❶ 高二數學知識點總結歸納
還不清楚高二數學知識點有哪些的小夥伴,趕緊來瞧瞧吧!下面由我為你精心准備了「高二數學知識點總結歸納」,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!
高二數鉛做仔學知識點總結歸納
1.求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成槐汪立。
2.求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過研究函數的單調性求得,基本步驟是:
(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號並由表格判斷極值。
3.求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。
求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。
4.解決不等式的有關問題:
(1)不等式恆成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恆成立的充要條件是f(x)max0,即b0;
不等式f(x)0恆成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。
(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5.導數在實際生活中的應用:
實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。
拓展閱讀:高二數學成績怎麼提高
一、做題之後加強反思
學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。
二、主動復習與總結提高
要把提高當成自己的目標,要把自己的活動合理地系統地組織起來,要總結反思,進行章節總結是非常重要的。初中時是教師替學生做總結,高中是自己給自己做總結,怎樣做章節總結呢?
(1)要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時胡隱的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。
(2)把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求(對「鋸,斧,鑿子…」的使用總結),列進這兩部分中的一部分,不要遺漏。
(3)在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導證明。同時能從正反兩方面對其進行應用。
(4)把重要的,典型的各種問題進行編隊。(怎樣做「板凳,椅子,書架…」)要盡量地把他們分類,找出它們之間的位置關系,總結出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什麼動作。我們一定要居高臨下地看,看全場的結構和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數學水平的關鍵所在。
(5)總結那些尚未歸類的問題,作為備注進行補充說明。
(6)找一份適當的測驗試卷。一定要計時測驗。然後再對照答案,查漏補缺。
三、重視改錯,錯不重犯
一定要重視改錯工作,做到錯不再犯。高中數學課沒有那麼多時間,除了少數幾種典型錯,其它錯誤,不能一一顧及。如果能及時改錯,那麼錯誤就可能轉變為財富,成為不再犯這種錯誤的預防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處「地雷」,遲早要惹禍。有的學生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。打一個比方。比如說,學習開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設計原因,操作規程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習。一兩次能正確地完成任務,並不能說明永遠不出錯。
四、圖是高中數學的生命線
圖是初等數學的生命線,能不能用圖支撐思維活動是能否學好初等數學的關鍵。無論是幾何還是代數,拿到題的第一件事都應該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應該畫圖,圖可以清楚地呈現出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。
大專有哪些就業前景好的專業
一、汽車技術服務與營銷專業
汽車技術服務與營銷專業培養具有專業必須的基礎理論知識和基本技能,能適應汽車產品設計服務、汽車生產服務、汽車銷售服務、汽車技術服務、汽車運輸服務等領域的,面向汽車銷售及售後服務企業所需要的,既熟練操作汽車診斷、檢測與維修技術,又熟練運用銷售與售後服務流程及技巧,獲得國家頒發的汽車行業相關職業資格證書,具有高認知、高技能和高素養的綜合職業能力的應用性人才。
二、計算機應用技術專業
機械電子工程專業俗稱機電一體化,是機械工程與自動化的一種,也是最有前途的一種方向。機械電子工程專業包括基礎理論知識和機械設計製造方法,計算機軟硬體應用能力,能承擔各類機電產品和系統的設計、製造、試驗和開發工作。機械電子系統早已在我們的日常生活中廣泛應用。
三、交通運營管理專業
交通運營管理專業畢業生能在交通運輸企事業單位、軌道交通單位、物流公司、國際運輸管理企業、貨運代理公司、外貿進出口公司、海運公司、集裝箱運輸公司等單位從事:交通運輸企事業生產經營管理崗位、場站運輸組織與管理崗位、軌道交通運輸組織與管理崗位、國際貨運管理崗位、國際商貿管理崗位、運輸企事業統計與會計崗位、物流企業經營管理崗位以及各類一線操作崗位等工作。
四、會計電算化專業
會計電算化專業主要面向企事業單位從事基層會計核算、會計分析、會計事務管理;可從事統計、稅收等方面工作;學生畢業後可在各類企事業單位、會計師事務所、資產評估事務所、會計咨詢公司、稅務代理公司、金融機構等單位,從事出納、會計、審計、稅收、證券、投資、評估等工作,以及從事其他相關崗位的經濟管理工作。
五、學前教育專業
幼兒園語言教育、幼兒園數學教育、幼兒園音樂教育、幼兒園體育教育、幼兒美術教育、幼兒科學教育、幼兒健康教育、學前教育概論、學前心理學、學前衛生學、學前兒童社會性發展與教育、兒童文學、游戲理論與指導、現代教育技術、教學實習、畢業實習等,以及各校的主要特色課程和實踐環節。
六、城市軌道交通工程技術專業
城市軌道交通工程技術專業培養掌握城市軌道交通基礎工程方面的基本知識和技能,能從事城市軌道交通工程的設計、施工、監理及養護的高級技術應用性專門人才薪資最高的10大高職專業文章薪資最高的10大高職專業出自,
七、軟體技術專業
培養具有軟體開發,軟體測試,資料庫管理等能力的高素質技能型專門人才。畢業後主要從事軟體開發工程師、軟體測試工程師、資料庫管理員、技術支持和維護工程師、軟體銷售與推廣人員等崗位。
八、醫葯專業
隨著人們生活水平的提高,人們對葯品質量、品種、數量和醫療技術、醫療條件的要求也越來越高。在科技迅速發展的今天,從行業整體發展的趨勢來看,以高科技開發為依託的醫葯行業屬於」朝陽產業」,將始終表現出良好的成長性。
九、外貿專業
這些年,外貿專業已遠不如前幾年熱門。但隨著我國外貿體制改革的深入,特別是中國入世以後,隨著專業結構的調整,招生規模的控制,外貿人才供需不平衡的狀況是可以得到緩解甚至消除的。
十、鐵道工程技術專業
鐵道工程技術專業隸屬於教育部高職高專專業目錄,培養掌握高速鐵路線路工程專業技能,能從事高速線、橋隧工程的施工、維護保養工作的高級專門應用性人才。畢業生就業面向鐵路和高速鐵路施工、監理、養護及運營管理部門,主要從事鐵道、交通和土建領域從事施工、監理、質檢、管理等工作。
❷ 初中二年級數學知識點歸納
初中二年級數學學的都是基礎知識點,但是初二是學好數學的關鍵時刻,所以做好知識點的歸納還是很有必要的。以下是我分享給大家的初中二年級數學知識點,希望可以幫到你!
初中二年級數學知識點
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
3.全等三角形的判定定理:
⑴邊邊邊(SSS):三邊對應相等的兩個三角形全等.
⑵邊角邊(SAS):兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角(ASA):兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊(AAS):兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應相等的兩個直角三角形全等.
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證.
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱.
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等.
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
⑶關於坐標軸對稱的點的坐標性質
①點P(x,y)關於x軸對稱的點的坐標為P'(x,y).
②點P(x,y)關於y軸對稱的點的坐標為P"(x,y).
⑷等腰三角形的性質:
①等腰三角形兩腰相等.
②等腰三角形兩底角相等(等邊對等角).
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).
⑸等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線.
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
二、知識概念:
1.基本運算:
⑴同底數冪的乘法
⑵冪的乘方
⑶積的乘方
2.計算公式:
⑴平方差公式
⑵完全平方公式
3.因式分解:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個式子因式分解.
4.因式分解方法:
⑴提公因式法:找出最大公因式.
⑵公式法:
①平方差公式
二年級數學學習方法
(1)細心地發掘概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數式的概念(用字母或數字表示的式子是代數式)中,很多同學忽略了“單個字母或數字也是代數式”。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯系。這樣就不能很好的將學到的知識點與解題聯系起來。三是,一部分同學不重視對數學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟於心,又怎能夠在題目中熟練應用呢?
我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什麼面目出現,我們都能夠應用自如)。
(2)總結相似的類型題目
這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以後,同學們會發現,有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。
我們的建議是:“總結歸納”是將題目越做越少的最好辦法。
(3)收集自己的典型錯誤和不會的題目
同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這一個反復在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。
我們的建議是:做題就像挖金礦,每一道錯題都是一塊金礦,只有發掘、冶煉,才會有收獲。
(4)就不懂的問題,積極提問、討論
發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。“閉門造車”只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到後面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣。直到無法趕上步伐。
討論是一種非常好的學習方法。一個比較難的題目,經過與同學討論,你可能就會獲得很好的靈感,從對方那裡學到好的方法和技巧。需要注意的是,討論的對象最好是與自己水平相當的同學,這樣有利於大家相互學習。
我們的建議是:“勤學”是基礎,“好問”是關鍵。
(5)注重實戰(考試)經驗的培養
考試本身就是一門學問。有些同學平時成績很好,上課老師一提問,什麼都會。課下做題也都會。可一到考試,成績就不理想。出現這種情況,有兩個主要原因:一是,考試心態不不好,容易緊張;二是,考試時間緊,總是不能在規定的時間內完成。心態不好,一方面要自己注意調整,但同時也需要經歷大型考試來鍛煉。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要同學們在平時的做題中解決。自己平時做作業可以給自己限定時間,逐步提高效率。另外,在實際考試中,也要考慮每部分的完成時間,避免出現不必要的慌亂。
我們的建議是:把“做作業”當成考試,把“考試”當成做作業。
初二數學學習建議
1、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,做到心中有數,以便於掌握聽課的主動權。這樣有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
(1)看書要動筆。(不動筆墨不讀書)
①一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;
②預習時一旦發現舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,採取措施補上,為順利學習新內容創造條件。
③了解本節課的基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡等等。
④要把某一本練習冊所對應的章節拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然後帶著疑問去聽課。
(2)確定聽課要點。把握自己要解決的主要問題,以提高聽課的效率。
2、聽課的方法
聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。
(1)盯住老師。除在預習中已明確的任務,做到有針對性地解決符合自己的問題外,還要把自己思維活動緊緊跟上教師的講課,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。公式、定理是如何運用的。許多數學家都十分強調“應該不只看到書面上,而且還要看到書背後的東西。”
(2)敢於發言。聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,如有疑問或有新的問題,要勇於提出自己的看法。
(3)記筆記。聽課時要把老師講課的要點、補充的內容與方法記下。
3、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。
(1)復習筆記和卷紙。對學習的內容務求弄懂,切實理解掌握。不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,應用它如何拓展加寬等。要勤於復習(知識點、典型題等),經常看,反復看---這就是心理學上講的艾賓浩斯遺忘曲線所揭示的道理。建議學生採用放電影的方法。完成作業後,把書和筆記合上,回憶課堂上的內容,如定律、公式及例題解答思路、方法等,盡量完整的在大腦中重現。再打開課本及筆記進行對照,重點復習遺漏的知識點。這既鞏固了當天上課內容,也可查漏補缺。
(2)適量做題。准備一個錯題本,記載做過的錯題再次演練。對於自己曾經做錯的題目,回想一下為什麼會錯、錯在什麼地方。自己曾經犯錯誤的地方,往往是自己最薄弱的地方,僅有當時的訂正是不夠的,還要進行適當的強化訓練。
(3)大膽質疑,增強學習的主動性。要經常與同學研究,或問老師,不要積攢過多問題。更不要把不會做的題完全寄託在課堂上等待老師去講。
4、做作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考查出能力的水平,發現存在的問題,困難。當做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
(1)先復習後做作業。在做作業前需要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
(2)必須獨立完成。培養良好的習慣,在作業中要做得整齊、清潔,要注重解題格式。書寫規范。作業必須獨立完成。高質量的完成作業可以培養一種獨立思考和解題正確的責任感。
(3)短時高效。規定一個具體時間,在此期間什麼除了寫作業,其他都不允許干。思維鬆散、精力不集中的作業習慣,對提高數學能力是有害而無益的。
(4)認真核查。准備一個紅筆,正確的打對號,不一樣的再做一遍,檢查是自己做的對還是答案對,一些不會的題或叫不準的題問老師、問同學。
猜你喜歡:
1. 初中生數學學習方法總結
2. 初中數學學習方法總結
3. 初中數學手抄報內容大全
4. 初中數學學習的兩個重要能力
5. 初中部數學學習方法總結
❸ 考研數學2知識點總結
考研數學2知識點總結
在我們上學期間,不管我們學什麼,都需要掌握一些知識點,知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。你知道哪些知識點是真正對我們有幫助的嗎?下面是我幫大家整理的考研數學2知識點總結,歡迎大家分享。
考研數學2知識點總結1
1、起步階段
了解數學考研內容、考試形式和試卷結構,對自我進行評測並對測評結果認真分析,找出弱點與不足,制定科學合理的 個性 化學習計劃,准備資料進入復習狀態。
2、基礎階段
學習目標:全面整理考研數學的知識點,掌握基本概念、定理、公式並能進行基本應用,經典教材基礎知識掌握熟練,課後習題能夠獨立解決,基礎試題測試正確率達到90%以上。
學習形式:參加基礎班視頻教學學習和教師輔導答疑相結合。其中視頻教學80課時,答疑輔導及知識補充約80課時。
學習時間:從20xx年12月——6月,約6——7個月時間,每天3~4小時。基礎較差或要考高分(125分以上)的學員時間最好提前開始復習。
學習方法:根據去年考研數學大綱要求結合教材對應章節系統復習,打好基礎,特別是對大綱中要求的基本概念、基本理論、基本方法要系統理解和掌握,完成數學考研備戰的基礎准備。大家在基礎階段花大力氣把基礎夯實是很值得的,並且近幾年的數學考研試題越來越偏基礎。在這個階段,建議大家分為兩步來復習:
第一步,教材精學:集中精力把教材好好地梳理,按照大綱要求結合教材相應章節全面復習,按章節順序獨立完成教材的練習題,通過練習知識點進行鞏固。不懂一定要隨時提問。建議每天學習新內容前復習前面學過的內容,因為教材的編寫是環環相扣,易難遞進的編排,所以我們也要按照規律來復習,經過必要的重復會起到事半功倍的效果。這個階段約需要4~5個月的時間。
第二步,基礎知識鞏固和提高:通過考研基礎試題的練習和測試,對考研的知識點進行鞏固和加深理解,並能進行基本應用。建議大家使用與教材配套的復習指導書或習題集,通過做題鞏固知識。在練習過程中遇上不懂或似懂非懂的題目要認真思考,不要直接看參考答案,應當先溫習教材相關章節再嘗試解題。按要求完成練習測試後,要留一些時間對教材的內容進行梳理,對重點、難點做好筆記,以便於後面復習把它消化掉。這個階段約需要2個月的時間。
此階段可以結合同學們自己的實際學習情況,比如有些同學某部分內容不熟悉或沒學過,可以到理學院咨詢相關教師,去隨堂聽課。
3、強化階段
學習目標:按照20xx年考研最新大綱要求,進一步鞏固和強化考研數學的重點、熱點和難點,從知識結構上進行系統訓練,能夠按照考試要求解題,能夠獨立完成一定難度的試題,要求測試成績正確率達到80%以上。
學習形式:暑期強化班視頻教學和教師輔導答疑相結合。其中視頻100課時,答疑輔導約60課時。學習時間:從7月~9月,約3個月時間,每天4小時。
學習方法:通過對考研數學輔導材料(考研復習全書)的研讀和試題精解,在鞏固第一階段學習成果的基礎上系統掌握知識脈絡,提高解題的速度和正確率。本階段是考研復習的關鍵,大體可以分兩輪學習:第一輪:7月到8月,按照20xx年考研最新大綱要求全面掌握考試內容。參加強化班學習,根據老師課堂講解和講義學習,熟悉考研數學的.重點題型,將知識點系統化和脈絡化。在學習過程中對重點、難點做好記號,適當的做些筆記,便於下一輪復習。
第二輪:9月到10月,通過考研輔導資料與專項習題的試題訓練,對考試重點題型和自己薄弱的內容進行強化和提高,並能舉一反三,提高解題的速度和正確率。
4、提高階段
學習目標:通過真題訓練提高知識綜合運用的能力,把握考試難度、解題技巧及命題趨勢,篩理出自己的薄弱環節並進行專項突破,測試成績正確率要求達到80%以上。
學習形式:沖刺串講班視頻教學20課時和真題模擬演練,每星期考一張往年真題,輔導老師收上來,批改後進行講解,輔導講解約30課時。
學習時間:從11月~12月,約2兩個月,每天3小時。
學習方法:
第一步,通過對近幾年的真題全景測試把握考試難度,通過真題剖析洞悉解題技巧及,通過失分題篩理出自己的薄弱環節。
第二步,專項強化彌補自己的薄弱知識點。
第三步,真題全景訓練和深度剖析:用一個月的時間把近十年真題搞熟搞透。
第四步,通過真題和模擬題試卷進行高強度解題訓練,全面提高解題的速度和正確率,高度重視做錯的題目。
5、沖刺階段
學習目標:對所學知識系統總結,把握考試熱點重點,調整好狀態。
學習形式:參加視頻模考班和模擬試卷考核,輔導教師講解和答疑。
學習時間:從12月中旬到考前,約一個月。
學習方法:這一階段的目標是保住自己在前幾個階段的成果,我們要做到:
1、通過對以往學習筆記和所做試題的復習查漏補缺;
2、對教材和筆記中的基本概念、基本公式、基本定理加強記憶,尤其是平時不常用的、記憶模糊的公式,經常出錯的要重點記憶;
3、進行適量沖刺題訓練,保持做題感覺並調整考試狀態,輕松應考。
考研數學2知識點總結2
數學單科復習計劃
考研數學分數學一、數學二、數學三三種。其中:數學一是對數學要求較高的理工類的;數學二是對於數學要求要低一些的農、林、地、礦、油等等專業的;數學三是針對經濟等方向的。
試卷滿分為150分,考試時間為180分鍾。
試卷題型結構
單選題8小題,每題4分,共32分
填空題6小題,每題4分,共24分
解答題(包括證明題)9小題,共94分,其中5個10分,4個11分。
試題內容
其中數一和數三考試科目:高等數學、線性代數、概率論與數理統計,其中高等教學56%,線性代數22%,概率論與數理統計22%。但數學三屬於經濟類,總體比數一要簡單一些,還有空間解析幾何、曲線積分、曲面積分等不作要求。數學二考高數和線性代數,不考概率與數理統計。其中高等教學78%,線性代數22%。
推薦教材:
1 、《高等數學》(上下冊)第五版或第六版,同濟大學應用數學系,高等教育出版社。
2 、《線性代數》第四版,同濟大學應用數學系,高等教育出版社
3 、《概率論與數理統計》第三版,浙江大學盛驟等,高等教育出版社
數學總分150分,所以在考研中起決定作用。
考研數學2知識點總結3
要善於改變計劃
計劃是死的,人是活的。由於當時這樣那樣的原因,我看完第一遍復習全書已經到了十一月初,這時又加入政治和專業課復習。之前我的美好計劃肯定是實現不了,我就稍稍改變了一下,在進行第二遍復習全書的時候,我只看了知識總結和典型的幾個例題,全書的課後習題我只在暑假做了三章,之後的我一道都沒做(這個不要學我,最後是自己都能做一遍),同時這個時候,我又加入了暑假就買的660題,慚愧!當作是對知識點的熟悉和鞏固,這樣我差不多用了不到20天把知識點看了第二遍,同時基本上完成了660的題目(個人感覺這本書非常好,推薦一下)。
要有毅力和勇氣
在做數學的過程受的打擊是最多的,一定要堅持住。首先,每天都要做一點數學題,這個東西很忌諱手生和思維的間隔。其次,在遇到困難的時候要堅持住,這個我主要體現在做李永樂經典400題上。我在完成第二遍復習的時候,就著手做400題,總共十套,我給自己訂的計劃是10天完成,我滿懷信心的開始,結果從第一套到最後一套把我打擊的徹徹底底一塌糊塗,平均也就100分,最低的有80多,最好的也就110多,這個時候看到網上的400題各種130+,我直接趨於崩潰。
但我覺得難能可貴的是要迎難而上,十天把十套題做完了,每天晚上從六點到十一點,我都在做這個,然後總結,消化,吸收。最後,當你遇到困難和挫折的時候一定要保持信心和冷靜的頭腦,並能夠及時採取策略。在十二月份的時候我開始做真題。我總共做了大概十二套的真題,感覺不錯,信心有點膨脹。後來一月份在做合工大5套題的時候又是把我打擊一番,我只做了三套就做不下去了,有嘗試了做以前做過的題還有做錯的和不會的,這時候距離考試只有5、6天了,於是我決定放棄合工大和一切模擬題,把最近的兩年真題在規定的時間內又重新做了一遍,都能在140以上,信心才慢慢回來。
數學題要做不能只是看
尤其是在做套題的時候。我在做模擬試卷和真題的時候,專門找了一個本子,從十一月中下旬開始雷打不動每天固定三小時,把一份試卷從頭做到尾,大題每一題都認真寫出過程並算出最後結果,期間過程,不管遇到什麼不會的,我都不看答案或是去翻書,三個小時結束後也不管自己做的怎麼樣立即停筆,然後進行批改分析和總結。我覺的在沒人監督的情況下,通過這種方式對於模擬考場環境和處理問題是很有好處的。
考試時要淡定
在考試的時候,說不緊張那是騙人的,但需要把緊張控制在一定的程度內。我由於第一天英語自我感覺非常不好,導致一夜沒睡著,第二天早上喝了兩瓶紅牛就去考了。非常緊張,第一道題就讓我非常棘手,5分鍾後
沒有點頭緒,於是放棄,後來概率兩道題也讓我不知所措,過了半個多小時,我還是有三道選擇題沒做。我深呼吸了一下,等了一分多鍾才開始做填空題,好在填空題還是中規中距的,大題除了二重積分那道比較有新意外,其他的也都是傳統的題目,一路跌跌撞撞,但也沒遇到什麼大坎,做完後還剩20分鍾。開始集中解決三道選擇題,我通過各種方法,試湊,舉例,分析,綜合,蒙猜,總算在規定的時間內做完了,第一道選擇題我是二蒙一,事實證明我是幸運的。
;❹ 高中數學必修(2)知識點總結
高中數學必修2知識點一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。當時, ; 當時, ; 當時, 不存在。②過兩點的直線的斜率公式: 注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。(3)直線方程①點斜式: 直線斜率k,且過點 注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。②斜截式: ,直線斜率為k,直線在y軸上的截距為b③兩點式: ( )直線兩點 , ④截矩式: 其中直線 與 軸交於點 ,與 軸交於點 ,即與軸、 軸的截距分別為 。⑤一般式: (A,B不全為0)注意:各式的適用范圍 特殊的方程如:平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);(5)直線系方程:即具有某一共同性質的直線(一)平行直線系平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)(二)垂直直線系垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)(三)過定點的直線系(ⅰ)斜率為k的直線系: ,直線過定點 ;(ⅱ)過兩條直線 , 的交點的直線系方程為 ( 為參數),其中直線 不在直線系中。(6)兩直線平行與垂直當 ,時, ; 注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點 相交交點坐標即方程組 的一組解。方程組無解 ; 方程組有無數解 與 重合(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,則 (9)點到直線距離公式:一點 到直線 的距離 (10)兩平行直線距離公式在任一直線上任取一點,再轉化為點到直線的距離進行求解。二、圓的方程1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。2、圓的方程(1)標准方程 ,圓心 ,半徑為r;(2)一般方程 當時,方程表示圓,此時圓心為 ,半徑為 當時,表示一個點; 當時,方程不表示任何圖形。(3)求圓方程的方法:一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。3、直線與圓的位置關系:直線與圓的位置關系有相離,相切,相交三種情況:(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ;;(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設圓 , 兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當 時兩圓外離,此時有公切線四條;當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內切,連心線經過切點,只有一條公切線;當時,兩圓內含; 當時,為同心圓。注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線 圓的輔助線一般為連圓心與切線或者連圓心與弦中點三、立體幾何初步1、柱、錐、台、球的結構特徵(1)稜柱:幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。(2)棱錐幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。(3)稜台: 幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。3、空間幾何體的直觀圖——斜二測畫法斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。4、柱體、錐體、台體的表面積與體積(1)幾何體的表面積為幾何體各個面的面積的和。(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線) (3)柱體、錐體、台體的體積公式 (4)球體的表面積和體積公式:V = ; S = 4、空間點、直線、平面的位置關系公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。應用: 判斷直線是否在平面內用符號語言表示公理1: 公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言: 公理2的作用: ①它是判定兩個平面相交的方法。②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據。公理3:經過不在同一條直線上的三點,有且只有一個平面。推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據公理4:平行於同一條直線的兩條直線互相平行空間直線與直線之間的位置關系① 異面直線定義:不同在任何一個平面內的兩條直線② 異面直線性質:既不平行,又不相交。③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。求異面直線所成角步驟:A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。(8)空間直線與平面之間的位置關系直線在平面內——有無數個公共點.三種位置關系的符號表示:a α a∩α=A a‖α(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β相交——有一條公共直線。α∩β=b5、空間中的平行問題(1)直線與平面平行的判定及其性質線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。 線線平行 線面平行線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。線面平行 線線平行(2)平面與平面平行的判定及其性質兩個平面平行的判定定理(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行(線面平行→面面平行),(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。(線線平行→面面平行),(3)垂直於同一條直線的兩個平面平行,兩個平面平行的性質定理(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題(1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關系的判定和性質定理①線面垂直判定定理和性質定理判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。②面面垂直的判定定理和性質定理判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。9、空間角問題(1)直線與直線所成的角①兩平行直線所成的角:規定為 。②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角①平面的平行線與平面所成的角:規定為 。 ②平面的垂線與平面所成的角:規定為 。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。(3)二面角和二面角的平面角①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角④求二面角的方法定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
記得採納啊
❺ 高二數學重點知識點總結
1.高二數學重點知識點總結
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、高中數學必修二知識點總結:直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
5、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.
應用:判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
2.高二數學重點知識點總結
一、隨機事件
主要掌握好(三四五)
(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。
(2)四種運算律:交換律、結合律、分配律、德莫根律。
(3)事件跡指判的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。
二、概率定義
(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現逗此的可能性相等,則可以姿改將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.
3.高二數學重點知識點總結
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發生的事件,叫做相對於條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發生的可能性大小能為我們決策提供關鍵性依據.
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA
nA為事件A出現的頻數,稱事件A出現的比例fn(A)=為事件A出現的頻率.
3.對於給定的隨機事件A,由於事件A發生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
4.高二數學重點知識點總結
一、映射與函數:
(1)映射的概念:
(2)一一映射:
(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:
①對應法則;
②定義域(兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):
②換元法:
③待定系數法:
④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
❻ 江蘇現在的高一升高二後,高二上學期數學准備學哪些知識點
很多人想知道高二數學的學習上有哪些重要的知識點,小編為大家整理了一些高二數學的重點知識,供參考!
1高二上學期數學知識點總結
一、不等式的性質
1.兩個實數a與b之間的大小關系
2.不等式的性質
(4)(乘法單調性)
3.絕對值不等式的性質
(2)如果a>0,那麼
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據
(2)不等式的性質(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當且僅當a=b時取「=」號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.
三、解不等式
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解無理不等式;
④解指數不等式;
⑤解對數不等式;
⑥解帶絕對值的不等式;
⑦解不等式組.
2.解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質.
(2)正確應用冪函數、指數函數和對數函數的增、減性.
(3)注意代數式中未知數的取值范圍.
3.不等式的同解性
(5)|f(x)|0)
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解.
(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x)
四、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
五、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
六、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學
七、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
八、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
2高二上學期數學重點知識大全
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
3高二數學期末復習建議
1、高二數學期末考試首先是對高二數學學習的檢測,所以先要保證自己的基礎知識沒有問題,那麼就需要高二學生在進行高二數學期末復習的時候要著重書上的重要知識點,在做題的時候一定要知道自己運用的什麼知識點,如有不會及時解決。
2、高二數學期末考試中基礎題為主要,所以在進行練習的時候要對典型題的解題步驟和易錯要點注意。比如利用導數求函數單調性的步驟,數學歸納法的基本思路和步驟,排列組合中的分類討論、排除法問題,用二項式定理求展開式中某項系數問題,服從典型分布的離散型隨機變數問題。一定要細心,保證自己會的不丟分。
3、高二數學期末復習的時候就要學會掌控時間,數學對於有些人來說做題是很費時間的,所以一定要勤加練習,別造成考試的時候題會做,但是沒有時間做,這樣就很傷心了。
4、學習不能是死學,一定要活學活用,一個題目會了就要保證相類似的題型就差不多沒問題。
5、考試中也會有難題出現,這就考查學生的能力了,所以在高二數學期末復習中還要做一些難題,以保證考試的時候沒有思路。
❼ 高二數學知識點及公式整理
只有高效的 學習 方法 ,才可以很快的掌握知識的重難點。有效的讀書方式根據規律掌握方法,不要一來就死記硬背,先找規律,再記憶,然後再學習,就能很快的掌握知識。以下是我給大家整理的 高二數學 知識點及公式整理,希望大家能夠喜歡!
高二數學知識點及公式整理1
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即「共同起點,指向被減」
a=(x,y)b=(x',y')則a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:①如果實數λ≠0且λa=λb,那麼a=b。②如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數學知識點及公式整理2
1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)
2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
高二數學知識點及公式整理3
1.計數原理知識點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選後排,先分再排
排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應用問題時,應注意:
(1)把具體問題轉化或歸結為排列或組合問題;
(2)通過分析確定運用分類計數原理還是分步計數原理;
(3)分析題目條件,避免「選取」時重復和遺漏;
(4)列出式子計算和作答.
經常運用的數學思想是:
①分類討論思想;②轉化思想;③對稱思想.
4.二項式定理知識點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質和主要結論:對稱性Cnm=Cnn-m
二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)
所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數項二項式系數的和=偶數項而是系數的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。
5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。
6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。
高二數學知識點及公式整理相關 文章 :
★ 高二數學知識點總結
★ 高二數學知識點及公式2020
★ 高二數學知識點及公式
★ 高中數學知識點總結及公式大全
★ 高二數學知識點總結全
★ 高二數學函數知識點總結
★ 最新高二數學公式知識點匯總
★ 高二數學必背知識點總結
★ 高二數學知識點全總結
❽ 數學必修二概率知識點
隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發生的事件,叫相對於條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發生的事件,叫相對於條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱為相對於條件S的確定事件;
(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對於條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事nA
件A出現的頻數;稱事件A出現的比例fn(A)=n
為事件A出現的概率:對於給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。nA
(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值n,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
概率的基本性質
1、基本概念:
(1)事件的包含、並事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那麼稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那麼稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A
∪B)= P(A)+ P(B)=1,於是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1; 2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,於是有P(A)=1—P(B);
4)互斥事件與對立事件的區別與聯系,互斥事件是指事件A與事件B在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件A發生且事件B不發生;(2)事件A不發生且事件B發生;(3)事件A與事件B同時不發生,而對立事
件是指事件A與事件B有且僅有一個發生,其包括兩種情形;(1)事件A發生B不發生;(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形。
古典概型
(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。 (2)古典概型的解題步驟; ①求出總的基本事件數;
②求出事件A所包含的'基本事件數,然後利用公式P(A)=
A包含的基本事件數
總的基本事件個數
(3)轉化的思想:常見的'古典概率模型:拋硬幣、擲骰子、摸小球(學會編號)、抽產品等等,很多概率模型可以轉化歸
結為以上的模型。
(4)若是無放回抽樣,則可以不帶順序
若是有放回抽樣,則應帶順序,可以參考擲骰子兩次的模型。
幾何概型
1、基本概念:
(1)幾何概率模型特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等. (2)幾何概型的概率公式:
構成事件A的區域長度(面積或體積)
P(A)=試驗的全部結果所構成的區域長度(面積或體積);
(3)幾何概型的解題步驟;
1、確定是何種比值:若變數選取在區間內或線段上是長度比,若變數選取在平面圖形內是面積比,若變數選取在幾
何體內是體積比。
2、找出臨界位置求解。
(4)特殊題型:相遇問題:若題目中有兩個變數,則採用直角坐標系數形結合的方法求解。
數學圓的對稱性知識點
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
數學不等式知識點
1.(1)解不等式是求不等式的解集,最後務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值.
(2)解分式不等式的一般解題思路是什麼?(移項通分,分子分母分解因式,x的系數變為正值,標根及奇穿過偶彈回);
(3)含有兩個絕對值的不等式如何去絕對值?(一般是根據定義分類討論、平方轉化或換元轉化);
(4)解含參不等式常分類等價轉化,必要時需分類討論.注意:按參數討論,最後按參數取值分別說明其解集,但若按未知數討論,最後應求並集.
2.利用重要不等式以及變式等求函數的最值時,務必注意a,b (或a,b非負),且「等號成立」時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時).
3.常用不等式有:(根據目標不等式左右的運算結構選用)
a、b、c R,(當且僅當時,取等號)
4.比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質法、綜合法、分析法
5.含絕對值不等式的性質:
6.不等式的恆成立,能成立,恰成立等問題
(1)恆成立問題
若不等式在區間上恆成立,則等價於在區間上
若不等式在區間上恆成立,則等價於在區間上
(2)能成立問題
(3)恰成立問題
若不等式在區間上恰成立,則等價於不等式的解集為.
若不等式在區間上恰成立,則等價於不等式的解集為,