當前位置:首頁 » 基礎知識 » 高中數學橢圓知識點總結文庫
擴展閱讀
美國教育有哪些改革 2024-11-28 18:30:31
同學聚會上大家都叫什麼 2024-11-28 18:06:55

高中數學橢圓知識點總結文庫

發布時間: 2024-04-24 14:54:03

❶ 高中數學橢圓知識點

知識點是知識、理論、道理、思想等的相對獨立的最小單元。以下是我為大家整理的高中數學橢圓知識點相關內容,僅供參考,希望能夠幫助大家!

一、橢圓知識點總結

1、橢圓的概念

在平面內到兩定點 F 1 F 2 的距離的和等於常數(大於| F 1 F 2 |)的點的軌跡(或集合)叫橢圓、這兩定點叫做橢圓的焦點,兩焦點間的距離叫做焦距。

集合 P ={ M || MF 1 |+| MF 2 |=2 a },| F 1 F 2 |=2 c ,其中 a >0, c >0,且 a c 為常數:

(1)若 a c ,則集合 P 為橢圓;

(2)若 a c ,則集合 P 為線段;

(3)若 a c ,則集合 P 為空集。

2、橢圓的標准方程和幾何性質

一條規律

橢圓焦點位置與 x 2 y 2 系數間的關系:

兩種方法

(1)定義法:根據橢圓定義,確定 a 2 b 2 的值,再結合焦點位置,直接寫出橢圓方程。

(2)待定系數法:根據橢圓焦點是在 x 軸還是 y 軸上,設出相應形式的標准方程,然後根據條件確定關於 a b c 的'方程組,解出 a 2 b 2 ,從而寫出橢圓的標准方程。

三種技巧

(1)橢圓上任意一點 M 到焦點 F 的所有距離中,長軸端點到焦點的距離分別為最大距離和最小距離,且最大距離為 a c ,最小距離為 a c

(2)求橢圓離心率 e 時,只要求出 a b c 的一個齊次方程,再結合 b 2 a 2 c 2 就可求得 e (0< e <1)。

(3)求橢圓方程時,常用待定系數法,但首先要判斷是否為標准方程,判斷的依據是:

①中心是否在原點;

②對稱軸是否為坐標軸。

二、 復習指導

1、熟練掌握橢圓的定義及其幾何性質會求橢圓的標准方程。

2、掌握常見的幾種數學思想方法——函數與方程、數形結合、轉化與化歸等、體會解析幾何的本質問題——用代數的方法解決幾何問題。

❷ 橢圓知識點總結

橢圓知識點總結

橢圓是數學中的一個常考點,相關的知識點其實並不是十分的多。下面是我推薦給大家的橢圓知識點總結,希望能帶給大家幫助。

橢圓知識點總結

1.橢圓的概念

在平面內到兩定點F1、F2的距離的和等於常數(大於|F1F2|)的點的軌跡(或集合)叫橢圓.這兩定點叫做橢圓的'焦點,兩焦點間的距離叫做焦距.

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數:

(1)若a>c,則集合P為橢圓;

(2)若a=c,則集合P為線段;

(3)若a

2.橢圓的標准方程和幾何性質

一條規律

橢圓焦點位置與x2,y2系數間的關系:

兩種方法

(1)定義法:根據橢圓定義,確定a2、b2的值,再結合焦點位置,直接寫出橢圓方程.

(2)待定系數法:根據橢圓焦點是在x軸還是y軸上,設出相應形式的標准方程,然後根據條件確定關於a、b、c的方程組,解出a2、b2,從而寫出橢圓的標准方程.

三種技巧

(1)橢圓上任意一點M到焦點F的所有距離中,長軸端點到焦點的距離分別為最大距離和最小距離,且最大距離為a+c,最小距離為a-c.

(2)求橢圓離心率e時,只要求出a,b,c的一個齊次方程,再結合b2=a2-c2就可求得e(0

(3)求橢圓方程時,常用待定系數法,但首先要判斷是否為標准方程,判斷的依據是:①中心是否在原點;②對稱軸是否為坐標軸.

橢圓方程的第一定義:

⑴①橢圓的標准方程:

i. 中心在原點,焦點在x軸上:. ii. 中心在原點,焦點在軸上:.

②一般方程:.③橢圓的標准參數方程:的參數方程為(一象限應是屬於

).

⑵①頂點:或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點:或.④焦距:.⑤准線:或.⑥離心率:.⑦焦點半徑:

i. 設為橢圓上的一點,為左、右焦點,則

由橢圓方程的第二定義可以推出.

ii.設為橢圓上的一點,為上、下焦點,則

由橢圓方程的第二定義可以推出.

由橢圓第二定義可知:歸結起來為“左加右減”.

注意:橢圓參數方程的推導:得方程的軌跡為橢圓.

⑧通徑:垂直於x軸且過焦點的弦叫做通經.坐標:和

⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大於0的參數,的離心率也是 我們稱此方程為共離心率的橢圓系方程.

(4)若P是橢圓:上的點.為焦點,若,則的面積為(用餘弦定理與可得). 若是雙曲線,則面積為.

;