當前位置:首頁 » 基礎知識 » 八年級下冊數學的知識框架
擴展閱讀
日本人的知識大全 2024-11-28 15:14:07

八年級下冊數學的知識框架

發布時間: 2024-05-03 20:30:08

㈠ 八年級數學下冊知識點整理

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

數學八年級知識點歸納下冊

公式與性質:

(1)三角形的內角和:三角形的內角和為180°

(2)三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

(3)多邊形內角和公式:邊形的內角和等於?180°

(4)多邊形的外角和:多邊形的外角和為360°

(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。

位置與坐標

1、確定位置

在平面內,確定一個物體的位置一般需要兩個數據。

2、平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。

⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。

八年級數學知識點滬科版

分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.

3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.

5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.

10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.

12.作為最後結果,如果是分式則應該是最簡分式.

初二下冊數學知識點歸納北師大版

第一章一元一次不等式和一元一次不等式組

一、不等關系

1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.

2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.

3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.

非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0

非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0

二、不等式的基本性質

1、掌握不等式的基本性質,並會靈活運用:

(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:

如果a>b,那麼a+c>b+c,a-c>b-c.

(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即

如果a>b,並且c>0,那麼ac>bc,.

(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:

如果a>b,並且c<0,那麼ac

2、比較大小:(a、b分別表示兩個實數或整式)

一般地:

如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;

如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.


八年級數學下冊知識點整理相關 文章 :

★ 八年級下冊數學知識點整理

★ 初二數學下冊知識點歸納與數學學習方法

★ 八年級下冊數學知識點歸納

★ 八年級下冊數學知識點總結歸納

★ 八年級下冊數學知識點匯總

★ 八年級下冊數學知識點梳理

★ 八年級下冊數學知識點總復習

★ 人教版八年級下冊數學知識點總結

★ 八年級下冊數學知識點總結

★ 初二數學下冊重點知識總結

㈡ 八年級數學下冊知識點總結

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

八年級數學知識點

數據的收集、整理與描述

一.知識框架

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查.

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.

3.總體:要考察的全體對象稱為總體.

4.個體:組成總體的每一個考察對象稱為個體.

5.樣本:被抽取的所有個體組成一個樣本.

6.樣本容量:樣本中個體的數目稱為樣本容量.

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.

8.頻率:頻數與數據總數的比為頻率.

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.

第一學期初二數學知識點歸納

四邊形性質探索

定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。

平行四邊形:兩組對邊分別平行的四邊形.。對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形

菱形:一組鄰邊相等的平行四邊形??(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。

矩形:有一個內角是直角的平行四邊形??(平行四邊形的性質)。對角線相等,四個角都是直角。有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。

正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質。一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。

梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。等腰梯形:兩條腰相等的梯形。同一底上的兩個內角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內角相等的梯形是等腰梯形。

直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。

多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)×180

多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等於360°。三角形、四邊形和六邊形都可以密鋪。

定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。

中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。

數學學習方法 技巧

一該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。

因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。

物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。


八年級數學下冊知識點 總結 相關 文章 :

★ 八年級下冊數學知識點整理

★ 八年級下冊數學知識點總結歸納

★ 初二數學下冊知識點歸納與數學學習方法

★ 八年級下冊數學知識點歸納

★ 八年級下冊數學知識點

★ 八年級數學下冊知識點梳理

★ 初二數學下冊知識點總結歸納

★ 初二數學下冊知識點總結

★ 初二下冊數學必考知識點總結歸納

★ 八年級數學知識點整理歸納

㈢ 初二下冊數學知識點

初二下冊數學知識點有哪些你知道嗎?初二是學習數學的一個關鍵時期,想要學好數學需要有一個好的 學習 方法 ,其實最簡單又有效的學習方法就是對知識點進行歸納 總結 了。一起來看看初二下冊數學知識點,歡迎查閱!

初二下冊數學總結

第一章分式

1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變

2分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減

3整數指數冪的加減乘除法

4分式方程及其解法

第二章反比例函數

1反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2反比例函數在實際問題中的應用

第三章勾股定理

1勾股定理:直角三角形的`兩個直角邊的平方和等於斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形

第四章四邊形

1平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,並且等於第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等於斜邊的一半。

(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。

第五章數據的分析

加權平均數、中位數、眾數、極差、方差

初二必備數學知識

位置與坐標

1、確定位置

在平面內,確定物體的位置一般需要兩個數據。

2、平面直角坐標系及有關概念

①平面直角坐標系

在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

②坐標軸和象限

為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。

③點的坐標的概念

對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,(a,b)和(b,a)是兩個不同點的坐標。

平面內點的與有序實數對是一一對應的。

④不同位置的點的坐標的特徵

a、各象限內點的坐標的特徵

點P(x,y)在第一象限→ x>0,y>0

點P(x,y)在第二象限 → x<0,y>0

點P(x,y)在第三象限 → x<0,y<0

點P(x,y)在第四象限 → x>0,y<0

b、坐標軸上的點的特徵

點P(x,y)在x軸上 → y=0,x為任意實數

點P(x,y)在y軸上 → x=0,y為任意實數

點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P坐標為(0,0)即原點

c、兩條坐標軸夾角平分線上點的坐標的特徵

點P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等

點P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數

d、和坐標軸平行的.直線上點的坐標的特徵

位於平行於x軸的直線上的各點的縱坐標相同。

位於平行於y軸的直線上的各點的橫坐標相同。

e、關於x軸、y軸或原點對稱的點的坐標的特徵

點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)

點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)

點P與點p』關於原點對稱,橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)

f、點到坐標軸及原點的距離

點P(x,y)到坐標軸及原點的距離:

點P(x,y)到x軸的距離等於 ?y?

點P(x,y)到y軸的距離等於 ?x?

點P(x,y)到原點的距離等於 √x2+y2

初二數學常考知識

一次函數

1、函數

一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。

2、自變數取值范圍

使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。

3、函數的三種表示法及其優缺點

關系式(解析)法兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。

列表法把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

圖象法用圖象表示函數關系的方法叫做圖象法。

4、由函數關系式畫其圖像的一般步驟

列表:列表給出自變數與函數的一些對應值。

描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。

連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。

5、正比例函數和一次函數

①正比例函數和一次函數的概念

一般地,若兩個變數x,y間的關系可以表示成y=kx+b (k,b為常數,k不等於 0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。

特別地,當一次函數y=kx+b中的b=0時(k為常數,k 不等於0),稱y是x的正比例函數。②一次函數的圖像:

所有一次函數的圖像都是一條直線。

③一次函數、正比例函數圖像的主要特徵

一次函數y=kx+b的圖像是經過點(0,b)的直線;


初二下冊數學知識點相關 文章 :

★ 八年級下冊數學知識點整理

★ 初二數學下冊知識點歸納與數學學習方法

★ 八年級下冊數學知識點總結歸納

★ 初二數學知識點整理歸納

★ 八年級數學知識點整理歸納

★ 八年級數學知識點總結

★ 初二數學知識點復習整理

★ 初二數學知識點小結

★ 初中數學八年級重點

★ 初二數學知識點歸納上冊人教版

㈣ 初二數學下冊知識點

學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初二數學下冊的知識點,希望對大家有所幫助。

初二下冊數學知識點歸納北師大版

第一章分式

1、分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變

2、分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減

3、整數指數冪的加減乘除法

4、分式方程及其解法

第二章反比例函數

1、反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2、反比例函數在實際問題中的應用

第三章勾股定理

1、勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方

2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。

初二下冊數學知識點

1、平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,並且等於第三邊的一半。

2、特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等於斜邊的一半。

(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。

第五章數據的分析

加權平均數、中位數、眾數、極差、方差

初二數學三角形知識點歸納

【直角三角形】

◆備考兵法

1.正確區分勾股定理與其逆定理,掌握常用的勾股數.

2.在解決直角三角形的有關問題時,應注意以勾股定理為橋梁建立方程(組)來解決問題,實現幾何問題代數化.

3.在解決直角三角形的相關問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應運用一些相關的特殊性質解題.

4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉化為直角三角形來解決.

5.折疊問題是新中考 熱點 之一,在處理折疊問題時,動手操作,認真觀察,充分發揮空間 想像力 ,注意折疊過程中,線段,角發生的變化,尋找破題思路.

【三角形的重心】

已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。

證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。

重心的幾條性質:

1.重心和三角形3個頂點組成的3個三角形面積相等。

2.重心到三角形3個頂點距離的平方和最小。

3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3

4重心到頂點的距離與重心到對邊中點的距離之比為2:1。

5.重心是三角形內到三邊距離之積的點。

如果用塞瓦定理證,則極易證三條中線交於一點。


初二數學下冊知識點相關 文章 :

★ 初二數學下冊知識點歸納與數學學習方法

★ 八年級下冊數學知識點整理

★ 初二數學下冊知識點人教版

★ 初二數學下冊重點知識總結

★ 初二下冊數學重點知識點歸納

★ 八年級下冊數學知識點歸納

★ 八年級下冊數學知識點總結歸納

★ 初二下冊數學知識點

★ 初二下數學知識點

★ 八年級下冊的數學知識點

㈤ 初二下冊數學知識點總結

天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二下冊數學知識點 總結

解一元一次方程

1.等式與等量:用"="號連接而成的式子叫等式.注意:"等量就能代入"!

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).

9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).

10.列一元一次方程解應用題:

(1)讀題分析法:…………多用於"和,差,倍,分問題"

仔細讀題,找出表示相等關系的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法:…………多用於"行程問題"

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

初二下冊數學知識點

1.分式的定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子叫做分式。

分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零.

2.分式的基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。

3.分式的通分和約分:關鍵先是分解因式

4.分式的運算:

分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。

分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

分式乘 方法 則:分式乘方要把分子、分母分別乘方。

分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變為同分母分式,然後再加減

混合運算:運算順序和以前一樣。能用運算率簡算的可用運算率簡算。

5.任何一個不等於零的數的零次冪等於1,即;當n為正整數時,

6.正整數指數冪運算性質也可以推廣到整數指數冪.(m,n是整數)

(1)同底數的冪的乘法:;

(2)冪的乘方:;

(3)積的乘方:;

(4)同底數的冪的除法:(a≠0);

(5)商的乘方:;(b≠0)

7.分式方程:含分式,並且分母中含未知數的方程——分式方程。

解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。

解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

解分式方程的步驟:(1)能化簡的先化簡;(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根.

增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。

分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

列方程應用題的步驟是什麼?(1)審;(2)設;(3)列;(4)解;(5)答.

應用題有幾種類型;基本公式是什麼?基本上有四種:

(1)行程問題:基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題.

(2)數字問題在數字問題中要掌握十進制數的表示法.

(3)工程問題基本公式:工作量=工時×工效.

(4)順水逆水問題v順水=v靜水+v水.v逆水=v靜水-v水.

8.科學記數法:把一個數表示成的形式(其中,n是整數)的記數方法叫做科學記數法.用科學記數法表示絕對值大於10的n位整數時,其中10的指數是

用科學記數法表示絕對值小於1的正小數時,其中10的指數是第一個非0數字前面0的個數(包括小數點前面的一個0)

數學 學習方法 技巧

一、克服心理疲勞

第一,要有明確的學習目的。學習就像從河裡抽水,動力越足,水流量越大。動力來源於目的,只有樹立正確的學習目的,才會產生強大的學習動力;第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,並伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處於一種良好的競技狀態;第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。

二、戰勝高原現象

復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,並非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出學習方法、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。

三、重視復習「錯誤」

如果在復習中不善於從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,並對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕「後患」。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。

四、把握心理特點搞好考前復習

實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習。考生在復習迎考過程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。

1、課本不容忽視

對於初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,並對照課後練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對於課本上的重點內容、重點例題也要著重記憶。

2、錯題本

相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。


初二下冊數學知識點總結相關 文章 :

★ 八年級下冊數學知識點整理

★ 初二下冊數學知識點歸納總結

★ 初二數學下冊知識點歸納與數學學習方法

★ 八年級下冊數學知識點總結歸納

★ 八年級下冊數學知識點

★ 初二數學下冊知識點總結

★ 初二下冊數學知識點

★ 初二下冊數學必考知識點總結歸納

★ 初二數學下冊知識點總結歸納

★ 八年級下冊數學知識點歸納

㈥ 八年級下冊數學課本每一節的整理

湘教版八年級下冊數學知識歸納
第一章節 直角三角形 第二章節 四邊形 第三章節圖形與坐標 第四章節一次函數 第五章節數據的頻數分布
第一章節 直角三角形
歸納作者 唐 瑤
第一章 直角三角形的兩個銳角互余。 直角三角形的兩個銳角相加和為90 ° 有兩個角互余的三角形是直角三角形。 兩個銳角相加和為90 ° ,那麼這個三角形是直角三角形。
直角三角形斜邊上的中線等於斜邊的一半。標注時一般要標三條線段。
在直角三角形中,如果一個銳角等於30 °,那麼它所對的直角邊等於斜邊的一半。一股都是用來計算或填空。
在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30 °
直角三角形兩直角邊a,b的平方和,等於斜邊c的平方。 即:a²+b²=c²
通常我們稱較短的一邊為勾,較長的一邊為股,斜邊為弦,因此這一性質被稱為勾股定理。
如果三角形的三條邊長a,b,c滿足關系;a²+b²=c²,那麼這個三角形是直角三角形。
斜邊直角邊定理斜邊和一條直角邊對應相等的兩個直角三角形全等〔可以間接寫成「斜邊 、直角邊」定理 或 HL 定理 〕.
角的平分線上的點到角的兩邊的距離相等。通常是用來計算,填空,證明等等。
角的內部到角的兩邊距離相等的點在角的平方線上。 用來判斷角平分線或者證明。

注意:
1「斜邊 、直角邊定理」是判斷兩個直角三角形全等所獨有的,在運用該判定定理時,要注意全等的前提條件是兩個直角三角形。
2要注意文章中的互逆命題,如直角三角形的性質和判定定理,勾股定理及其逆定理,角平分線的性質定理及其逆定理等,它們都互為逆命題。
3勾股定理及其逆定理都體現了數形結合的思想,勾股定理體現了由形到數,而勾股定理的逆定理是用代數方法來研究幾何問題,提現了由數到形。
第二章 四邊形
廖燕怡供稿

多邊形: 在平面內,由一些線段首尾順次相接組成的封閉圖形叫作多邊形。
組成多邊形的各條線段叫作多邊形的邊。 相鄰兩條邊的公共端點叫做多邊形的頂點。
連接不相鄰的兩個頂點的線段叫作多邊形的對角線。 相鄰兩邊組合的角叫作多邊形的內角,簡稱多邊形的角。 在平面內,邊相等、角也相等的多邊形叫作正多邊形。
多邊形內角和公式:n邊形的內角和等於(n-2)·180° 多邊形的內角的一邊與另一邊的反向延長所組成的角叫作這個多邊形的一個外角。 在多邊形的每個頂點處去一個外角,他們的和叫做這個多邊形的外角和。 n邊形的外角和與邊數沒有關系。任意多邊形的外角和等於360°,這與邊數多少無關,只要是多邊形。
平行四邊形:
平行四邊形的性質:兩組對邊分別平行的四邊形叫作平行四邊形。 這是定理概念。
平行四邊形性質定理一:平行四邊形的對邊相等,平行四邊形的對角相等。夾在兩條平行線間的平行線段相等。
平行四邊形性質定理二:平行四邊形的對角線互相平分。
平行四邊形的判定:判定定理一:一組對邊平行且相等的四邊形是平行四邊形 。
判定定理二:兩組對邊分別相等的四邊形是平行四邊形。
形判定定理三:對角線互相平分的四邊形是平行四邊形。兩組對角分別相等的四邊形是平行四邊形。
中心對稱和中心對稱圖形 在平面內,一個圖形上的每一個點對應到它在繞點O旋轉180°的相,這個變換稱為關於點O的中心對稱。 在平面內,如果一個圖形繞點旋轉180°,得到的像與另一個圖形重合,那麼稱這兩個圖形關於點O成中心對稱,點O叫作對稱中心。
性質:成中心對稱的兩個圖形中提供,對應點的連線經過對稱中心,且被對稱中心平分。
如果一個圖形繞點旋轉180°,所得到的像與原來的圖形互相重合,那麼這個圖形叫作中心對稱圖形,這個點叫作它的對稱中心。由上可得:線段是中心對稱圖形,線段的中心是它的對稱中心。平行四邊形是中心對稱圖形,對角線的交點是它的對稱中心。 線段也是中心對稱圖形。
三角形的中位線:連接三角形兩邊中點的線段叫作三角形的中位線。一個三角形有三條中位線。 中位線定理:三角形的每一條中位線都平行於第三邊,並且等於第三邊的一半。這個定理通常是用來計算或者填空和證明用。
矩形: 有一個角是直角的平行四邊形叫作矩形,也稱長方形。矩形的四個角都是直角,對邊相等,對角線互相平分。矩形是中心對稱圖形,對角線的交點是它的對稱中心。矩形的對角線相等。矩形還是軸對稱圖像,過每一組對邊中點的直線都是矩形的對稱軸(共有兩條對稱軸)。
矩形的判定:三個角是直角的四邊形是矩形。 對角線相等的平行四邊形是矩形。
菱形:定義:一組鄰邊相等的平行四邊形叫作菱形。
性質:菱形的四條邊都相等,對角相等,對角線互相平分。菱形是中心對稱圖形,對角線的交點是它的對稱中心。菱形的對角線互相垂直。菱形是軸對稱圖形,兩條對角線所在直線都是它的對稱軸。知道菱形的邊長,一般要標明四個邊的長,知道對角線長時,一般是只標它的一半長度。 菱形的面積是兩對角線長度乘積的一半。
判定:四條邊都相等的四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。
正方形:我們把有一組鄰邊相等且有一個角是直角的平行四邊形叫作正方形。
性質:正方形的四條邊都相等,四個角都是直角。正方行的對角線相等,且互相垂直平分。
正方形是中心對稱圖形,對角線的交點是它的對稱中心。正方形也是軸對稱圖形(要注意它有4條對稱軸)。正方形是軸對稱圖形,兩條對角線所在直線,以及過每一組對邊中點的直線都是它的對稱軸。

第三章:平面直角坐標系
蔡博文供稿

為了用有序實數對表示平面內的一個點,可以在平面內畫兩條互相垂直的數軸,其中一條叫橫軸〔abscissa axis,通常稱為x軸〕,另一條叫縱軸〔ordinate axis,通常稱為y軸〕,它們的交點O是這兩條數軸的原點.通常,我們取橫軸向右為正方向,縱軸向上為正方向,橫軸與縱軸的單位長度通常取成一致〔有時也可以不一致〕,這樣建立的兩條數軸構成平面直角坐標系〔orthogonal coordinate system〕,記作Oxy,
在建立了平面直角坐標系後,平面上的點與有序實數對一一對應,
① 平面坐標軸分為四個象限,分別用I,II,III,IV表示或者一,二,三,四表示(通常還是用後面的這種方法來表示)。
② 並一,二,三,四象限的符號分別為(+. + ) ( -. + ) ( -. - ) ( +. - )
③ 平面直角坐標軸有橫軸縱軸分別用X .Y表示。如點A(4,-3)表示到Y軸有4個單位長度,到X軸有3單位長度,且在第四象限的這么一個點。而點B(- 3 , 4 )表示到Y軸有3個單位長度,到X軸有4單位長度,且在第二象限的這么一個點。
④ 到X軸的距離是Y軸的絕對值 點A(4 ,- 3 )到Y軸有4個單位。
到Y軸的距離是X軸的絕對值 點B(- 3 ,4 )到X軸有4個單位。
⑤ 軸對稱坐標表示,關於哪個軸對稱哪個軸的符號不變。
⑥ 平移的坐標表示上下移加Y或減Y 左右移減-X或加X
本章知識結構:

平面上物體位置的確定

↓ ← ← ← ← ↓ → → → → ↓
↓ ↓ ↓
方位角與距離 平面直角坐標系 其他方法
點的坐標
↓ ↓ ↓
← ← ← ← ↓ → → → →
↓ ↓
簡單圖形的坐標表示 軸對稱和平移的坐標表示

第四章 一次函數
謝 倩 供稿
【函數和它的表示法】 ﹛變數與函數﹜ 在討論的問題中,取值會發生變化的量稱為變數,取值固定不變的量稱為常量(或常數)。
一般的,如果變數y隨著變數x而變化,並且對於x取得每一個值,y都有唯一的一個值與它對應,那麼稱y是x的函數,記作y=f(x)。這時把x叫做自變數,把y叫做因變數。對於自變數x取得每一個值a,因變數y的對應值稱為函數值,記作f(a)。
函數的傳統定義:設有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,y=f(x),那麼就稱y是x的函數,x叫做自變數。注間,我們通常說 「縱坐標是橫坐標的函數」。
﹛函數的表示法﹜ 建立平面直角坐標系,以自變數取得每一個值為橫坐標,以相應的函數值(即因變數的對應值)為縱坐標,描出每一個點,由所有這些點組成的圖形稱為這個函數的圖象。這種表示函數關系的方法稱為圖象法。
列一張表第一行表示自變數取的第一個值,第二行表示相應的函數值(即因變數Y的對應值),這種表示函數關系的方法稱為列表法。
用式子表示函數關系的方法稱為公式法,這樣的式子稱為函數的表達式。y=f(x)
如 : Y=8X Y=- 5X Y=3X+6 Y=7-2X
【一次函數】 關於自變數的一次式,像這樣的函數稱為一次函數,它的一般形式是: y=kx+b ( k, b為常數,k≠0). K值的正號決定了函數是上升——斜上 K值的負號決定了函數是下降——斜下
特別地,當b=0時,一次函數 y=kx ( k為常數且k≠0)也叫作正比例函數,其中k叫作比例系數。 正比例函數是經過原點且最簡單的函數。
一次函數的特徵是:因變數隨自變數的變化是均勻的(即自變數每增加1個最小單位,因變數都增加(或都減少)相同的數量 。
【一次函數的圖象】 類似的,數學上已經證明 :正比例函數y=kx ( k為常數,k≠0)的圖象是一條直線,由於兩點確定一條直線,因此畫正比例函數的圖象,只要描出圖象上的兩個點就行了,然後過這兩點作一條直線即可,我們常常把這條直線叫作「直線y=kx」.
一般的,直線y=kx ( k為常數,k≠0) 是一條經過原點的直線,當k>0時,直線y=kx經過第三、一象限從左向右上升,y隨x的增大而增大;當k<0時,直線y=kx經過第二、四象限從左向右下降,y隨x的增大而減小。 多是填空題目和判斷題。
類似的,可以證明,一次函數y=kx+b的圖象是一條直線,它與正比例函數y=kx的圖象平行,一次函數y=kx+b ( k, b為常數,k≠0)的圖象可以看作由直線y=kx平移|b|個單位長度而得到( 當b>0時,向上平移;當b<0時,向下平移)。
【用待定系數法確定一次函數表達式】 像這樣,通過先設定函數表達式(確定函數模型),再根據條件確定表達式中的未知系數,從而求出函數的表達式的方法稱為待定系數法。
先設這個函數為 y=kx+b 然後代入二個點的坐標值,得兩個方程,求出K與b,這時這個函數也就得出來了。

第五章 數據的頻數分布
黃騰逸供稿
1 不同小組中的數據個數稱頻數
2 當組距和組數無法確定無固定標准,可依數據個數多少分成5~12組(當數據在100個以內時)
3 繪制頻數直方圖時應注意:橫縱軸加上刻度,表明代表名稱和單位;小矩形邊界對應於各組的組界;
小長方形的面積: 組距*(頻數/組距)=頻數 請看 P157
4 繪制直方圖時注意組距選取不能過寬或者過窄。
5 頻數直方圖本質上是一種條形統計圖,注意體會它們的區別和聯系