學上冊知識點匯總歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑺ 初中數學有理數知識梳理思維導圖

很多同學都學習了有理數,我整理了有理數的思維導圖,大家一起來看看吧。

有理數知識導圖

有理數的運算知識點

有理數的加減法

(1)有理數的加法法則:

①同號的兩數相反,取相同符號,並把絕對值相加;

②絕對值不相等的兩數相加,取絕對值大的符號,並用絕對值大的減去絕對值 小的。互為相反數的兩個數相加為0;

③一個數與0相加仍得這個數;

(2)有理數加法的運算律:①加法交換律:a+b=b+a; ②加法結合律:(a+b)+c=a+(b+c)

(3)有理數的減法法則:減去一個數,等於加上這個數的相反數;即:a-b=a+(-b);

有理數的乘除法

(1)有理數的乘法法則:

①兩數相乘,同號得正,異號得負,並把絕對值相乘;

②任何數與0相乘均為0;

(2)倒數:在有理數中仍然成立,即乘積是1的兩個數互為倒數;

(3)積的符號與負因數個數之間的關系:幾個不是0的數相乘,當負因數的個數為偶數時,積是正數;當負因數的個數為奇數時,積是負數;幾個數相乘時,當有因數是0時,積為0;

(4)有理數的乘法運算律:

①乘法交換律:ab=ba;

②乘法結合律:(ab)c=a(bc);

③乘法分配律: a(b+c)=ab+ac;

(5)有理數的除法法則:除以一個不為0的數,等於乘以其倒數;即:

(6)兩數相除,同號得正,異號得負,並把絕對值相除;0除以任一不為0的數,都得0;

(7)在有理數的加減乘除混合運算中,若無括弧,則按照先「先乘除後加減」的順序進行運算;

有理數的乘方

(1)乘方:相同因數的積的運算叫做乘方,乘方的結果叫做冪;(在a^n中,a是底數,n是指數)

(2)有理數的乘方運演算法則:

①負數的奇次冪是負數,負數的偶次冪是正數;

②正數的任何次冪是正數;

③0的任何正次冪是0;

(3)有理數的混合運算順序:

①先乘方,再乘除,最後加減;

② 同級運算,從左到右;

③如有括弧,先做括弧內的運算,按小括弧,中括弧,大括弧的順序進行;

(4)科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法;

(5)近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到哪一位。

(6)有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

以上就是七年級有理數所有知識點也是考點大合集,這種總結知識點的模式:知識大綱+知識點。下期分享整數的加減法知識點合集。

有理數知識點

1有理數

有理數的定義:正整數0負整數統稱為整數:正分數、負分數統稱為分數.整數和分數統稱為有理數.

2數軸

(1)數軸的定義

在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足以下要求:

1.在直線上任取一個點表示數0,這個點叫做原點;

2.通常規定直線上從原點向右為正方向,從原點向左為負方向;

3.選取適當的長度為單位長度,直線上從原點向右,每隔一個單位長度取一個點,依次表1,2,3,……從原點向左,用類似方法依次表示-1,-2,-3,……

(2)數軸上的點和有理數

一般地,設a是一個正數,則數軸上表示數a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度.

3相反數

(1)相反數的概念

像3和-3,4和-4這樣,只有符號不同的兩個數叫做互為相反數.

一般地,a和-a互為相反數,特別地,0的相反數是0.這里,a表示任意一個數,可以是正數、負數,也可以是0.

(2)幾何意義

互為相反數的兩個數在數軸上對應的兩個點位於原點的兩側且到原點的距離相等;反之,位於原點的兩側且到原點的距離相等的點所表

示的兩個數互為相反數.

(3)相反數的性質

任何一個數都有相反數,而且只有一個.正數的相反數一定是負數;負數的相反數一定是正數;0的相反數仍是0.

4絕對值

(1)絕對值的定義

一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|al.

(2)絕對值的意義

1.絕對值的代數意義:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.

即 如果a>0,那麼|a|=a;

如果a=0,那麼|a|=0;

如果a<0,那麼|a|=-a.

2.絕對值的幾何意義:一個數的絕對值就是表示這個數的點到原點的距離,離原點的距離越遠,絕對值越大;離原點的距離越近,絕對值越小.

(3)絕對值的性質:絕對值具有非負性,即有|a|≥0;若幾個數的絕對值的和為0,則每個數都等於0,即|a|+|b|+...+|m|=0,則a=b=...=m=0.

以上就是一些有理數知識點整理,希望對大家有所幫助。