Ⅰ 小學數學奧數知識點總結
以下內容希望對你有所幫助!
首先,奧數教學能夠激發小學生學習數學的興趣。奧數題目往往從結構到解法都充滿著藝術的魅力,易於小學生積極探索解法,而在探索解法的過程中,小學生又親身體驗到數學思想的博大精深和數學方法的創造力,因此會產生進一步對學習數學的嚮往感、入迷感。
其次,奧數教學能夠激發小學生的數學審美感。數學的美在許多的奧數題目中得到了集中的體現。讓我們先來觀察奧數題的—系列解題技巧:構造、對應、逆推、區分、染色、對稱、配對、特殊化、一般化、優化、假設、輔助圖表……令人眼花繚亂。這些解題技巧是一種高智力水平的藝術,能帶給小學生—種獨立於詩歌、音樂、繪畫之外的另一種審美感受。
再次,奧數教學能夠激發小學生的創造力。奧數題的求解更要依賴的是整體全面的洞察力、敏銳的直覺和獨創性的構思,這些正是創造力構成的主要元素,而這些創造力的主要元素也正是系統接受過奧數教學的小學生之所長。
一年級奧數:
一年級的孩子剛剛踏入小學。不論是學習習慣還是學習方法,都需要全面的培養和正確的引導,這就需要家長對整個六年的小學學習有一個全面的規劃。
學習重點難點解析:
1.巧算與速算的基本知識:對於一年級的學生來說,計算是學生學習時遇到的第一個問題。如果能夠在看似無序的算式中尋找到一定的規律,化繁為簡,那麼學生一定能夠增強學習數學的信心,提高學習數學的興趣。另外,計算與速算是各種後續問題學習的基礎。學好數學,首先就要過計算這關。
2.認識並學會數各種基本圖形:正方形、長方體、圓和立方體等是小學學習中最常見的圖形。通過系統的指導,使一年級的學生能夠計算出各種基本圖形的個數;使學生建立起有序思維,為建立思維模式打下基礎。
3.學習簡單的枚舉法:枚舉法對於一年級的學生來說的確是有一定的困難。在華數課本中,介紹這一難題時採用數數這種更為直觀的方式,將復雜抽象的問題形象化,便於孩子們理解。枚舉法訓練的重點在於有序的思維方式,學習之初將抽象問題形象化,能夠更好地引導學生去主動思考,建立起自己的思維方式。
4.數字的奇與偶、不等與相等等關於數論的基礎知識:數論問題是後續學習中的一個重點,而這學期將要學到的:數字的奇與偶、不等與相等等無疑將會是今後學習的基礎,在這里我們把數論問題分解為各種類型逐一講解,使華數學習更加系統。
二年級奧數:
二年級是開發孩子智力、形成良好思維習慣的最佳時期,學習奧數不僅能夠極大地鍛煉孩子的思維能力,也能為孩子之後的學習打下堅實的基礎。對於二年級的學生家長來說,激發孩子對華數的興趣是最主要的。
學習重點難點解析:
1、計算要過關:對於二年級學生的奧數學習來說,最先碰到的問題就是計算問題,計算問題是重點也是難點。根據學校數學的學習情況,孩子還沒有學習乘除法的列豎式,尤其是乘法的列豎式在二年級華數的學習中要求的比較多,比如華數課本下冊第三講速算與巧算中就多次用到了乘法,另外一些應用題中也會有所應用。所以對於學習下冊華數的學生,首先計算關一定要過。
2、枚舉是難點:對於二年級的學生來說,有序思維和抽象思維是比較困難的,對於問題,二年級的學生更多的願意以湊數來嘗試解答問題。而枚舉法的問題需要的就是孩子的有序思維,比如華數課本上冊幾枚硬幣湊錢的方法,下冊的整數拆分都屬於枚舉法的問題。這類問題不僅要求孩子要有序,同時直觀性不強,對於孩子理解有一定困難。建議家長可以比較抽象的問題形象化,比如上面舉到的漢堡和汽水的例子就更加形象。
3、應用題要接觸:二年級華數課本下冊中的後幾講已經接觸到了應用題部分,對於倍數等概念也有學習,建議學有餘力的孩子可以適當接觸三年級中的部分問題,但是難度不要像三年級華數課本中那樣大。
三年級奧數:
三年級的奧數學習是小學奧數最重要的基礎階段,只有牢固掌握了三年級奧數最基本的知識技巧,才能有效的促進今後的數學學習,最終在競賽、以及小升初中有所斬獲。
學習重點難點解析:
三年級屬於奧數學習打基礎階段,孩子進入三年級以後,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力相比於一、二年級有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以能否把握住三年級這一黃金時段,關繫到以後小升初的成與敗。下面就簡要介紹一下三年級下學期學習的關鍵知識點。
1.運用運算定律及性質速算與巧算
計算是數學學習的基本知識,也是學好奧數的基礎。能否又快又準的算出答案,是歷年數學競賽考察的一個基本點。在三年級,主要學習了加法與乘法運算定律,其中應用乘法分配率是競賽中考察巧算的一大重點;除此之外,競賽中還時常考察帶符號「搬家」與添括弧/去括弧這兩種通過改變運算順序進而簡便運算的思路。例如:17×5+17×7+13×5+13×7
問題解析:由於四個加項沒有公共的乘數,不能直接應用乘法分配率。可以考慮先分組應用乘法分配率,在觀察的思路,原式=(17×5+17×7)+(13×5+13×7)=17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12=360
2.學習假設思想解決雞兔同籠問題
雞兔同籠問題源於我國1500年前左右的偉大數學著作《孫子算經》,其中記載的31題,「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?」翻譯成現代文就是說有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
問題解析:我們知道每隻雞2隻腳,每隻兔子4隻腳,我們不妨假設籠子裡面只有雞,那麼應該有隻腳,而事實上有94隻腳,原因就是我們把一部分兔子假設成了雞。
我們知道,每隻兔子比雞多2隻腳,那麼一共應該有隻兔子,剩下了35–12=23隻雞。
對於一般的雞兔同籠問題,我們有雞數=(兔的腳數總頭數–總腳數)(兔的腳數-雞的腳數)
兔數=(總腳數-雞的腳數總頭數)(兔的腳數-雞的腳數)
3.平均數應用題
「平均數」這個數學概念在同學們的日常學習和生活中經常用到。例如,三年級上學期期末考完試,可以計算全班同學的數學「平均成績」,同學與爸爸媽媽三個人的「平均年齡」等等,都是我們經常碰到的求平均數的問題。根據我們所舉的例子,可以總結出求平均數的一般公式:總數和÷人數(或個數)=平均數。比如說人大附小三年級(一)班第2小組5名同學上學期期末數學成績分別是93,95,98,97,90,那麼第2小組5名同學的數學平均分是多少呢?
問題解析:根據我們總結的公式,首先可以求出第2小組5名同學數學的總分一共是93+95+98+97+92=475,所以他們的平均分是475÷5=95(分)。
4.和差倍應用題
和差倍問題是由和差問題、和倍問題、差倍問題三類問題組成的。和倍問題是已知大小兩個數的和與它們的倍數關系,求大小兩個數的應用題,一般可應用公式:數量和÷對應的倍數和=「1」倍量;差倍問題就是已知大小兩個數的差和它們的倍數關系,求大小兩個數的應用題,一般可應用公式:數量差÷對應的倍數差=「1」倍量;和差問題是已知大小兩個數的和與兩個數的差,求大小兩個數的應用題一般可應用公式:大數=(數量和+數量差)÷2,小數=(數量和-數量差)÷2。為了幫助我們理解題意,弄清題目中兩種量彼此間的關系,常採用畫線段圖的方法以線段的相對長度來表示兩種量間的關系,以便於找到解題的途徑。
5.年齡問題
基本的年齡問題可以說是和差倍問題生活化的典型應用。同時,年齡問題也有其鮮明的特點:任何兩個人之間的年齡差保持不變。解決年齡問題,關鍵就是要抓住以上兩點。例如:哥哥兩年後的年齡是弟弟年齡的2倍,今年哥哥比弟弟大5歲,那麼今年弟弟多少歲?
問題解析:由於兩人之間的年齡差不變,在2年之後哥哥仍然比弟弟大5歲,那時哥哥是弟弟年齡的2倍,這就變成了一道差倍問題,也就是說弟弟的年齡在2年後是5÷(2-1)=5(歲),所以今年弟弟5-2=3(歲)。
四年級奧數:
四年級是一個承前啟後的階段,學習內容的難度和廣度有所增加,各種競賽任務和招生考試的成績重要性大大增加,不論自己的孩子是剛剛開始學習奧數,還是已經著手為競賽、升學做准備,如何更好的完成四年級的學習計劃,如何做好四年級和五年級的過渡,如何規劃小升初之前的這兩年時間是每個家長都要面對的問題。
學習重點難點解析:
1、計算:計算是貫穿整個小學階段的重點,每個年級奧數的學習都以計算為基礎,較好的計算能力是學好其它章節,取得優異成績的保證。每個年級的計算有每個年級的特點,四年級的計算以加入了小數的計算為主,對於奧數基礎扎實的同學並且希望在五年級取得一些成績的同學還應該加入一些分數的計算。四年級計算應該掌握的重點題型有多位數的計算,小數的基本運算,小數的簡便運算等。其中,多位數的計算主要以通過縮放講多位數湊成各位數全是9的多位數,再利用乘法的分配率進行計算。小數的簡便運算主要與等差數列求和、乘法的分配率和結合率、換元法等結合在一起,需要同學們對各種題型熟練的掌握,尤其是多位數的計算。最後,小數計算的重點還是最基礎的小數的加減乘除混合運算,在初學小數時由於小數點的原因計算經常出錯,如果計算不準確,再好的方法和技巧都無從談起。所以,四年級學習計算的重點在於以基礎計算為主,掌握各種簡便運算技巧,提高准確度和速度。
2、平均數問題:在學習平均數問題的時候一定要先對平均數的概念有很好的理解。我們在授課過程中經常發現絕大多數同學在解平均數問題時經常犯一個錯,尤其是在行程問題中的一道題,錯誤率最高。小明從學校到家速度為12,從家到學校速度為24,問往返的平均速度是多少?很多同學答案都是18,誤以為平均數度就是速度的平均,這是不對的。在學習平均數問題的時候還要會利用基準數處理一大串數據的求和問題和求平均數的問題。很多復雜的平均數問題都是可以利用濃度三角的方法來解決的,尤其是思維導引中後面的一些復雜的平均數問題,同學們應該嘗試用濃度三角的方法來解決平均數問題。平均數問題的學習對以後濃度問題的學習很有好處,因為大部分平均問題的題型和濃度問題的題型從本質上來講是相同的
3、行程問題:四年級行程問題要掌握以下各類的問題:相遇問題、追及問題、火車相遇問題、流水行船問題、多次相遇問題等。首先,我們要對基本的相遇問題和追及問題有非常深刻的了解,在學習過程中經常有同學到六年級了對於追及問題中兩個人所走的時間是否相等還經常容易出錯。其次,我們要熟悉並掌握火車相遇問題和流水行船問題這兩個行程問題中最基本的專題,對我們後面復雜行程問題的學習起到非常大的幫助。最後,要掌握行程問題中解決復雜問題常用的技巧,劃線段的習慣,並養成良好、簡潔的解題習慣。畫線段圖的方法是解決很多復雜行程問題常用的方法,很多同學在畫線段圖的時候不夠簡潔,常常畫出的線段圖中多餘的線段和條件太多,導致畫出的線段圖比題目本身還復雜,無法分析求解。在平時的學習中應該盡量模仿老師,養成良好的解題習慣。
4、排列組合:排列組合是對上學期所學的加法原理和乘法原理兩講的一個升華。在加法原理和乘法原理中大家對分步和分類有了一定程度的理解和掌握,排列組合在此基礎上提供了更專業更有效解決計數問題的方法。在排列組合中首先要對排列組合的概念、排列數與組合數的計算、排列與組合的區別等有很好的理解,尤其是排列和組合的區分上,需要對一些經典例題的掌握從而來理解排列和組合的區別。同時,很多問題好需要結合分類分步方法和排列組合的原理來解題,並不是單純的排解組合公式的應用。對於一些基礎不好的同學,一定要在熟練掌握加法原理和乘法原理之後再來學習排列組合的知識。對於一些排列組合常見的題型和常用的方法要做到信手拈來。
5、幾何計數與周期性問題:幾何計數和周期性問題相對於行程和排列組合來說是兩個較小的專題,但是也是各大競賽和入學考試常見題型,尤其是很多綜合題同時包含數論和周期性問題的相關知識點,是競賽和備考的重中之重。幾何級數的掌握要從線段、角、三角形、長方形開始,學會用簡單的方法來解決復雜計數問題的步驟。而周期性問題常和等差數列、數論結合在一起,同學在做題題時經常容易出錯,需要在這方面的加大做題量。
五年級奧數:
五年級下學期是小升初前的最後一個學期,對於整個小學階段的數學學習起著至關重要的作用,只有這一關過好了,才可能在小升初的備考中游刃有餘。所以這學期的奧數學習應該有更強的針對性,針對自己的實際情況和目標選擇合適的班型。
學習重點難點解析:
五年級屬於小學高年級,孩子進入五年級以後,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以是否把握住五年級這個黃金時段,關繫到以後小升初的成與敗。那麼在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學習重點,下面就介紹一下五年級的關鍵知識點。
1.進入數學寶庫的分析方法——遞推方法:任何事物的發展總是從簡單到復雜,奧數也是一樣,對於復雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規律或者訣竅,從而來解決復雜的問題,這就是遞推方法。比如說:平面上2008條直線最多有幾個交點?同學們第一眼看到這個問題時,肯定會想畫2008條直線相交然後再數交點個數,那該是多麻煩啊!其實我們可以先來解決簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。
1條直線最多有0個交點0
2條直線最多有1個交點1
3條直線最多有3個交點1+2=3
4條直線最多有6個交點1+2+3=6
5條直線最多有10個交點1+2+3+4=10
6條直線最多有15個交點1+2+3+4+5=15
……
所以2008條直線有1+2+3+4+5+…+2007=2015028個交點。
那麼聰明的你,你能算出2008條直線最多可以把圓分成幾部分么?
2.變化無窮、形跡不定的行程問題:提到行程問題,同學們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進行了細分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鍾表問題、環形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。
3.抽象而又雜亂的數論問題:數論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節來講解數論,要想解決復雜的數論問題,我們首先得掌握數論的基本知識:數的奇偶性、約數(現在叫因數)、倍數、公約數及最大公約數、公倍數及最小公倍數、質數、合數、分解質因數、整除、余數及同餘等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然後做一定量的數論綜合習題,碰到難的數論問題我們就容易解決了。
4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎麼放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。
對於抽屜原理我們只要找到蘋果的個數a與抽屜的個數b,我們就可以得到下面的結論:
若a÷b=r……q
當q=0時,我們就說總有某個抽屜里至少有r個蘋果;
當q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。
比如說把32個蘋果放進8個抽屜里,因為32÷8=4,無論怎麼放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進8個抽屜里,因為35÷8=4……3,無論怎麼放,總有某個抽屜里有4+1=5個蘋果。
但是大部分的奧數題是沒有告訴我們抽屜的個數的,那樣我們就得自己構造抽屜,從而找出抽屜的個數。
5.圖形面積計算:求圖形的面積也是奧數中的一個難點,對於這類題我們首先要掌握好各種基本圖形的面積計算公式,然後記住一些重要的結論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關系。在計算面積時的方法有:直接計演算法、割補法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數。
六年級奧數:
現在正是小升初特別關鍵的一個時期,無論從信息還是自身的學習方面都要做好充分的准備,我想通過最近巨人組織的活動大家至少能夠看到是有一批非常敬業的老師希望能夠給大家提供盡量多的機會,後面還會陸續有活動,各位家長在信息和機會方面肯定不用擔心。下面我主要說說當機會擺在面前的時候我們應該怎樣去把握住它,首先要明確一點,小升初並不是我們的最終目標,而只是為了孩子今後的學習打下一個良好的基礎。所以我們一定要重視孩子學習習慣的培養,舉個很簡單的例子:很多同學做題的時候審題不認真,經常把會做的題目做錯,即使是最厲害的學生,如果把題目看錯了,那也是不可能把題目做對的。這一點特別特別的重要,無論是小升初還是今後的中考高考,因為現在的衡量標准其實並不是比誰更「聰明」,而是比誰更認真,學習更扎實。從最近的一些學校的考試我們就可以看出一個趨勢,就是題量大,時間段,對於單位時間內的做題效率有很高的要求,這個效率體現在兩個方面,就是速度和正確率。
學習重點難點解析:
1、分數百分數問題,比和比例:
這是六年級的重點內容,在歷年各個學校測試中所佔比例非常高,重點應該掌握好以下內容:
對單位1的正確理解,知道甲比乙多百分之幾和乙比甲少百分之幾的區別;
求單位1的正確方法,用具體的量去除以對應的分率,找到對應關系是重點;
分數比和整數比的轉化,了解正比和反比關系;
通過對「份數」的理解結合比例解決和倍(按比例分配)和差倍問題;
2、行程問題:
應用題里最重要的內容,因為綜合考察了學生比例,方程的運用以及分析復雜問題的能力,所以常常作為壓軸題出現,重點應該掌握以下內容:
路程速度時間三個量之間的比例關系,即當路程一定時,速度與時間成反比;速度一定時,路程與時間成正比;時間一定時,速度與路程成正比。特別需要強調的是在很多題目中一定要先去找到這個「一定」的量;
當三個量均不相等時,學會通過其中兩個量的比例關系求第三個量的比;
學會用比例的方法分析解決一般的行程問題;
有了以上基礎,進一步加強多次相遇追及問題及火車過橋流水行船等特殊行程問題的理解,重點是學會如何去分析一個復雜的題目,而不是一味的做題;
3、幾何問題:
幾何問題是各個學校考察的重點內容,分為平面幾何和立體幾何兩大塊,具體的平面幾何里分為直線形問題和圓與扇形;立體幾何里分為表面積和體積兩大部分內容。學生應重點掌握以下內容:
等積變換及面積中比例的應用;
與圓和扇形的周長面積相關的幾何問題,處理不規則圖形問題的相關方法;
立體圖形面積:染色問題、切面問題、投影法、切挖問題;
立體圖形體積:簡單體積求解、體積變換、浸泡問題;
4、數論問題:
常考內容,而且可以應用於策略問題,數字謎問題,計算問題等其他專題中,相當重要,應重點掌握以下內容:
掌握被特殊整數整除的性質,如數字和能被9整除的整數一定是9的倍數等;
最好了解其中的道理,因為這個方法可以用在許多題目中,包括一些數字謎問題;
掌握約數倍數的性質,會用分解質因數法,短除法,輾轉相除法求兩個數的最大公因數和最小公倍數;
學會求約數個數的方法,為了提高靈活運用的能力,需了解這個方法的原理;
了解同餘的概念,學會把余數問題轉化成整除問題,下面的這個性質是非常有用的:兩個數被第三個數去除,如果所得的余數相同,那麼這兩個數的差就能被這個數整除;
能夠解決求一個多位數除以一個較小的自然數所得的余數問題,例如求1011121314…9899除以11的余數,以及求20082008除以13的余數這類問題;
5、計算問題:
計算問題通常在前幾個題目中出現概率較高,主要考察兩個方面,一個是基本的四則運算能力,同時,一些速算巧算及裂項換元等技巧也經常成為考察的重點。我們應該重點掌握以下內容:
計算基本功的訓練;
利用乘法分配率進行速算與巧算;
分小數互化及運算,繁分數運算;
估算與比較;
計算公式應用。如等差數列求和,平方差公式等;
裂項,換元與通項公式。
Ⅱ 楂樹腑鏁板︾珵璧涜佸﹀摢浜涚煡璇
楂樹腑鏁板︾珵璧涘︾殑鐭ヨ瘑鑼冨洿鏈夊鉤闈㈠嚑浣曘佷唬鏁般佸垵絳夋暟璁恆佺粍鍚堥棶棰樸
涓銆佽冭瘯鍐呭瑰備笅錛
錛堝叏鍥介珮涓鏁板﹁仈璧涗竴璇曪級鎵娑夊強鐨勭煡璇嗚寖鍥翠笉瓚呭嚭鏁欒偛閮2000騫淬婂叏鏃ュ埗鏅閫氶珮綰т腑瀛︽暟瀛︽暀瀛﹀ぇ綰層嬨傛ゅ栵紝鍏ㄥ浗楂樹腑鏁板﹁仈璧涳紙浜岃瘯錛夊湪鐭ヨ瘑鏂歸潰鏈夋墍鎵╁睍錛岄傚綋澧炲姞涓浜涙暀瀛﹀ぇ綰蹭箣澶栫殑鍐呭廣
浜屻佽冭瘯鐭ヨ瘑鐐硅В鏋愶細
1銆佸鉤闈㈠嚑浣
鍑犱釜閲嶈佸畾鐞嗭細姊呮秴鍔蟲柉瀹氱悊銆佸炵摝瀹氱悊銆佹墭鍕掑瘑瀹氱悊銆佽タ濮嗘澗瀹氱悊錛涗笁瑙掑艦鏃佸績銆佽垂椹鐐廣佹ф媺綰匡紱鍑犱綍涓嶇瓑寮忥紱鍑犱綍鏋佸奸棶棰橈紱鍑犱綍涓鐨勫彉鎹錛氬圭О銆佸鉤縐匯佹棆杞錛涘渾鐨勫籙鍜屾牴杞達細闈㈢Н鏂規硶錛屽嶆暟鏂規硶錛屽悜閲忔柟娉曪紝瑙f瀽鍑犱綍鏂規硶
4銆佺粍鍚堥棶棰
鍦嗘帓鍒楋紝鏈夐噸澶嶅厓緔犵殑鎺掑垪涓庣粍鍚堬紝緇勫悎鎮掔瓑寮忥紱緇勫悎璁℃暟錛岀粍鍚堝嚑浣曪紱鎶藉眽鍘熺悊瀹規枼鍘熺悊錛涙瀬絝鍘熺悊錛涘浘璁洪棶棰橈紱闆嗗悎鐨勫垝鍒嗭紱瑕嗙洊錛涘鉤闈㈠嚫闆嗐佸嚫鍖呭強搴旂敤*銆(鏈*鍙風殑鍐呭瑰姞璇曚腑鏆備笉鑰)
涓夈佹帹鑽愪功鐩濡備笅錛
銆婅В棰樼爺絀躲嬨併婃暟瀛﹀ゥ鏋楀尮鍏嬪皬涓涗功-鍒濅腑鍗楓嬨併婂ゥ鏁版暀紼嬨嬨併婇珮涓鏁板︾珵璧涘煿浼樻暀紼嬨嬨併婃暟瀛﹀ゥ鏋楀尮鍏嬪皬涓涗功-楂樹腑鍗楓嬨併婇珮涓鏁板︾珵璧涗笓棰樿插駭銆嬨併婃暟瀛﹀ゥ鏋楀尮鍏嬪皬涓涗功-楂樹腑鍗楓嬬瓑絳夈傛渶鍚庯紝鏃犺烘槸鍚﹂夋嫨鍙傚姞楂樹腑鏁板︾珵璧涳紝瀛︽暟瀛﹁繕鏄瑕佹案钁嗗垵蹇冿紝鍔犳補錛
Ⅲ 英國IMC數學競賽考試淺談(3)——幾何知識點梳理
距離2022年IMC正式考試還有3周的時間,同學們需要多花時間復習之前的考題以及重點哦。本期我將為大家帶來關於幾何知識點的梳理以及做題技巧。眾所周知,幾何一直是我們學習GCSE以及Alevel的重中之重,很多幾何題目也用到了很多代數中設未知數,解一元多次方程的方法,所以整個ukmt教研組也偏向於在IMC的試卷當中給到幾何較多的比重。在過去的十年中,平均每一年涉及到初中或者高中幾何知識的imc試題每年有8題左右。所以,復習、以及預習提前掌握一些幾何知識,對於IMC獲得高分是非常重要的。下面,我將把初中幾何分為幾個大的分支課題,為大家分析其中的知識點。
1、平行線Parallel lines
平行線的性質:兩直線平行,則同位角相等、內錯角相等、同旁內角互補
平行線的判定:同位角相等、內錯角相等、同旁內角互補,則兩直線平行
平行線間的距離:平行線間的距離處處相等(平行線間的平行線段相等)
The properties of parallel lines: if two lines are parallel, the same position angle is equal, the interior angle is equal, and the interior angles on the same side are complementary
Judgment of parallel lines: the same angle is equal, the interior angles are equal, and the interior angles on the same side are complementary, then the two lines are parallel
Distance between parallel lines: The distance between parallel lines is equal everywhere (parallel segments between parallel lines are equal)
關於平行線,需要注意的是,我們常見的幾何圖形中,平行四邊形,長方形,正方形中的平行線的利用。同學們要清楚的知道,在長方形內的三角形,有著大量的同底等高可以利用,在發現同底等高之後,可以輕松地使用面積的等量代換求解問題。
2、三角形(Triangle)
三角形的內角和等於180°(多邊形的內角和:(n-2)×180°)
三角形的外角和等於360°(多邊形的外角和等於360°)
三角形的一個外角等於與它不相鄰的兩個外角的和 (滿足四點共圓的四邊形,一個角的外角等於該角的對角的內角。)
三角形的任意兩邊之和大於第三邊,任意兩邊之差等於第三邊 (換算成不等式,可以得到這樣一個簡單的不等式組,a+b>c, a+c>b,b+c>a, a,b,c,為三角形的三邊長)
The sum of the interior angles of a triangle is equal to 180° (the sum of the interior angles of a polygon: (n-2) × 180°)
The sum of the exterior angles of a triangle is 360° (the sum of the exterior angles of a polygon is 360°)
An exterior angle of a triangle is equal to the sum of the two exterior angles that are not adjacent to it.
The sum of any two sides of a triangle is greater than the third side, and the difference between any two sides is equal to the third side (converted to inequality, such a simple inequality group can be obtained, a+b>c, a+c>b, b+c>a , a,b,c, are the lengths of the three sides of the triangle)
3*、全等三角形
全等三角形的性質:全等三角形的對應角相等,對應邊相等
全等三角形的判定:①S.A.S ②A.S.A ③A.A.S ④S.S.S ⑤H.L
全等三角形的知識點,在IMC的選擇題中不作為重點考察。IMC競賽中,25題均為選擇題,所以我們只需要著重了解全等三角形的性質,注意對應邊全部相等,當發現了兩個三角形全等時,我們不必給出證明,可以直接使用,為後續的題目節約時間。
The knowledge points of congruent triangles are not considered in the multiple-choice questions of IMC. In the IMC competition, all 25 questions are multiple-choice questions, so we only need to focus on understanding the properties of congruent triangles, and pay attention to the fact that the corresponding sides are all equal. Subsequent questions save time.
4、等腰三角形、等邊三角形、直角三角形
等腰三角形兩條腰相等,兩個底角相等
等腰三角形三線合一:等腰三角形底邊上的高、底邊上的中線、頂角平分線互相重合
等邊三角形的三條邊相等,三個內角等於60°
等邊三角形的判定:有一個內角等於60°的等腰三角形是等邊三角形
直角三角形的兩個銳角互余
直角三角形兩條直角邊的平方和等於斜邊的平方(勾股定理)
如果三角形兩邊的平方和等於第三邊的平方,那麼這三角形是直角三角形(勾股定理逆定理)
An isosceles triangle has two equal sides and equal base angles
Isosceles triangle three lines in one: the height on the base of the isosceles triangle, the midline on the base, and the bisector of the top angle coincide with each other
The three sides of an equilateral triangle are equal, and the three interior angles are equal to 60°
Judgment of an equilateral triangle: an isosceles triangle with an interior angle equal to 60° is an equilateral triangle
Two acute angles of a right triangle are complementary
The sum of the squares of the two right-angled sides of a right triangle is equal to the square of the hypotenuse (Pythagorean theorem)
If the sum of the squares of the two sides of a triangle is equal to the square of the third side, then the triangle is a right triangle (the inverse of the Pythagorean theorem)
在考試中,看到諸如正六邊形,正方形,一定要聯想到它們分別與正三角形與等腰直角三角形的聯系(正六邊形可以被簡單的分解為6個小正三角形,正方形可以被看做兩個等腰直角三角形)。並且,同學們需要牢記30°,60°,90°直角三角形的邊長比例關系(正餘弦中的特殊值),以及等腰直角三角形的邊長比例關系(如果已經遺忘,清自行使用勾股定理推導,以便於加深印象)。
總之,幾何問題是IMC競賽考試中很重要的部分,希望同學們能夠結合past paper中的考題,多加復習,爭取在2月2日-3日的考試中獲得高分!