『壹』 人教版七年級上冊數學知識點
知識是嘈雜的,智慧是寧靜的。知識總是在賣弄,智慧卻深藏不露;知識,只有當它靠積極的思維得來,而不是憑記憶得來的時候,才是真正的知識。下面我給大家分享一些人教版七年級上冊數學知識,希望能夠幫助大家,歡迎閱讀!
人教版七年級上冊數學知識1
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
人教版七年級上冊數學知識2
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、 判定兩條直線平行的 方法 :
(1) 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2) 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3) 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2) 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3) 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
人教版七年級上冊數學知識3
式的定義
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.整式:單項式和多項式統稱為整式
2.2整式的加減
1.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。
2.合並同類項法則:系數相加,字母與字母的指數不變。
3.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號。
4.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並。
5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。
注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列。
人教版七年級上冊數學知識4
有理數
1.1、有理數概念:
⑴正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。
⑵注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
⑶注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3.相反數:
⑴只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
⑵注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
4.絕對值:
⑴正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
⑵注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
⑶|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理數比大小:
⑴正數的絕對值越大,這個數越大;
⑵正數永遠比0大,負數永遠比0小;
⑶正數大於一切負數;
⑷兩個負數比大小,絕對值大的反而小;
⑸數軸上的兩個數,右邊的數總比左邊的數大;
⑹大數-小數>0,小數-大數<0。
1.2、有理數運演算法則及規律
1.有理數的運演算法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
2.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結合律:(a+b)+c=a+(b+c)。
3.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。
4.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
5.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
6.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。
7.有理數乘方的法則:正數的任何次冪都是正數;
1.3、乘方的定義
1.求相同因式積的運算,叫做乘方;
2.乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
3.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
4.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
5.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則。
6.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明。
人教版七年級上冊數學知識5
一元一次方程
3.1、解一元一次方程
1.等式與等量:用「=」號連接而成的式子叫等式。注意:「等量就能代入」!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。
3.方程:含未知數的等式,叫方程。
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1。
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)。
9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。
3.2、一元一次方程應用題
1.讀題分析法——多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。
2.畫圖分析法——多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
人教版七年級上冊數學知識點相關 文章 :
★ 初一人教版數學上冊知識點總結歸納
★ 2019秋人教版七年級數學上冊教材全解讀
★ 七年級數學知識點大全
★ 人教版七年級數學上冊學習方法
★ 人教版七年級數學上冊教案
★ 新人教版七年級數學上冊教學計劃
★ 人教版一年級數學上冊知識點
★ 新人教版七年級上冊數學教學計劃
★ 人教版八年級數學上冊知識點總結
★ 人教版七年級上冊數學教學工作計劃
『貳』 初一數學上冊知識點歸納
七年級初一上冊的數學知識點是奠定中學數學學習的基礎,所以新初一的學生最好趁這個暑期將這部分內容學習好。我在這里整理了相關資料,希望能幫助到您。
目錄
第一章 有理數
第二章 整式的加減
第三章 一元一次方程
第四章 幾何圖形初步
第一章 有理數1.1 正數與負數
①正數:大於0的數叫正數。(根據需要,有時在正數前面也加上「+」)
②負數:在以前學過的0以外的數前面加上負號「—」的數叫負數。與正數具有相反意義。
③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。
注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等
1.2 有理數
1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;
(3)有理數:整數和分數統稱有理數。
2、數軸(1)定義 :通常用一條直線上的點表示數,這條直線叫數軸;
(2)數軸三要素:原點、正方向、單位長度;
(3)原點:在直線上任取一個點表示數0,這個點叫做原點;
(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。
3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)
4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。
(2) 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
①有理數加法法則:
1、同號兩數相加,取相同的符號,並把絕對值相加。
2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3、一個數同0相加,仍得這個數。
加法的交換律和結合律
②有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;
任何數同0相乘,都得0;
乘積是1的兩個數互為倒數。
乘法交換律/結合律/分配律
②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;
兩數相除,同號得正,異號得負,並把絕對值相除;
0除以任何一個不等於0的數,都得0。
1.5 有理數的乘方
1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。
2.1 整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和.
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.
5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統稱為整式。
2.2整式的加減
1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。
2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關
3、合並同類項:把多項式中的同類項合並成一項。可以運用交換律,結合律和分配律。
4、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變;
5、去括弧法則:去括弧,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括弧按去括弧法則先去括弧. (2)結合同類項. (3)合並同類項
3.1 一元一次方程
1、方程是含有未知數的等式。
2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。
注意:判斷一個方程是否是一元一次方程要抓住三點:
1)未知數所在的式子是整式(方程是整式方程);
2)化簡後方程中只含有一個未知數;
3)經整理後方程中未知數的次數是1.
3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
4、等式的性質: 1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;
2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。
注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.
3.2 、3.3解一元一次方程
在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:
①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母後應加上括弧;去分母與分母化整是兩個概念,不能混淆;
②去括弧:遵從先去小括弧,再去中括弧,最後去大括弧;不要漏乘括弧的項;不要弄錯符號;
③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;
④合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;
⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。
3.4 實際問題與一元一次方程
一.概念梳理
⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗並寫出答案(包括單位名稱)。
⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。
二、思想 方法 (本單元常用到的數學思想方法小結)
⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.
⑵方程思想:用方程解決實際問題的思想就是方程思想.
⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化「未知」為「已知」的化歸思想.
⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性.
⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.
三、數學思想方法的學習
1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.
2. 尋找實際問題的數量關系時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.
3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;
⑵是要判斷方程的解是否符合題目中的實際意義.
四、應用(常見等量關系)
行程問題:s=v×t
工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本
利率=利潤÷成本×100%
售價=標價×折扣數×10%
儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
4.1 幾何圖形
1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。
2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。
3、平面圖形:這些幾何圖形的各部分都在同一個平面內。
4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。
立體圖形中某些部分是平面圖形。
5、三視圖:從左面看,從正面看,從上面看
6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。
7、⑴幾何體簡稱體;包圍著體的是面;面 面相 交形成線;線線相交形成點;
⑵點無大小,線、面有曲直;
⑶幾何圖形都是由點、線、面、體組成的;
⑷點動成線,線動成面,面動成體;
⑸點:是組成幾何圖形的基本元素。
4.2 直線、射線、線段
1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。
2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。
4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
5、連接兩點間的線段的長度,叫做這兩點的距離。
6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.
(1)用幾何語言描述右面的圖形,我們可以說:
點P在直線AB外,點A、B都在直線AB上.
(2)如圖,點O既在直線m上,又在直線n上,我們稱直線
m、n 相交,交點為O.
7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.葫蘆島英霸 教育 聯盟http://www.yingbajiaoyu.com/ 18342389605
注意:射線有一個端點,向一方無限延伸.
8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.
注意:線段有兩個端點.
4.3 角
1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.
2、角有以下的表示方法:
① 用三個大寫字母及符號「∠」表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.
② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.
③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點
處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1
2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。
1度=60分 1分=60秒 1周角=360度 1平角=180度
3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。
4、如果兩個角的和等於90度(直角),就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;
如果兩個角的和等於180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
5、同角(等角)的補角相等;同角(等角)的餘角相等。
6、方位角:一般以正南正北為基準,描述物體運動的方向。
初一數學上冊知識點歸納相關 文章 :
1. 初一數學上冊人教版知識點歸納
2. 初一數學知識點總結
3. 初一年級上冊數學的21個熱門知識點
4. 初一上冊數學知識點手抄報
5. 初一上冊數學第一單元知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();『叄』 七年級上冊數學知識點總結三篇
學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。
七年級上冊數學知識點總結篇一
單項式與多項式
1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)
2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
七年級上冊數學知識點總結篇二
第一單元有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a〃1
b(b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於
0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同極運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
七年級上冊數學知識點總結篇三
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的 方法 :
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
相關 文章 :
1. 初一數學復習三篇
2. 初一上冊數學知識點歸納整理
3. 初一數學上冊知識點歸納
4. 初一數學課本知識點總結
『肆』 初一數學上冊知識點全總結
掌握好知識點才能把數學學得更好,下面是我整理的初一數學上冊知識點全總結,希望對大家有幫助!
第一單元小數乘法
1、小數乘整數:
@意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示求3個1.5的和的簡便運算(或1.5的3倍是多少)。
@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數:
@意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:按整數算出積後,小數末尾的0要去掉,也就是把小數化簡;位數不夠時,要用0佔位。
3、規律:0除外)乘大於
1的數,積比原來的數大;
0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分;保留一位小數,表示計算到角。
6、小數四則運算順序和運算定律跟整數是一樣的。
7、運算定律和性質:
@加法:
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
減法:
@乘法:
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@除法:
÷b÷c=a÷(b×c)
a÷(b×c)=a÷b÷c
第二單元位置
1、數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右分別為列數和行數,即「先列後行」。
2、作用:一組數對確定唯一一個點的位置。經度和緯度就是這個原理。例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。註:
(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
2、圖形左右平移行數不變;圖形上下平移列數不變。
第三單元小數除法
1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
2、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除。商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
3、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
4、在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。
5、除法中的變化規律:
①商不變:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大,商隨著擴大。
③被除數不變,除數縮小,商擴大。
6、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。
@循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如:6.3232的循環節是32。
7、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。
第四單元可能性
1、有些事件的發生是確定的,有些是不確定的。
可能
可能性不可能(確定)一定
2、事件發生的機會(或概率)有大小。
大數量多小數量少
第五單元簡易方程
1、在含有字母的式子里,字母中間的乘號可以記作「·」,也可以省略不寫。註:加號、減號除號以及數與數之間的乘號不能省略。
22、a×a可以寫作a·a或a讀作a的'平方。
2、註:2a表示a+a;a表示a×a
3、方程:含有未知數的等式稱為方程。
4、使方程左右兩邊相等的未知數的值,叫做方程的解。
5、求方程的解的過程叫做解方程。
6、解方程原理:天平平衡。
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
7、10個數量關系式:
@加法;
和=加數+加數;
=和-兩一個加數
@減法:
=被減數-減數;
=差+減數;
減數=被減數-差
@乘法:
積=因數×因數;
一個因數=積÷另一個因數
@除法:
商=被除數÷除數;
=商×除數;
除數=被除數÷商
第六單元多邊形的面積
1、長方形:
@周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】
字母表示:C=(a+b)×2
@面積=長×寬
字母表示:S=ab
2、正方形:
@周長=邊長×4
字母表示:C=4a
@面積=邊長×邊長
2字母表示:S=a
3、平行四邊形的面積=底×高
字母表示:S=ah
4、三角形的面積=底×高÷2——【底=面積×2÷高;高=面積×2÷底】
字母表示:S=ah÷2
5、梯形的面積=(上底+下底)×高÷2
字母表示:S=(a+b)h÷2=面積×2÷高-下底,
下底=面積×2÷高-上底;
=面積×2÷(上底+下底)
6、平行四邊形面積公式推導:剪拼、平移、割補法
7、三角形面積公式推導:旋轉、拼湊法
平行四邊形可以轉化成一個長方形;
兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底;
平行四邊形的底相當於三角形的底;
長方形的寬相當於平行四邊形的高;
平行四邊形的高相當於三角形的高;
長方形的面積等於平行四邊形的面積,
平行四邊形的面積等於三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高。因為平行四邊形面積=底×高,所以三角形面積=底×高÷2。
8、梯形面積公式推導:旋轉、拼湊法
9、兩個完全一樣的梯形可以拼成一個平行四邊形;
平行四邊形的底相當於梯形的上下底之和;
平行四邊形的高相當於梯形的高;
平行四邊形面積等於梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2。
10、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;等底等高的平行四邊形面積是三角形面積的2倍。
11、長方形框架拉成平行四邊形,周長不變,面積變小。
12、組合圖形面積(或陰影部分面積):轉化成已學的簡單圖形,通過加、減進行計算(整體-部分=另一部分)。
『伍』 七年級上冊數學點和線知識點
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的`線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
『陸』 人教版七年級上冊數學知識點整理
馬上寒假了,為了幫助大家更好的學習初中數學。下面我整理了人教版七年級上冊數學知識點,供大家參考。
一、整式的加減
1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。
2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;單項式中所有字母指數的和,叫單項式的次數。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.整式:①單項式②多項式。
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。
7.合並同類項法則:系數相加,字母與字母的指數不變。
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號。
9.整式的加減:
一找:(劃線);
二「+」:(務必用+號開始合並);
三合:(合並)。
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。
二、一元一次方程
1.等式:用「=」號連接而成的式子叫等式。
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。
3.方程:含未知數的等式,叫方程。
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;
注意:「方程的解就能代入」。
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1。
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
8.一元一次方程解法的一般步驟:
化簡方程----------分數基本性質。
去分母----------同乘(不漏乘)最簡公分母。
去括弧----------注意符號變化。
移項----------變號(留下靠前)。
合並同類項--------合並後符號。
系數化為1---------除前面。
9.列一元一次方程解應用題:
(1)讀題分析法:…………多用於「和,差,倍,分問題」。
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:…………多用於「行程問題」。
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
三、絕對值
1、絕對值的幾何定義:一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。
2、絕對值的代數定義
(1)一個正數的絕對值是它本身;
(2)一個負數的絕對值是它的相反數;
(3)0的絕對值是0。
3、可用字母表示為
(1)如果a>0,那麼|a|=a;
(2)如果a<0,那麼|a|=-a;
(3)如果a=0,那麼|a|=0。
4、可歸納為
(1)a≥0,<═>|a|=a(非負數的絕對值等於本身;絕對值等於本身的數是非負數。)
(2)a≤0,<═>|a|=-a(非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)
5、絕對值的性質
任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即
(1)0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;
(2)一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
(3)任何數的絕對值都不小於原數。即:|a|≥a;
(4)絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;
(5)互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
(6)絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
(7)若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)。
6、有理數大小的比較
(1)利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;
(2)利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大於負數。
四、代數式
1、代數式:用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。單獨的一個數或一個字母也是代數式。
2、單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。
3、單項式的系數:單項式中的數字因數。
4、單項式的次數:一個單項式中,所有字母的指數和。
5、多項式:
幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。
多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。
6、整式:
單項式和多項式統稱為整式。
注意:分母上含有字母的不是整式。
7、代數式書寫規范:
(1)數與字母、字母與字母中的乘號可以省略不寫或用「·」表示,並把數字放到字母前;
(2)出現除式時,用分數表示;
(3)帶分數與字母相乘時,帶分數要化成假分數;
(4)若運算結果為加減的式子,當後面有單位時,要用括弧把整個式子括起來。
『柒』 人教版數學初一上冊第四章中考知識點有哪些
除了課堂上的學習外,數學知識點也是學生提高數學成績的重要途徑,本文為大家提供了初一上冊數學第四章圖形認識初步知識點,希望對大家的學習有一定幫助。
【知識點歸納】
一、多姿多彩的圖形
1.從實物中抽象出的各種圖形統稱為幾何圖形。
2.點、線、面、體
A.點:線和線相交的地方。
B.線:面和面相交的地方,線可分為直線、射線、線段
C.體:正方體、長方體、圓柱、球等都是幾何體,幾何體簡稱體。
D.面:包圍著體的是面,面可分為平的面、曲的面。
二、直線、射線、線段
1.兩點確定一條直線
2.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
3.兩點之間,線段最短。
4.連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1.有且只有一個角
2.把一個周角360等分,每一份就是一度的角,記做1°﹔把1度的角60等分,每一份叫做1分的角,記作1′﹔把1分的角60等分,每一份叫做1秒的角,記作1″。
3.角的運算:1周角=360°,1平角=180°,1°=60′,1′=60″
4.角的平分線:A.從一個角的頂點引出一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的角平分線。
B.角平分線上的一點到角的兩邊距離相等。
四、線段、射線和直線的聯系與區別
聯系:線段、射線、直線是部分與整體的關系.線段向一方無限延長形成了射線,向兩個方向無限延長得到了直線.直線上的兩點和它們之間的部分組成線段,直線上的一點及其一旁的部分是射線,射線反向延長得直線.
小編為大家整理的初一上冊數學第四章圖形認識初步知識點相關內容大家一定要牢記,以便不斷提高自己的數學成績,祝大家學習愉快!
『捌』 有關數學點,線,面的知識點都有哪些
點、線、面是幾何學里的概念,是平面空間的基本元素。點是所有圖形的基礎。線就是由無數個點連接而成的。面就是由無數條線組成的。
點的形象:在幾何學上,點只有位置,沒有面積。但在實際構成練習中點要見之於圖形,並有不同大小的面積。至於面積多大是點,要根據畫面整體的大小和其它要素的比較來決定。點在構成中具有集中、吸引視線的功能。點的連續會產生線的感覺,點的集合會產生面的感覺,點的大小不同會產生深度感,幾個點會有虛面的效果。
線的形象:幾何學上的線是沒有粗細的,只有長度和方向,但構成中的線在圖面上是有寬窄粗細的。線在東方的繪畫中被廣泛運用,並有很強的`表現力。線的種類很多,如直線、平行線、垂直線、折線、斜線等。曲線――弧線、拋物線、雙曲線、圓等。線在造形中的地位十分重要,因為面的形是由線來界定的。也就是形的輪廓線。不同的線表現不同的意念。粗線有力,細線銳利。線的粗細可產生遠近關系,線還有很強的方向性。垂直線有莊重、上升之感;水平線有靜止、安寧之感;斜線有運動、速度之感;而曲線有自由流動、柔美之感。
面的形象:面具有長度、寬度,無厚度,是體的表面,它受線的界定,具有一定的形狀。
點線面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的`上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。圖形的基礎素材就是需要點、線、面的結合,只有這樣才能構成一個圖形。
『玖』 七年級數學上冊知識點匯總
一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家.下面給大家帶來一些關於 七年級數學 上冊知識點匯總,希望對大家有所幫助。
1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b).
2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式.
3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加
號的和的形式.
4、加減混合運算的 方法 和步驟
(1)將減法統一成加法,並寫成省略加號的和的形式;
(2)運用加法的交換律和結合律,簡化運算.
5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0.
6、有理數乘法步驟:先確定積的符號;再計算絕對值的積.
7、倒數:乘積是1的兩個數互為倒數.
8、有理數的除法法則
(1)除以一個數等於乘以這個數的倒數;
(2)兩數相除,同號得正,異號得負,並把絕對值相除;
(3)0除以任何一個不等於零的數,都得0.
9、乘方的有關概念
(1)求n個相同因數的積的運算叫乘方,乘方的結果叫冪,a叫底,n叫指數,a n讀作:a的n 次方(或a的n次冪).
(2)正數的任何次冪都是正數;負數的奇次方冪是負數,偶次方冪是正數.
10、科學計數法
把一個大於10的數記成a×10n的形式,其中0≤a<10,n是正數,這種計數法叫做科學計數法.
11、有理數的混合運算順序
(1)先算乘方,再算乘除,最後算加減;
(2)同級運算,按照從左至右的順序依次進行;
(3)如果有括弧,就先算小括弧,再算中括弧,然後算大括弧.
12、近似數:與實際很接近的數.
13、精確度:反映近似數的精確程度的量.一般地,一個近似數四捨五入到某一位,就說這個
近似數精確到那一位.
14、計算器的組成:計算器的面板由 顯示器 和按鍵組成.
第3章整式的加減
1、用字母表示數後,有些數量之間的關系用含有字母的式子表示,看上去更加簡明,更具有普
遍意義.
2、用字母表示數後,字母的取值要根據實際情景來確定.
3、用運算符號把數或表示數的字母連接而成的式子,稱為代數式.
4、單獨一個數或單獨一個字母也是代數式.
5、列代數式的實質就是把文字語言轉化為符號語言.
6、列代數式的一般方法有:
(1)抓住關鍵詞,由關鍵詞確定相應的運算符號;
(2)理清運算順序,一般是先讀的先算,必要時添上括弧;
(3)較復雜的數量關系,可分段處理;
(4)根據實際問題中的基本數量關系或公式列代數式.
7、用數值代替代數式中的字母,按照代數式中的運算關系計算得出結果,叫做代數式的值.
8、求代數式的值的步驟:先代入,再求值.
9、數與字母的乘積所組成的代數式叫做單項式,單獨的數或字母也是單項式.
10、單項式中的數字因數叫做這個單項式的系數,所有字母指數之和叫做這個單項式的次數.
11、幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母
的項叫做常數項.
12、在多項式里,最高次項的次數就是這個多項式的次數.
13、單項式和多項式統稱為整式.
14、把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把這個多項式按這個
字母的降冪排列.
15、把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把這個多項式按這個
字母的升冪排列.
16、所含字母相同,並且相同字母的指數也相等的項叫做同類項,所有的常數項都是同類項.
17、把多項式中的同類項合並成一項,叫做合並同類項.
18、合並同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變.
19、去括弧法則:
(1)括弧前面是「+」,把括弧和它前面的「+」號去掉,括弧里各項不改變正負號;
(2)括弧前面是「—」,把括弧和它前面的「—」號去掉,括弧里各項改變正負號;
20、添括弧法則:
(1)所添括弧前面是「+」號,括到括弧里的各項不改變正負號;
(2)所添括弧前面是「—」號,括到括弧里的各項改變正負號;
21、整式加減的一般步驟:先去括弧,再合並同類項.
第4章生活中的立體圖形
1、生活中的立體圖形有很多,常見的有柱體、錐體和球體,其中柱體分為圓柱和稜柱,錐體分
為圓錐和棱錐
2、從正面、上面和側面(左面或右面)三個不同的方向看一個物體,然後描繪出三幅所看到的
圖,即視圖.
3、從正面看到的圖形,稱為主視圖;從上面看到的圖形,稱為俯視圖;從側面看到的圖形,稱
為側視圖,依觀看的方向不同,有左視圖和右視圖.
4、單一的規則的立體圖形的三視圖,如果主視圖和側視圖是三角形,一般和錐體有關,可根據
俯視圖是圓形或n邊形,可以判斷是圓錐或,n棱錐;對於主視圖和側視圖是長方形的,一般和柱體有關,再觀察俯視圖是圓形或n邊形,可以判斷是圓柱或n稜柱.
5、圓柱的側面展開圖是矩形(長方形或正方形),圓錐的側面展開圖是扇形.
6、同一個立體圖形,按不同的方式展開得到的平面展開圖是不同的.
7、圓是由曲面圍成的封閉圖形;多邊形是由線段圍成的封閉圖形.
8、在多邊形中,最基本的圖形是三角形.
9、兩點之間線段最短.
10、經過兩點有1條直線,並且只有1條直線,即兩點確定一條直線.
11、線段的長短比較有兩種方法:一種是度量的方法;一種是疊合的方法.
12、把一條線段分成兩條相等線段的點,叫做這條線段的中點.
13、角是由兩條有公共端點的射線組成的圖形,角也可以看做是一條射線繞著它的端點旋轉
而成的圖形.
14、角的表示方法
(1)當頂點處只有一個角時,用一個大寫字母表示;
(2)用三個大寫字母表示,注意頂點字母必須寫在中間;
(3)用希臘字母或阿拉伯數字表示.
15、角的大小比較:
(1)「形的比較」——疊合法;
(2)「數的比較」——度量法.
16、從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的
角平分線.
17、兩個角的和等於90°(直角),就說這兩個角互為餘角;兩個角的和等於180°(平角),
就說這兩個角互為補角.
18、同角(或等角)的餘角相等;同角(或等角)的補角相等.
第5章相交線與平行線
1、對頂角相等.
2、在同一平面內,經過直線外或直線上一點,有且只有1條直線與已知直線垂直.
3、直線外一點與直線上各點連接的所有線段中,垂線段最短.
4、兩條直線被第三條直線所截,位於截線的同側,被截直線的同一方的兩個角叫做同位角;位
於截線的兩側,被截直線之間的兩個角叫做內錯角;位於截線的同側,被截直線之間的兩個角叫做同旁內角.
5、在同一平面內不相交的兩條直線叫做平行線.
6、經過直線外一點,有1條直線與這條直線平行.
7、如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行.
8、平行線的判定方法
(1)同位角相等,兩直線平行;
(2)內錯角相等,兩直線平行;
(3)同旁內角互補,兩直線平行;
(4)如果有兩條直線與第三條直線平行,那麼這兩條直線也互相平行;
(5)在同一平面內,垂直於同一條直線的兩條直線互相平行.
9、平行線的性質
(1)兩直線平行,同位角相等;
(2)兩直線平行,內錯角相等;
(3)兩直線平行,同旁內角互補.
第1章走進數學世界
1、數學伴我們成長,測量、稱重、計算等都與數學有關.
2、數學與現實生活密切聯系,人類離不開數學.
3、人人都能學好數學.
第2章有理數
1、相反意義的量:像向東和向西、零上和零下、收入和支出、升高和降低、買入和賣出等都表
示具有相反意義的量.
2、正數和負數
(1)正數都大於零;
(2)在正數前面加上一個「—」號的數叫做負數,負數都小於零;
(3)0既不是正數也不是負數,它是正數和負數的分界點.
3、有理數
(4)有理數:正數和分數統稱為有理數;
(5)整數包括正整數、0、負整數;
(6)分數包括正分數、負分數.
4、有理數的分類:0和正數統稱為非負數,0和負數統稱為非正數.
5、數軸的概念:規定了正方向、原點和單位長度的直線叫做數軸.
6、有理數的大小比較
(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;
(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.
7、相反數的意義
(1)代數意義:只有符號不同的兩個數稱互為相反數,零的相反數是0;
(2)幾何意義:在數軸上表示互為相反數的兩個點分別位於原點的兩側,且與原點的距離相等.
8、相反數的表示方法:數a的相反數是-a,這里的a可以表示任何一個數.
9、絕對值的意義
(1)幾何意義:把數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|;
(2)代數意義:一個正數的絕對值等於本身,零的絕對值是0,一個負數的絕對值等於相反數.
10、絕對值的非負性:對於任何有理數a,都有|a|≥0.
11、兩個負數的大小比較法則:兩個負數,絕對值大的反而小.
12、有理數大小的比較方法
(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;
(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.
兩個正數,絕對值大的數大;兩個負數絕對值大的數反而小.
13、有理數的加法法則
(1)同號兩數相加,取加數的符號,並把絕對值相加;
(2)絕對值不相等的異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減較小的絕對值;
(3)互為相反數的兩個數相加得0;
(4)一個數同0相加仍得這個數.
14、在進行有理數的加法運算時,應分兩步:首先,判斷符號;然後,再計算絕對值.
15、有理數的加法運算律
(1)交換律:兩個數相加,交換加數的位置,和不變,即:a+b=b+a;(用字母表示)
(2)結合律:三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變,即:(a+b)+c=a+(b+c).(用字母表示)
16、運用加法運算律的技巧:正負結合;湊整結合;相反數結合;同分母結合;整分結合.
七年級數學上冊知識點匯總相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一上冊數學知識點歸納整理
★ 初一數學上冊重點知識整理
★ 初一數學上冊基本概念匯總與學習方法
★ 七年級上冊數學知識點總結三篇
★ 七年級數學知識點整理大全
★ 初中七年級數學知識點歸納整理
★ 初一數學有理數知識點
★ 七年級上冊數學全冊概念總結復習
★ 初一年級上冊數學的21個熱門知識點