⑴ 初中數學知識點及精選試題
精選試題
1、一個六位數,如果它的前三位數碼與後三位數碼完全相同,順序也相同,由此六位數可以被()整除。
A. 111 B. 1000 C. 1001 D. 1111
解:依題意設六位數為 ,則 =a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整數,所以能被1001整除。故選C
方法二:代入法
2、若 ,則S的整數部分是____________________
解:因1981、1982……2001均大於1980,所以 ,又1980、1981……2000均小於2001,所以 ,從而知S的整數部分為90。
3、設有編號為1、2、3……100的100盞電燈,各有接線開關控制著,開始時,它們都是關閉狀態,現有100個學生,第1個學生進來時,凡號碼是1的倍數的開關拉了一下,接著第二個學生進來,由號碼是2的倍數的開關拉一下,第n個(n≤100)學生進來,凡號碼是n的倍數的開關拉一下,如此下去,最後一個學生進來,把編號能被100整除的電燈上的開關拉了一下,這樣做過之後,請問哪些燈還亮著。
解:首先,電燈編號有幾個正約數,它的開關就會被拉幾次,由於一開始電燈是關的,所以只有那些被拉過奇數次的燈才是亮的,因為只有平方數才有奇數個約數,所以那些編號為1、22、32、42、52、62、72、82、92、102共10盞燈是亮的。
4、某商店經銷一批襯衣,進價為每件m元,零售價比進價高a%,後因市場的變化,該店把零售價調整為原來零售價的b%出售,那麼調價後每件襯衣的零售價是 ()
A. m(1+a%)(1-b%)元 B. m•a%(1-b%)元
C. m(1+a%)b%元 D. m(1+a%b%)元
解:根據題意,這批襯衣的零售價為每件m(1+a%)元,因調整後的零售價為原零售價的b%,所以調價後每件襯衣的零售價為m(1+a%)b%元。
應選C
5、如果a、b、c是非零實數,且a+b+c=0,那麼 的所有可能的值為 ()
A. 0 B. 1或-1 C. 2或-2 D. 0或-2
解:由已知,a,b,c為兩正一負或兩負一正。
①當a,b,c為兩正一負時:
;
②當a,b,c為兩負一正時:
由①②知 所有可能的值為0。
應選A
6、在△ABC中,a、b、c分別為角A、B、C的對邊,若∠B=60°,則 的值為 ()
A. B.
C. 1 D.
解:過A點作AD⊥CD於D,在Rt△BDA中,則於∠B=60°,所以DB= ,AD= 。在Rt△ADC中,DC2=AC2-AD2,所以有(a- )2=b2- C2,整理得a2+c2=b2+ac,從而有
應選C
7、設a<b<0,a2+b2=4ab,則 的值為 ()
A. B. C. 2 D. 3
解:因為(a+b)2=6ab,(a-b)2=2ab,由於a<b<0,得 ,故 。
應選A
8.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,則多項式a2+b2+c2-ab-bc-ca的值為 ()
A. 0 B. 1 C. 2 D. 3
9、已知abc≠0,且a+b+c=0,則代數式 的值是 ()
A. 3 B. 2 C. 1 D. 0
10、某商品的標價比成本高p%,當該商品降價出售時,為了不虧損成本,售價的折扣(即降價的百分數)不得超過d%,則d可用p表示為_____
解:設該商品的成本為a,則有a(1+p%)(1-d%)=a,解得
11、已知實數z、y、z滿足x+y=5及z2=xy+y-9,則x+2y+3z=_______________
解:由已知條件知(x+1)+y=6,(x+1)•y=z2+9,所以x+1,y是t2-6t+z2+9=0的兩個實根,方程有實數解,則△=(-6)2-4(z2+9)=-4z2≥0,從而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=8
12.氣象愛好者孔宗明同學在x(x為正整數)天中觀察到:①有7個是雨天;②有5個下午是晴天;③有6個上午是晴天;④當下午下雨時上午是晴天。則x等於()
A. 7 B. 8 C. 9 D. 10
選C。設全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由題可得關系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,於x=a+b+c+d=9。
13、有編號為①、②、③、④的四條賽艇,其速度依次為每小時 、 、 、 千米,且滿足 > > > >0,其中, 為河流的水流速度(千米/小時),它們在河流中進行追逐賽規則如下:(1)四條艇在同一起跑線上,同時出發,①、②、③是逆流而上,④號艇順流而下。(2)經過1小時,①、②、③同時掉頭,追趕④號艇,誰先追上④號艇誰為冠軍,問冠軍為幾號?
解:出發1小時後,①、②、③號艇與④號艇的距離分別為
各艇追上④號艇的時間為
對 > > > 有 ,即①號艇追上④號艇用的時間最小,①號是冠軍。
14.有一水池,池底有泉水不斷湧出,要將滿池的水抽干,用12台水泵需5小時,用10台水泵需7小時,若要在2小時內抽干,至少需水泵幾台?
解:設開始抽水時滿池水的量為 ,泉水每小時湧出的水量為 ,水泵每小時抽水量為 ,2小時抽干滿池水需n台水泵,則
由①②得 ,代入③得:
∴ ,故n的最小整數值為23。
答:要在2小時內抽干滿池水,至少需要水泵23台
15.某賓館一層客房比二層客房少5間,某旅遊團48人,若全安排在第一層,每間4人,房間不夠,每間5人,則有房間住不滿;若全安排在第二層,每3人,房間不夠,每間住4人,則有房間住不滿,該賓館一層有客房多少間?
解:設第一層有客房 間,則第二層有 間,由題可得
由①得: ,即
由②得: ,即
∴原不等式組的解集為
∴整數 的值為 。
答:一層有客房10間。
16、某生產小組開展勞動競賽後,每人一天多做10個零件,這樣8個人一天做的零件超過200個,後來改進技術,每人一天又多做27個零件,這樣他們4個人一天所做零件就超過勞動競賽中8個人做的零件,問他們改進技術後的生產效率是勞動競賽前的幾倍?
解:設勞動競賽前每人一天做 個零件
由題意
解得
∵ 是整數∴ =16
(16+37)÷16≈3.3
故改進技術後的生產效率是勞動競賽前的3.3倍。
⑵ 五四制初中數學教材知識框架總結
初一、初二知識點
有理數
1.1 正數和負數 π是無理數
1.5.1
有理數的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
冪
求n個相同的因數的積的運算叫做乘方。
一般地,在 a^n 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:
1.5.2 科學記數法
一個大於10的數可以表示成a×10n的形式,即有其中1≤a<10,n是比A的整數部分的位數少1的正整數。這種記數方法叫做科學記數法。
1.5.3 近似數和有效數字
一般的,一個近似數四捨五入到哪一位,就說這個數精確到哪一位;這時從左邊第一個不是0的數字起,到末尾數字止,所有的數字都叫這個數的有效數字。
對於科學記數法表示的數,規定它的有效數字就是a中的有效數字。
第二章
一元一次方程
2.1.2 等式的性質
用等號表示相等關系的式子叫做等式。我們用a=b表示一般的等式。
等式性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式性質2:等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
等式的補充性質:對稱性和傳遞性
如果a=b,那麼b=a;
如果a=b,b=c,那麼a=c。
方程:含有未知數的等式。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
將這個數分別帶入原方程的左右兩邊,看這個值能否使方程的兩邊相等。
一、一元一次方程、等式的概念
二、一元一次方程的解法:
去分母、去括弧、移項、合並同類項和系數化一
合並同類項復習
一、 書寫要求
數字與數字相乘,用乘號;數字與字母或字母與字母相乘,乘號省略不寫
數字與字母或括弧相乘時,數字在前
除號寫成分數線,分數線有括弧作用
帶分數應化成假分數
代數式是和或差的形式,並且有單位,代數式應加括弧
二、 列代數式
1、 除以a^2+b 的商是5x的數
2、 減少20%後是a的數
3、 三個連續奇數,中間的一個是2n+3,表示這三個數的立方和。
三、 同類項:所含字母相同,相同字母的指數也相同的項。
所有常數項都是同類項。
合並同類項:同類項的系數相加,結果作為系數,字母和字母的指數不變。
4、若4a^(m^2-1)b^2/5與3a^3b^(n-m)能夠合並,則m=±2,n=4或0
四、添、去括弧
五、化簡求值
工程問題:工作總量=工作效率×工作時間
現實生活問題
1、利潤問題
(1+提價或降價的百分數) 原價=現價;
利潤=售價-進價
2、儲蓄問題
本息和=本金+利息
利息=本金 利率 期數(每個期數內的利息與本金的比叫做利率)
從1999年我國開始對利息徵收20%的個人所得稅,
實得利息=(1-20%) 利息
3、球賽積分問題
4、納稅問題
5、交通問題
6、最優方案問題
3.1.2點、線、面、體
通過兩點的直線只有一條
兩點之間線段最短
等角的補角等,等角的餘角等
過一點有且只有一條直線與已知直線垂直。
垂線段最短
注意問題:
1、 在表示直線、射線、線段時,一定要先寫出文字。
2、 注意延伸與延長的區別,延長與反向延長的區別,延長線要用虛線
3、 注意定義的准確性。本章重要定義:兩點距離、角、中點、角平分線
4、 注意相似圖形的區別:直線與平角,射線與周角
5、 注意點、線、角的表示法,區分大小寫及字母順序
6、 作圖要用鉛筆尺子。尺規作圖要保留痕跡,並寫結論。
7、 論述題要寫推理步驟:題目中的已知作為因為,由已知推理得到的作為所以。
8、 注意區分中點,角平分線三種形式的選取。
9、 注意分類討論。依靠圖形把情況想全面。
10、圖形的折疊與展開可動手實踐。
一 平行線的性質定理:
• 兩直線平行,同位角相等。
• 兩直線平行,內錯角相等 。
• 兩直線平行,同旁內角互補 。
同位角相等
內錯角相等 兩直線平行
同旁內角互補
同位角相等
兩直線平行 內錯角相等
同旁內角互補
如果一個角的兩邊分別平行於另一角的兩邊,則這兩個角相等或互補
第九章 不等式與不等式組
移項要變號
1、 用不等號連接表示不等關系的式子叫不等式。
2、 不等式的基本性質:
性質1:不等式兩邊都加上(或減去)同一個數或式子,不等號方向不變。
性質2:不等式兩邊都乘(或除以)同一個正數,不等號方向不變。
性質3:不等式兩邊都乘(或除以)同一個負數,不等號方向改變。
互逆行:若a>b,則b<a
傳遞性:若a>b, b>c,則a>c
3、 使不等式成立的每一個未知數的值叫不等式的解。
不等式的所有解叫不等式的解集。解集是范圍,解是具體的數。
4、 解集在數軸上的表示:兩定
一定邊界點:含於解集為實心點;不含於解集為空心點
二定方向:大於向右,小於向左
5、 一元一次不等式的解法:去分母、去括弧、移項變號、合並同類項(化成ax>b或ax<b的形式)、系數化一(當系數是負數時,注意變號)
6、 幾個一元一次不等式的解集的公共部分叫一元一次不等式組的解集。
解法:分別解,再求解集。
同大取大;同小取小;大小取中;矛盾無解
注意:解集用小於連接。例:-2<x<3
7、 應用題:
注意超過、不小於、不大於、至少、最多等關鍵字。
注意隱含條件。
注意設法:不寫「至少」
一元一次不等式:
1、不等式的性質(尤其是性質三)
2、會解不等式(組),利用數軸找解集(不等式組要寫解集再取整數解,數軸要有原點、箭頭),應用題(注意關鍵字,是否帶等號)。
第七章 三角形
一、用不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
二、三角形中的三條重要線段:
1、三角形的角平分線
2、三角形的中線
3、三角形的高線
要求掌握: 定義、書寫格式、畫法(鈍角三角形)、交點結論
三、三角形三邊關系定理及推論
兩邊差<第三邊<兩邊和
三角形具有穩定性,而四邊形沒有
四、三角形的分類:按邊分和按角分
五、三角形內角和
三角形的內角和等於180°。
定理證明、書寫、例題(整體思想和方程思想)
在△ABC中,∵∠A+∠B+∠C=180°
六、三角形的外角
1、三角形的一邊與另一邊的延長線組成的角。
2、三角形的一個外角等於與它不相鄰的兩個內角的和。
3、三角形的一個外角大於與它不相鄰的任何一個內角。
書寫:∵∠ADB是△ADC的外角
∴∠ADB=∠C+∠DAC
∴∠C=∠ADB-∠DAC
七、多邊形
1、對角線:
2、n邊形的內角和等於(n-2)180°
3、多邊形的外角和等於360°,與邊數無關
4、各個角都相等,各條邊都相等的多邊形叫正多邊形。
八、正多邊形中,只有正三角形、正方形、正六邊形可以用來鑲嵌。
注意:畫圖用鉛筆,要准確,標明字母,寫結論
方位角、用三個字母表示角。
輔助線及延長線是虛線。
常用方法:分類討論思想、方程思想
整體思想、見比設份數
三角形:
1、三角形三邊關系定理,第三邊的范圍。
2、掌握三角形中三條重要線段的定義、推理形式、畫法(鉛筆、標字母、寫結論)。
3、三角形內角和定理,嚴格推理形式。
4、三角形外角定理及推論,嚴格推理形式。
5、多邊形的內角和及外角和定理,會構造方程。
6、鑲嵌:任意三角形、四邊形和正六邊形可鑲嵌。
7、會寫四步以內幾何推理。不用寫理由。
第十章 實數
1、算術平方根:一個正數的平方等於a,即x2=a,那麼正數x叫做a的算術平方根。
(算術平方根的取值范圍)
(被開方數的取值范圍,使式子有意義)
2、平方根:如果一個數的平方等於a,即x2=a,那麼x叫做a的平方根。
3、正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根。
4、求一個數的平方根的運算叫開平方。平方與開平方互為逆運算。
5、立方根:如果一個數的立方等於a,即x3=a,那麼x叫做a的立方根。
6、正數有一個正的立方根;負數有一個負的立方根;0的立方根是0。
7、求一個數的立方根的運算叫開立方。立方與開立方互為逆運算。
8、無限不循環小數叫無理數。
三類數:含 的式子;開不盡方根的數;類似循環實際不循環的小數
9、有理數和無理數統稱實數。實數還可分為正數、0、負數 注意:分數都是有理數
10、實數與數軸上的點一一對應。
11、實數的絕對值、相反數、倒數的概念與有理數中相同。
12、實數的近似值 。會比較兩數大小
會背1到20的平方,1到10的立方
第六章 平面直角坐標系
1、平面直角坐標系的概念:
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系.
水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸為y軸或縱軸,取向上方向為正方向;
兩個坐標軸的交點為平面直角坐標系的原點。
2、點的坐標:有序實數對
(1)點p(a,b)到x軸的距離為︱b︱
點p(a,b)到y軸的距離為︱a︱
(2)x軸上的點縱坐標為0
在x軸上方的點縱坐標大於0
在x軸下方的點縱坐標小於0
(3)y軸上的點橫坐標為0
在y軸右方的點橫坐標大於0
在y軸左方的點橫坐標小於0
(4)平行於x軸的直線上的點的縱坐標相同
平行於y軸的直線上的點的橫坐標相同
(5)在第一三象限角平分線上的點的橫、縱坐標相等
在第二四象限角平分線上的點的橫、縱坐標相反
3、用坐標表示平移:
(1)在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x + a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y + b)(或(x,y - b)).
(2)在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向 左(或向右)平移a個單位長度;
在平面直角坐標系內,如果把一個圖形各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
4、建立直角坐標系表示點的位置
5、坐標平面內的點與有序實數對一一對應。
注意:建立坐標系要完整。用鉛筆畫圖,畫圖不整潔要扣分。
圖形的這種移動叫平移變換,簡稱平移。
1、平移的兩條基本特徵;
2、圖形的移動為平移變換的重要標志:
圖形在移動的過程中,
自身的形狀和大小沒有發生變化
自身的方向始終沒有發生變化
3、數學與實際生活息息相關。
第十一章 一次函數
1、 常量與變數;(非重點)
2、 函數概念;(非重點)
3、掌握自變數的取值范圍:
使解析式有意義:分母不為0;二次根號下的式子有非負性
使實際問題有意義:注意邊界點及是否要取整
4、 函數的三種表示方法:解析法、列表法、圖像法
5、點在函數圖像上(函數圖像過這個點) 點的坐標滿足函數解析式
6、正比例函數概念:y=kx (k是不為0的常數)
圖像:過原點的一條直線
性質:k>0 直線過第一、三象限,y隨x的增大而增大
k<0 直線過第二、四象限,y隨x的增大而減小
7、一次函數概念:y=kx+b(k,b為常數,k不為0)
正比例函數是特殊的一次函數
圖像:一條直線
性質:k>0 ,y隨x的增大而增大
k<0 ,y隨x的增大而減小
b>0 直線與y軸交於正半軸
b<0 直線與y軸交於負半軸
b=0 直線過原點即為正比例函數
k相同的直線可互相平移得到
(k,b與一次函數圖像之間的關系見筆記)
注意:畫一次函數圖像時,只需找兩點即可
步驟:列表、描點、連線
8、用函數分析方程和不等式;
會求函數值,會求兩個函數的交點坐標,並會比較兩個函數的大小關系(會識圖);給出y(或x)的范圍會求x(或y)的范圍.
9、求函數解析式:用待定系數法求解析式;利用圖形找點求解析式
10、會看分段函數圖像
重點:變數與函數知識的掌握要突出討論意識。
函數的概念、性質、應用都應該強調討論;運用函數圖象進行的討論
《數據》復習
一.本章知識結構
本章共有三小節內容。
第1小節「幾種常見的統計圖表」主要在已經學過的條形圖、折線圖和扇形圖等統計圖的基礎上,進一步認識這幾種常見的統計圖,並引進一種新的統計圖——頻數分布直方圖;
第2小節「用圖表描述數據」包含兩層含義:根據問題選擇適當的統計圖來描述數據和學習製作統計圖表的方法;
第3小節「課題學習」旨在讓學生綜合利用已學的統計知識和方法從事統計活動,經理收集、整理、描述和分析數據的基本過程。
二、.課程學習目標
1. 進一步認識條形圖、折線圖、扇形圖,掌握它們各自的特點;
2. 會畫扇形圖,會用扇形圖描述數據;
3. 理解頻數的概念,了解頻數分布的意義和作用;
4.根據需要對數據進行適當分組;會列頻數分布直方圖和頻數折線圖,並會用它們描述數據。
5.感受統計在生產生活中的作用,建立統計觀念,培養實事求是的科學態度
數據收集的過程一般包括:明確調查問題、確定調查對象、選擇調查方法、展開調查、記錄結果。
表示數據的兩種方法:
1、利用統計表
2、利用統計圖:條形圖、折線圖、扇形圖
全等三角形
一、課程學習目標
1、了解全等三角形的概念和性質,能夠准確的辨認全等三角形的對應元素。
2、探索三角形全等的條件,能利用三角形全等進行證明。
3、會做角的平分線,了解角平分線的性質,會利用角平分線的性質進行證明。
二、知識內容小結
13.1 全等三角形
1、定義: 能夠完全重合的兩個三角形叫做全等三角形。
相關概念:對應頂點、對應邊、對應角
2、全等三角形的性質:
全等三角形的對應邊相等
全等三角形的對應角相等
結論:經過平移、翻折、旋轉前後的圖形全等。
13.2 三角形全等的條件
「邊邊邊」(SSS):
三邊對應相等的兩個三角形全等
「邊角邊(SAS):
兩邊和它們的夾角對應相等的兩個三角形全等。
「角邊角」(ASA):
兩角和它們的夾邊對應相等的兩個三角形全等。
「角角邊」(AAS):
兩個角和其中一個角的對邊對應相等的兩個三角形全等。
「斜邊直角邊」(HL):
在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等。
13.3 角平分線的性質
角平分線的尺規畫法。
角平分線的性質:角的平分線上的點到角的兩邊的距離相等。
角平分線的判定:到角的兩邊距離相等的點在角的平分線上。
結論:三角形的三條角平分線相交於一點,該點到三角形三條邊的距離相等。
三、復習建議
1、通過證明兩個三角形全等從而得到邊等、角等的關系是一種常用的方法。在初學證明兩個三角形全等時,讓學生養成良好的書寫習慣是十分必要的。所以我們應要求學生把對應頂點字母寫在對應位置上,書寫格式一定要規范。
如:已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
2、用「三找」模式證明三角形全等。
一找已知,最好在圖中標注出來;
二找隱含,通過圖形語言告訴的已知,如公共角是對應角,公共邊是對應邊,對頂角是對應角。
三找欠缺,根據題目中的已知條件證明欠缺條件。
3、及時幫助學生進行小結。將零散的知識概念進行整理,形成系統和網路是學生學習過程中很重要的一環,教師要有意識進行引導。如:已知兩個三角形全等,除了書上給出的全等三角形的對應邊相等;對應角相等以外,能夠得到的常用結論有:全等三角形對應邊上的中線、高相等;對應角的平分線相等;周長相等;面積相等。
再如判斷三角形全等的方法有五個,如何選擇這些方法呢?建議教師可以以表格形式給出如下小結:
已 知 可選用的方法
兩邊對應相等 SAS、SSS
兩角對應相等 AAS、ASA
一邊和一角對應相等 ASA、AAS、SAS
判斷兩個直角三角形全等,首先考慮使用HL,除此以外還可以考慮使用SAS、AAS、ASA
4、應重視所學內容在生活中的實際應用,培養學生學以致用的意識。
用三角形全等可以說明實際測量方法的道理,例如,測量池塘兩端的距離,測量河兩岸相對兩點的距離,用卡鉗測量工件的內槽寬,還安排了利用三角形全等測量旗桿高度的數學活動。
5、中考創新題。
一、補充條件型;
例:已知AB=AC,如果要判定△ADC≌△AEB,需添加條件__________
二、探索結論型;
例:如圖,已知AB∥DE,AB=DE,AF=DC,請問途中有哪幾對全等三角形?並任選一對給與證明。
三、編擬命題型
例: 在△AFD和△CEB中,點A,E,F,C在同一條直線上,有下面四個論斷:
(1) AD=CB(2)AE=CF(3)∠B=∠D(4)AD∥BC
請用其中三個作為條件,餘下一個作為結論,編一道數學問題,並寫出解答過程。
已知:_______________________________________________________
求證:______________________
證明:
四、易錯問題及應注意的問題
1、判定兩個直角三角形全等時,學生易將HL與SAS弄混。
有不少學生在判斷兩個直角三角形全等時,只要找到兩條邊對應相等就認為是HL定理。所以提醒學生注意,分清所找的邊是關鍵。如果找到的是兩條直角邊對應相等,使用的定理是SAS,一條斜邊和一條直角邊對應相等,使用的定理才是HL。
2、注意引導學生關注典型反例。
如:有兩邊和其中一邊上的高線對應相等的兩個三角形全等。
有兩邊和第三邊上的高線對應相等的兩個三角形全等。
這兩個命題均為假命題,但學生及易犯錯,原因是學生易忽略鈍角三角形高在三角形外的情況。
再如: AAA, SSA不成立的反例圖:
DE∥BC AD=AC
3、注意角平分線性質性質和判定定理的使用條件,記住典型圖形,線段CD或BD為常添輔助線。
4、有多個垂直關系時,常用等角的餘角等證明角等。
有一條對稱軸——直線
圖形沿軸對折(翻轉180°)
翻轉後和另一個圖形重合
整式
冪的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
冪
求n個相同的因數的積的運算叫做乘方。
一般地,在 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:
分式
分清「且」「或」
約分:約去公因式
分子分母為乘積形式才可約分
分式方程要檢驗
去分母別漏乘常數項
移項要變號
不能假檢驗
分式方程應用題要雙驗
勾股定理
1、勾股定理 注意:前提在直角三角形中
會利用定理進行邊的計算 a2+b2 =c2
2、勾股定理的證法 書或課件或新學案43頁
3、勾股逆定理 注意:哪個角是直角(最大邊所對角)
會用逆定理判定直角三角形
4、會寫逆命題:題設與結論與原命題相反
5、常用勾股數:
3k,4k,5k; 5k,12k,13k;
7,24,25; 8,15,17; 9,40,41
6、常用輔助線:構造直角三角形
7、注意勾股定理及逆定理的書寫格式
8、 已知直角三角形兩邊求第三邊
(分類討論)
已知兩直角邊求斜邊上的高
(雙垂直圖形,等積式)
9、含30º角的直角三角形三邊比為 1:2:
等腰直角三角形三邊比為 1:1:
10、勾股定理常作為列方程的隱含條件
四邊形復習
項目
四邊形 對邊 角 對角線 對稱性
平行四邊形
矩形
菱形
正方形
等腰梯形
四邊形 條件
平行
四邊形 1、定義:兩組對邊分別平行
2、兩組對邊分別相等
3、一組對邊平行且相等
4、兩組對角分別相等
5、對角線互相平分
矩形 1、定義:有一個角是直角的平行四邊形
2、三個角是直角的四邊形
3、對角線相等的平行四邊形
菱形 1、定義:一組鄰邊相等的平行四邊形
2、四條邊都相等的四邊形
3、對角線互相垂直的平行四邊形
正方形 1、定義:一組鄰邊相等且有一個角是直角的平行四邊形
2、有一組鄰邊相等的矩形
3、有一個角是直角的菱形
等腰梯形 1、兩腰相等的梯形 2 、在同一底上的兩角相等的梯形 3、對角線相等的梯形(結論)
順次連接四邊形各邊中點所得圖形為平行四邊形
順次連接對角線相等的四邊形各邊中點所得圖形為菱形
順次連接對角線互相垂直的四邊形各邊中點所得圖形為矩形
順次連接對角線相等且垂直的四邊形各邊中點所得圖形為正方形
1、連接對角線
2、構造平行四邊形
3、軸對稱圖形,對稱軸上任一點與對稱點的連線相等。
4、直角三角形中,有斜邊中點,常作斜邊中線
5、梯形:做高、平移腰、平移對角線(對角線垂直時)
輔助線要寫在證明第一行,用虛線,交代新添字母位置
本章常用定理
等腰三角形三線合一 中垂線定理
反比例函數復習
1、 定義: (k是不為0的常數)
y是x的反比例函數 y與x成反比例 y=kx-1
2、 自變數x≠0 函數y≠0
3、 反比例函數圖像是雙曲線
4、 當k>0時,圖像在第一、三象限,在每一個象限內,y隨x的增大而減小;
當k<0時,圖像在第二、四象限,在每一個象限內,y隨x的增大而增大.
注意:增減性取決於k,與x無關。
K<0
5、 兩條雙曲線既是中心對稱圖形(關於原點對稱),又是軸對稱圖形(對稱軸是y=x和y=-x)。
兩分支無限接近坐標軸,但不與坐標軸相交。
|k|越大,圖像離坐標原點越遠。
6、 反比例函數 與正比例函數y=k2x
當k1k2同號時,兩交點關於原點對成;異號時無交點。
7、實際問題中,自變數取值通常為正,圖像通常在第一象限。
8、必會題型:
1) 待定系數法求函數解析式
提醒:設兩個函數解析式要區分k
2) 面積問題 S矩形=|k| S三角形= |k|
3) 比較函數值
4)會比較一次函數與反比例函數大小
5)會求一次函數與反比例函數交點坐標
本章約佔10分,有一道6分解答題,為一次函數與反比例函數綜合題
4)
根據圖象寫出使反比例函數的值大(小)於一次函數的值的x的取值范圍。
中位數定義:
一組數據按大小順序排列,位於最中間的一個數據
叫做這組數據的中位數
1.求中位數要將一組數據按大小順序,顧名思義,中位數就是位置
處於最中間的一個數(或最中間的兩個數的平均數),排序
時,從小到大或從大到小都可以.
2.眾數是一組數據中出現次數最多的數據,是一組數據中的原數據,而不是相應的次數.眾數有可能不唯一,注意不要遺漏.
鞋店老闆一般最關心眾數
公司老闆一般以中位數為銷售標准
裁判一般以平均數為選手最終得分
3.中位數只需很少的計算,不受極端值的影
響,這在有些情況下是一個優點.
一元二次方程
注意:
1、判斷是否為一元二次方程要先化為一般形式再判斷。未知數出現在分母或根號中的方程不是一元二次方程。
2、ax2+bx+c=0是否為一元二次方程只與a有關,與b,c無關。
3、各項系數及常數項相對於一般形式而言,而且注意前面符號。
形如 x2=k或a(x-m)2=k的方程可利用開平方法求解。
注意a和k對方程解的影響
一元二次方程根的判別式
應用:不解方程判斷根的情況;給出根的情況,求待定系數的值或范圍。
注意:1、與幾何知識的綜合運用
2、注意方程中的字母
這里要特別注意:在列一元二次方程解應用題時,由於所得的根一般有兩個,所以要檢驗這兩個根是否符合實際問題的要求
在平面內,將一個圖形繞一個定點旋轉一定的角度,這樣的圖形變換叫做圖形的旋轉.這個定點叫旋轉中心.旋轉的角度稱為旋轉角
圖形的旋轉不改變圖形的形狀、大小,只改變圖形的位置.
旋轉中心在對應點連線的垂直平分線上。
性質1 關於中心對稱的兩個圖形是全等形。
性質2 關於中心對稱的兩個圖形,對稱點的連線都經過對稱中心,並且被對稱中心平分。
如果兩個圖形的對應點連成的線段都經過某一點,並且被該點平分,那麼這兩個圖形一定關於這一點成中心對稱。
⑶ 數學常識
一、 走進生活,用數學眼光去觀察和認識周圍的事物:
世界之大,無處不有數學的重要貢獻。培養學生的數學意識以及運用數學知識解決實際問題的能力,既是數學教學目標之一,又是提高學生數學素質的需要。在教學中,要使學生接觸實際,了解生活,明白生活中充滿了數學,數學就在你自己的身邊。
例如在「比例的意義和基本性質」的導入中,我設計了這樣一段:你們知道在我們人體上的許多有趣的比例嗎?將拳頭翻滾一周,它的長度與腳底長度的比大約是1:1,腳底長與身高長的比大約是1:7……知道這些有趣的比有很多用處,到商店買襪子,只要將襪子在你的拳頭上繞一周,就會知道這雙襪子是否合適你穿;如果你是一個偵探,只要發現罪犯的腳印,就可以估計出罪犯的身高……這些都是用身體的比組成了一個個有趣的比例,今天我們就來研究「比例的意義和基本性質」;
此外教師還可結合學生年齡特點,設計一些「調查」 、「體驗」 、「操作」等實踐性強的作業,讓學生在活動中鞏固所學知識,提高各方面的能力:如教學「單價、數量、總價」三者關系應用題前可布置學生做一回小小調查員,完成下列表格:
品 名 黃瓜 白菜 蘿卜 豬肉
單 價(元)
數量(千克)
總 價(元)
這樣做,使學生對所學知識有了感性認識,減緩他們在學習上坡度,對他們深刻理解單價、數量、總價三者之間的關系有很大幫助。再如學習了三角形的穩定性後,可讓學生觀察生活中哪些地方運用了三角形的穩定性;學習了圓的知識後,讓學生從數學的角度說明為什麼車輪的形狀是圓的,三角形的行不行?還可以讓學生想辦法找出鍋蓋、臉盆的圓心在哪兒;……這樣大大豐富了學生所學的知識,讓學生真正認識到周圍處處有數學,數學就在我們生活中間,並不神秘,同時也在不知不覺中感悟數學的真諦,進而激起從小愛數學、學數學、用數學的情感,促進學生的思維向科學的思維方式發展,培養學生自覺地把所學的知識應用於實際生活的意識。
二、 感悟生活,架構數學與生活的橋梁:
「人人學有用的數學,有用的數學應當為人人所學」成了數學教學改革實驗的口號。教學中我聯系生活實際,拉近學生與數學知識之間的距離,用具體生動、形象可感的生活事例解釋數學問題。
1、 運用生活經驗解決數學問題
在上「用字母表示數」一課的內容時,我用CAI課件演示李蕾同學拾金不昧的情景,緊接著播出一則「失物招領啟事」:
失 物 招 領
李蕾同學在校園升旗台附近拾到人民幣A元,請失主前來少先隊大隊部認領。
校少先隊大隊部
2002.3
學生驚奇於數學課上老師怎麼講起了失物招領的事呢?我和學生通過分析、討論A元所表示的意義,
師:A元可以是1元錢嗎? 生1:A元可以是1元錢,表示拾到1元錢。
師:A元可以是5元錢嗎? 生2:可以!表示拾到5元錢。
師:A元還可以是多少錢呢?生3:還可以是85元,表示拾到85元錢。
師:A元還可以是多少錢呢?生4:還可以是0.5元,表示拾到5角錢。……
師:那麼A元可以是0元嗎?生5:絕對不可以,如果是0元,那麼這個失物招領啟事就和大家開了一個大玩笑!
師:為什麼不直接說出拾到多少元,而用A元表示呢?……
由於學生容易認識具體、確定的對象,而用字母表示的數是不確定的、可變的,因此開始學習學生往往難以理解。本題中的「失物招領啟事」是學生所熟悉的活動,激發了學生學習新知的慾望,學生便能不由自主地參與到解題過程中去。在討論交流中,集思廣益,使學生在愉快的氛圍理解了新知,並對所學的知識更理解,掌握地更牢固;另一方面也提高了人際交往能力,增強了相互幫助、合作的意識,受到良好的思想教育,也鍛煉了學生對社會的洞察力。
2、 運用數學知識解決實際問題
例如學習了長方形、正方形面積的計算及組合圖形的計算後,我嘗試著讓學生運用所學知識解決生活中的實際問題。如:老師家有一間兩室一廳的住房,如圖:你能幫幫他算一算這兩室一廳的住的面積有多大?要計算面積有多大我們先要測量哪些長度的面積?在給出一定的數據後讓學生們計算;接下來我還讓學生們回家測算一下自己家的實際居住面積。在這樣一個實際測算的過程中,既提高了興趣,又培養了實際測量、計算的能力,讓學生在生活中學、在生活中用。
如,學過了100以內加減法之後,創設了「買汽車」的教學情境:微型汽車大削價,小林花去100元買了幾輛汽車,他買了幾輛汽車,是哪幾輛?
通過觀察、思考、討論,在我的鼓勵指導下,同學們用式子有序地依次表示為:
(1)把100元分解為兩個數的和: (2)把100元分解為3個數的和:
50+50=100 40+60=100 30+70=10020+80=100 60+20+20=10050+20+30=10040+40+20=10030+30+40=100
(3)把100元分解為4個數的和 (4)把100元分解為5個數的和 40+20+20+20=100
20+20+20+20+20=100 30+30+20+20=100
學生以發現者的心態去探索、去求新、去尋覓獨創性的答案,這也正驗證了蘇霍姆林斯基所說的:「在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者。」這種圖文並茂的應用題,使學生感到不是在解應用題,而是在解生活中的問題,鍛煉了學生捕捉信息的能力,增強了應用題的應用味:漫畫的形式更貼近於兒童的實際生活,學生從圖中獲得各種汽車價錢的信息,又從文字中獲取「小林花去100元」的信息,由於問題具有現實意義,但又不能刻板地歸為哪一種類型,要想解決「買了幾輛汽車,是哪幾輛?」的問題,聯系生活實際,就能得到不同的解法。整個學習活動給學生提供了廣闊的思維空間,讓學生經歷觀察、分析、概括和歸納等學習過程。不僅鞏固了100以內認識和加法,而且促進數學的交流,學生的分析、解決問題的能力得到培養,有利於因材施教,體現不同的人學習不同層次的數學,使學生感受到數學與生活的密切聯系,體驗到生活中處處有數學,感受數學的趣味與作用。
三、創造生活,解決生活中的數學問題
兩步應用題之後的教學,我讓學生「創作」應用題,學生們積極思考,發揮自己的想像力:「一份雞翅8元,一個漢堡包比它貴4元,我吃了一份雞翅和一個漢堡包,你們說我用了多少元?」;「我的媽媽上午買了一斤青菜,買的蘿卜是青菜的兩倍,請問我的媽媽一共買了幾斤菜?;《西遊記》有62集,《西遊記續集》比它多5集,《西遊記續集》有多少集?」學生們編應用題時眉飛色舞的神態,誇張的動作,幽默風趣的語言常常引起鬨堂大笑。由於題材來自學生所熟知的事物,學生發言積極、語言流暢,思維呈多極化和多元化,得出「雪融化後是春天而不是水」的新思路,因創造而倍感興奮,更體會到生活中處處有數學。
再如學習了「按比例分配」 的知識後,讓學生幫助爸爸媽媽算一算本住宅樓每戶應付的水費(電費)是多少;學習了「利息」的知識後,算一算自己在銀行存儲的錢到期後可以拿多少本息;再如學習完「比例尺」一節的知識後,讓學生繪制 「我給未來的校園設計平面圖」、「我給生活小區設計平面圖」等等,其對圖表內容的豐富和社會關注程度令人感嘆!
生活是教育的中心,「生活即教育」的理論為小學數學教學的改革開辟了廣袤的原野。「讓學生在生活中學數學」 使學生對數學有一種親近感,感到數學與生活同在,增強了學生學習數學的主動性,發展了求異思維,培養了學生理論聯系實際的學風和勇於探究、大膽創新、不斷進取的精神,讓學生親自體會參與應用所學知識去解決實際問題的樂趣。