當前位置:首頁 » 基礎知識 » 五上數學位置重要知識點整理
擴展閱讀
教育培訓講師行業如何 2024-11-28 14:31:59
基礎差的女生怎麼練 2024-11-28 14:30:33

五上數學位置重要知識點整理

發布時間: 2024-05-04 21:31:39

1. 五年級上冊數學知識點5篇

【 #五年級# 導語】知識點就是一些常考的內容,或者考試經常出題的地方。以下是 整理的《五年級上冊數學知識點5篇》,希望對您有所幫助。

1.五年級上冊數學知識點

多邊形面積

1、長方形面積=長×寬字母公式:s=ab

長方形周長=(長+寬)×2字母公式:c=(a+b)×2

2、正方形面積=邊長×邊長字母公式:s=或者s=a×a

正方形周長=邊長×4字母公式:c=4a或者c=a×4

3、平行四邊形面積=底×高字母公式:s=ah

4、三角形面積=底×高÷2字母公式:s=ah÷2

5、梯形面積=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2

6、計算圓木、鋼管等的根數:(頂層根數+底層根數)×層數÷2

7、等底等高的平行四邊形面積相等。等底等高的三角形面積相等。

等底等高的三角形和平行四邊形面積關系:三角形的面積是平行四邊形面積的一半,平行四邊形的面積是三角形面積的2倍。

8、組合圖形:轉化成已吵或運學的簡單圖形,通過加、減進行計算。

2.五年級上冊數學知識點

觀察物體

1、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。

2、正面、側面、後面都是相對的,它是隨著觀察角度的變化而變化。通過觀察、想像、猜測,培養空間想像力和思維能力,能正確辨認從正面、側面、上面觀察到的簡單物體的形狀。

3、構建空間想像力:

(1)、將兩個完全一樣的正方體並排放,要求想像畫出以不同角度看到的樣子(強調左右面是重合,故只能看見一個正方形)。

(2)、將一個正方體和圓柱體並排放,要求想像畫出從不同角度看到的樣子。

4、動手操作,思維拓展

3.五年級上冊數學知識點

積的近似數

知識點一:

先算出積,然後看要保留數位的下一位,再按四捨五入法求出結果,用約等號表示。

知識點二:

如果求得的近似數所求數位的數字是9而後一位數字又大於5需要進1,這是就要依次進一用0佔位。如6.597保留兩位為6.60

4.五年級上冊數學知識點

小數乘小數

知識點一:

因數與積的小數位數的關系:因數中共有幾位小數,積中就有幾位小數。

知識點二:

小數乘法的一般計算方法:

先按整數乘法算出積,再給積點上小數點(看因數中一共有幾位小數,就從積的右邊起輸出幾位,點上小數點。)乘得的積的小數位數不夠要在積的前面用0補足,在點小數點。

知識點三:

小數乘法的驗算方法

1、把因數的位置交換相乘

5.五年級上冊數學知識點

小數乘整數(利用因數的變化引起積的變化規律來計算小數乘法)

知識點一:升梁

1、計算小數加法先把小數點對齊,再把相同數位上的數相加

2、計算小數乘法末尾對齊,按整數乘法法則進行計算。

知識點二:

積中小數末尾有0的乘法。先計算出小數乘整數的乘積後,積的小數末尾出現0,要再根據小數的性質去掉小數末尾的0。如:3.60「0」應劃去

知識點三:

如果乘得的積的小數位數不夠要在前面用0補足,再點上小數點。如0.02×2=0.04

知識點四:

計算整數因數末尾有0的小數乘法時,要把整數數位中不是0的最右側數字與小數的末尾對齊。

思考:

小數乘整數與整數乘整數有什麼不同?

1、小數乘整數中有一個因數是小數,所以積一般來說也是小數。

2、小數乘法中積的小暑部團肆分末尾如有0可以根據小數的基本性質去掉小數末尾的0而整數乘法中是不能去掉的。

2. 小學五年級上冊數學知識點大全【1-7單元】

【 #五年級# 導語】 整理了小學五年級上冊數學知識點大全【1-7單元】,希望對你有幫助!

第一單元《小數乘法》知識點
一、小數乘整數 (利用因數的變化引起積的變化規律來計算小數乘法)
知識點一:
1、計算小數加法先把小數點對齊,再把相同數位上的數相加
2、計算小數乘法末尾對齊,按整數乘法法則進行計算。
知識點二:
積中小數末尾有0的乘法。 先計算出小數乘整數的乘積後,積的小數末尾出現0 ,要再根據小數的性質去掉小數末尾的0。如:3.60 「0」 應劃去
知識點三:
如果乘得的積的小數位數不夠要在前面用0補足,再點上小數點。如0.02×2=0.04
知識點四:
計算整數因數末尾有0的小數乘法時,要把整數數位中不是0的最右側數字與小數的末尾對齊。
思考:
小數乘整數與整數乘整數有什麼不同?
1、小數乘整數中有一個因數是小數,所以積一般來說也是小數。
2 小數乘法中積的小暑部分末尾如有0可以根據小數的基本性質去掉小數末尾的0而整數乘法中是不能去掉的。
二、小數乘小數
知識點一:
因數與積的小數位數的關系:因數中共有幾位小數,積中就有幾位小數。
知識點二:
小數乘法的一般計算方法:
先按整數乘法算出積,再給積點上小數點(看因數中一共有幾位小數,就從積的右邊起輸出幾位,點上悶陪小數點。)乘得的積的小數位數不夠要在積的前面用0補足,在點小數點。
知識點三:
小數乘法的驗算方法
1、把因數的位置交換相乘
2、用計算器來驗算
三、積的近似數
知識點一:
先算出積,然後看要保留數位的下一位,再按四捨五入法求出結果,裂猛用約等號表示。
知識點二:
如果求得的近似數所求數位的數字是9而後一位數字又大於5需要進1,這是就要依次進一用0佔位。如6.597 保留兩位為6.60
四、連乘、乘加、乘減
知識點一:
小數乘法要按照從左到右的順序計算
知識點二:
小數的乘加運算與整數的乘加運算順序相同。先乘法,後加法
整數乘法的交換律、結合律和分配律,對於小數乘法也適用。
五、簡便運算
整數乘法的交換律、結合律和分配律,對於小數乘法也適用

計算連乘法時可應用乘法交換律、結合律將幾位整數的兩個數先乘,再乘另一個數,計算一步乘法時,可將接近整十、整百的數拆成整十整百的數和一位數相加減的算式,再應用乘法分配律簡算。
對於不符合運算定律的算式,有些通過變形也可以應用。
乘法分配律也可以推廣到相應的減法。

第二單元《小數除法》知識點
1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:2.6÷1.3表示已知兩個因數的積2.6與其中的一個因數1.3,求另一個因數的運算。
小數除法的計算方法:
計算除數是整數的小數除法,按整數除法的計算方法去除,商的小數點要和被除數的小數點對齊,整數部分不夠除,商0,點上小數點,繼續除;如果有餘數,要添0再除。
計算除數是小數的除法,先把除數轉化成整數,除數的小數點向右移動肆罩橋幾位,被除數的小數點也要向右移動幾位,位數不夠時,在被除數的末尾用0補足,然後按照除數是整數的小數除法進行計算。
2、取近似數的方法:
取近似數的方法有三種,①四捨五入法 ②進一法 ③去尾法
一般情況下,按要求取近似數時用四捨五入法,進一法、去尾法在解決實際問題的時候選擇應用。
取商的近似數時,保留到哪一位,一定要除到那一位的下一位,然後用四捨五入的方法取近似數。沒有要求時,除不盡的一般保留兩位小數。
3、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。依次不斷重復出現的數字,叫做這個循環小數的的循環節。
4、循環小數的表示方法:
一種是用省略號表示,要寫出兩個完整的循環節,後面標上省略號。如:0.3636…… 1.587587……
另一種是簡寫的方法:即只寫出一組循環節,然後在循環節的第一個數字和最後一個數上面點上圓點。如:12.
5、有限小數:小數部分的位數是有限的小數,叫做有限小數。
6、無限小數:小數部分的位數是無限的小數,叫做無限小數。

第三單元《觀察物體》知識點
1、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
2、正面、側面、後面都是相對的,它是隨著觀察角度的變化而變化。通過觀察、想像、猜測,培養空間想像力和思維能力,能正確辨認從正面、側面、上面觀察到的簡單物體的形狀。
3、構建空間想像力:
(1)、將兩個完全一樣的正方體並排放,要求想像畫出以不同角度看到的樣子(強調左右面是重合,故只能看見一個正方形)。
(2)、將一個正方體和圓柱體並排放,要求想像畫出從不同角度看到的樣子。
4、動手操作,思維拓展
用5個小正方體擺從正面看到的圖形(你能擺出幾種不同的方法)。(有多少種不同擺法,最少要用多少個小正方體,最多隻能用多少個小正方體。)

第四單元《簡易方程》知識點
1、用字母表運算定律。
加法交換律: a+b=b+a 加法結合律: a+b+c=a+(b+c)
乘法交換律: a×b=b×a 乘法結合律:a×b×c=a×(b×c)
乘法分配律: (a±b)×c=a×c±b×c
2、用字母表示計算公式。
長方形的周長公式: c=(a+b)×2 長方形的面積公式: s=ab
正方形的周長公式: c=4a 正方形的面積公式: s=
3、 讀作:x的平方,表示:兩個x相乘。
2x表示:兩個x相加,或者是2乘x。
4、①含有未知數的等式稱為方程。
②使方程左右兩邊相等的未知數的值叫做方程的解。
③求方程的解的過程叫做解方程。
5、把下面的數量關系補充完整。
路程=(速度)×(時間) 速度=(路程)÷(時間) 時間=(路程)÷(速度)
總價=(單價)×(數量) 單價=(總價)÷(數量) 數量=(總價)÷(單價)
總產量=(單產量)×(數量) 單產量=(總產量)÷(數量)
數量=(總產量)÷(單價 )
工作總量=(工作效率)×(工作時間)
工作效率=(工作總量)÷(工作時間)
工作時間=(工作總量)÷(工作效率)
大數-小數=相差數 大數-相差數=小數 小數+相差數=大數
一倍量×倍數=幾倍量 幾倍量÷倍數=一倍量
幾倍量÷一倍量=倍數
被減數=減數+差 減數=被減數-差 加數=和-另一個加數
被除數=除數×商 除數=被除數÷商 因數=積÷另一個因數

第五單元 《多邊形面積》知識點
1、長方形面積=長×寬 字母公式:s=ab
長方形周長=(長+寬)×2 字母公式:c=(a+b)×2
2、正方形面積=邊長×邊長 字母公式:s= 或者s=a×a
正方形周長=邊長×4 字母公式:c=4a 或者c= a×4
3、平行四邊形面積=底×高 字母公式:s=ah
4、三角形面積=底× 高÷2 字母公式:s=ah÷2
5、梯形面積=(上底+下底)×高÷2 字母公式:s=(a+b)×h÷2
6、計算圓木、鋼管等的根數: (頂層根數+底層根數)×層數÷2
7、等底等高的平行四邊形面積相等。等底等高的三角形面積相等。
等底等高的三角形和平行四邊形面積關系:三角形的面積是平行四邊形面積的一半,平行四邊形的面積是三角形面積的2倍。
8、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
第六單元《統計與可能性》知識點
1、平均數=總數量÷總份數
2、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適

第七單元《數學廣角》知識點
1、數不僅可以用來表示數量和順序,還可以用來編碼。
2、郵政編碼:由6位組成,前2位表示省(直轄市、自治區),前3位表示郵區,前4位表示縣(市),最後2位表示投遞局(所)。
3、身份證號碼:由18位組成,(1)前1、2位數字表示:所在省份的代碼; (2)第3、4位數字表示:所在城市的代碼;
(3)第5、6位數字表示:所在區縣的代碼;
(4)第7~14位數字表示:出生年、月、日;
(5)第15、16位數字表示:所在地的派出所的代碼;
(6)第17位數字表示性別:奇數表示男性,偶數表示女性;
(7)第18位數字是校檢碼: 用來檢驗身份證的正確性。校檢碼可以是0~9的數字,有時也用x表示。

3. 五年級上冊數學重要知識點總結

有很多同學在復習五年級上冊數學知識點時,因為沒有系統的總結而頭疼。下面是由我為大家整理的「五年級上冊數學重要知識點總結」,僅供參考,歡迎大家閱讀本文。

一、小數乘法

1、小數乘整數:意義——求幾個相同加數的和的簡便運算。

如:1.5×3表示1.5的3倍是多少或3個1.5是多少。

計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

2、小數乘小數:意義——就是求這個數的幾分之幾是多少。

如:1.5×0.8(整數部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整數部分不是0)就是求1.5的1.8倍是多少。

計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。

3、規律:一個數(0除外)乘大於1的數,積比原來的數大;一個數(0除外)乘小於1的數,積比原來的數小。

4、求近似數的方法一般有三種:

(1)四捨五入法;(2)進一法;(3)去含寬鄭尾法

5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。

6、小數四則運算順序跟整數是一樣的。

7、運算定律和性質:

加法:加法交換律:a+b=b+a加法結合律:(a+b)+c=a+(b+c)

乘法:乘法交換律:a×b=b×a

乘法結合律:(a×b)×c=a×(b×c)見2.5找4或0.4,見1.25找8或0.8

談頌乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1時,省略b)

變式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

減法:減法性質:a-b-c=a-(b+c)

巧毀除法:除法性質:a÷b÷c=a÷(b×c)

二、多邊形的面積

1、公式

長方形:周長=(長+寬)×2;面積=長×寬;

正方形:周長=邊長×4;面積=邊長×邊長;

平行四邊形:面積=底×高;

三角形:面積=底×高÷2;

梯形:面積=(上底+下底)×高÷2;

2、單位換算的方法

大化小,乘進率;小化大,除以進率。

3、常用單位間的進率

1千米=1000米1米=10分米

1分米=10厘米1厘米=10毫米

1平方千米=100公頃1公頃=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

4、圖形之間的關系

(1)、平行四邊形可以轉化成一個長方形;兩個完全相同的三角形可以拼成一個平行四邊形。兩個完全相同的梯形可以拼成一個平行四邊形。

(2)、等底等高的平行四邊形面積相等;等底等高的三角形面積相等。

(3)、等底等高的平行四邊形面積是三角形面積的2倍。如果一個三角形和一個平行四邊形等面積,等底,則三角形的高是平行四邊形的2倍。如果一個三角形和一個平行四邊形等面積,等高,則三角形的底是平行四邊形的2倍。

(4)、把長方形框架拉成平行四邊形,周長不變,面積變小了。

5、求組合圖形面積的方法

(1)仔細觀察,確定組合圖形可以分割或添補成哪些可以計算面積的基本圖形。

(2)找到計算這些基本圖形的面積所需要的數據。

(3)分別計算這些基本圖形的面積,然後再相加或相減。

4. 數學五年級上冊人教版知識點歸納有哪15條

小學五年級數學上冊復習知識點歸納總結
第一單元小數乘法
1.小數乘法計算方法:按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
2、一個數(0除外)乘大於1的數,積比原來的數大; 一個數(0除外)乘小於1的數,積比原來的數小。
3、求近似數的方法一般有三種:
⑴四捨五入法 (常用) ; ⑵進一法; ⑶去尾法
4、計算錢數,保留兩位小數,表示精確到分。保留一位小數,表示精確到角。
5、小數四則運算順序跟整數四則運算順序是一樣的。
6、運算定律和性質:
加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
乘法:乘法交換律:a×b=b×a
乘法結合律:三個數相乘,先把前兩個數相乘,再和最後一個數相乘,或先把後兩個數相乘,再和第一個數相乘,積不變. (a×b)×c=a×(b×c)
乘法分配律:兩個數的和(或者差)同一個數相乘,可以先把這兩個數(或者被減數與減數)分別同這個數相乘,再相加(或者再相減)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
減法性質:從一個數里連續減去兩個數,我們可以減去兩個減數的和,或者交換兩個減數的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性質:從一個數里連續除數兩個數,我們可以除以兩個除數的積,或者交換兩個除數的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括弧: 括弧前是加號的,去掉括弧後,括弧內的符號不變號;括弧前是減號的,去掉括弧後,括弧內的符號要變號。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二單元小數除法
9、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數(把小數點向右移動相同的位數),使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:向右移動小數點時,如果被除數的位數不夠,在被除數的末尾用0補足。
12、除法中的變化規律:①商不變性質:被除數和除數同時乘或除以同一個數(0除外),商不變。②除數不變,被除數乘或除以幾,商隨著乘或除以幾。③被除數不變,除數乘或除以幾,商就除以或乘幾。④被除數大於除數,商就大於1;被除數小於除數,商就小於1。⑤一個數除以大於1的數,商就小於被除數;一個數除以小於1的數,商就大於被除數。⑥積不變性質:一個因數乘一個數,另一個除以同一個數(0除外),積不變。⑦一個因數不變,另一個數乘幾,積就乘幾。⑧一個因數不變,另一個因數除以幾,積就除以幾。
13、一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 X
一個循環小數的小數部分,依次不斷重復出現的數字。(如6.321321…的循環節是321,簡便記法為6.321;如0.33…的循環節是3,簡便記法為0.3。)循環小數是無限小數,無限小數不一定是循環小數。
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。無限小數分為無限循環小數和無限不循環小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面,最少看到一個面。圓柱體從上面看到的形狀是圓形,從其他方向看到的是長形或正方形。球體無論從哪個角度看,看到的形狀都是圓形。
第四單元簡易方程
16、在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫。加號、減號、除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a•a或a ,a 讀作a的平方 2a表示a+a
(1a=a這里的「1」我們不寫)
18、方程:含有未知數的等式稱為方程(★方程必須滿足的條件:必須是等式 必須有未知數,兩者缺一不可)。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。
19、解方程原理:天平平衡
等式性質一:方程兩邊同時加上或減去同一個數,左右兩邊仍然相等。等式性質二:方程兩邊同時乘或除以同一個不為0數,左右兩邊仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的檢驗過程:方程左邊 = 方程右邊
23、方程的解是一個數; 解方程式是一個計算過程。 所以,X=…是方程的解。
常見的等量關系:①路程=速度×時間
②工作總量=工作效率×工作時間
③總價=單價 × 數量
第五單元多邊形的面積
23、長方形周長=(長+寬)×2 字母公式:C=(a+b)×2
長方形面積=長×寬 字母公式:S=ab
正方形周長=邊長×4 字母公式:C=4a
正方形面積=邊長×邊長 字母公式:S=a2
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 字母公式: S=ah÷2
(三角形的底=面積×2÷高; 三角形的高=面積×2÷底)
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面積×2÷高-下底,下底=面積×2÷高-上底;
高=面積×2÷(上底+下底) )
25、三角形面積公式推導: 平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底;長方形的寬相當於平行四邊形的高;因為長方形面積=長×寬,所以平行四邊形面積=底×高,長方形的面積等於平行四邊形的面積。 平行四邊形的底相當於三角形的底;平行四邊形的高相當於三角形的高;平行四邊形的面積等於等底等高三角形面積的2倍。
27兩個完全一樣的梯形可以拼成一個平行四邊形。
平行四邊形的底相當於梯形的上下底之和;平行四邊形的高相當於梯形的高;平行四邊形面積等於梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區)
0 5 4 0 0 1
前3位表示郵區, 前4位表示縣(市),最後2位表示投遞局
35、身份證18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台縣 19780301是出生日期 001是順序碼 9校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。

5. 小學數學五年級位置知識點總結

1,橫排叫做行,豎排叫做列。確定第幾列一般是從左往右數,確定第幾行一般是從前往後數。

2,用有順序的兩個數表示出一個確定的位置就是數對,確定一個物體的位置需要兩個數據。

3,用數對表示位置時,先表示第幾列,再表示第幾行,不要把列和行弄顛倒。

4,寫數對時,用括弧把列數和行數括起來,並在列數和行數之間寫個逗號把它們隔開,寫作:(列,行)。

5,數對的讀法:(2,3)可以直接讀(2,3),也可以讀作數對(2,3)。

6,一組數對只能表示一個位置。

7,表示同一列物體位置的數對,它們的第一個數相同;表示同一行物體位置的數對,它們的第二個數相同。

延伸簡介:

1,數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右分別為列數和行數,即「先列後行」。

2,作用:一組數對確定唯一一個點的位置,經度和緯度就是這個原理。 例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。

3,在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。

4,數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線,(有一個數不確定,不能確定一個點)。