⑴ 六年級上冊數學知識重點有哪些
六年級數學有很多知識點,都需要學生扎實掌握,我整理了一些比較重要的知識點。
分數乘法
1、分數乘法的意義:
(1)分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。
(2)分數乘分數是求一個數的幾分之幾是多少。
2、分數乘法的計演算法則:
(1)分數與整數相乘:分子與整數相乘的積做分子,分母不變。
(2)分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a×b=b×d
乘法結合律: a×b×c=a×(b×c)
乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac
分數除法
1、分數除法的意義:
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
2、分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數。
3、規律(分數除法比較大小時):
(1)當除數大於1,商小於被除數;
(2)當除數小於1(不等於0),商大於被除數;
(3)當除數等於1,商等於被除數。
4、分數混合運算順序:
(1)同級運算要按從左往右順序計算。
(2)先算乘、除後算加、減,有括弧的,要先算括弧裡面的
(3)一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
(4)能用運算律的要用運算律。
比和比例的意義
比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括弧的含義而另一種形式,分數有括弧的含義!
百分數與分數的區別
1、意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數還可以表示兩數之間的倍數關系。
2、應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3、書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。
而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數並不都具有百分數的意義。
4、百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。
以上是我整理的六年級上冊數學知識點,希望能幫到你。
⑵ 六年級數學上冊知識點
一、 分數除法
1、分數除法的意義: 乘法: 因數 因數 = 積 除法: 積 一個因數 = 另一個因數
分數除法與整數除法的意義相同, 表示已知兩個因數的積和其中一個因數, 求另一個因數的運算。 2、分數除法的計演算法則: 除以一個不為 0 的數,等於乘這個數的倒數。 3、規律(分數除法比較大小時) : (1) 、當除數大於 1,商小於被除數; (2) 、當除數小於 1(不等於 0) ,商大於被除數; (3) 、當除數等於 1,商等於被除數。 4、 叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
二、分數除法解決問題 (未知單位1的量(用除法) 已知單位1的幾分之幾是多少,求單位1的量。 ) :
1、數量關系式和分數乘法解決問題中的關系式相同:
(1)分率前是的 :
單位1的量分率=分率對應量
(2)分率前是多或少的意思: 單位1的量(1 分率)=分率對應量
2、解法:(建議:最好用方程解答) (1)方程: 根據數量關系式設未知量為 X,用方程解答。
(2)算術(用除法) :
分率對應量對應分率 = 單位1的量 一個數另一個數 兩個數的相差量單位1的量 或:
3、求一個數是另一個數的幾分之幾:就
4、求一個數比另一個數多(少)幾分之幾: ① 求多幾分之幾:大數小數 1
1
② 求少幾分之幾: 1 -
小數大數
三、比和比的應用 (一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。 2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後 項所得的商,叫做比值。 例如 15 :10 = 1510= ∶ ∶ ∶ 後項
3 2
(比值通常用分數表示,也可以用小數或整數表示)
∶ 比值
前項 比號
3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例: 路程速度=時間。 4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。 比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。 6、 比和除法、分數的聯系: 比 除 法 分 數 前 項 比號: 除號 分數線 後 項 除 數 分 母 比值 商 分數值
被除數 分 子
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。 8、根據比與除法、分數的關系,可以理解比的'後項不能為 0。 體育比賽中出現兩隊的分是 2:0 等,這只是一種記分的形式,不表示兩個數相除的關系。
(二) 、比的基本性質
1、根據比、除法、分數的關系: 商不變的性質:被除數和除數同時乘或除以相同的數(0 除外) ,商不變。 分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0 除外) ,分數值不變。
2
比的基本性質:比的前項和後項同時乘或除以相同的數(0 除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。 3、根據比的基本性質,可以把比化成最簡單的整數比。 4.化簡比: 依 ①用比的前項和後項同時除以它們的最大公因數。 據 (1) 比 ②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的 的 方法來化簡。 基 本 ③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。 性 質: (2)用求比值的方法。注意: 最後結果要寫成比的形式。 如: 15∶10 = 1510 =
3 2
= 3∶2
5.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。 如: 已知兩個量之比為 a : b ,則設這兩個量分別為 ax 和 bx 。 6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是 4:5,時間比則為 5:4) 工作總量一定,工作效率和工作時間成反比。 (如:工作總量相同,工作時間比是 3:2,工作效率比則是 2:3)
⑶ 六年級上冊數學第三單元分數除法有什麼規則
如下:
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例÷3= × = 3÷ =3× =5。
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c當b>1時,c。
②除以小於1的數,商大於被除數:a÷b=c當b<1時,c>a (a≠0 b≠0)。
③除以等於1的數,商等於被除數:a÷b=c當b=1時,c=a。
三、分數除法混合運算。
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
註:(a±b)÷c=a÷c±b÷c。
四、比:兩個數相除也叫兩個數的比。
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5。
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20==12÷20= =0.6 12∶20讀作:12比20。
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
4、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、用比的前項和後項同時除以它們的最大公約數。
(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。
5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
6、比和除法、分數的區別:
除法被除數除號(÷)除數(不能為0)商不變性質除法是一種運算。
分數分子分數線(——)分母(不能為0)分數的基本性質分數是一個數。
比前項比號(∶)後項(不能為0)比的基本性質比表示兩個數的關系。
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
⑷ 六年級數學上冊知識點總結
考博士並不難,但兩三年內被一專題束縛住,就沒有時間學其他知識了。只要能學到知識,有無學位並不重要。下面給大家分享一些關於 六年級數學 上冊知識點 總結 ,希望對大家有所幫助。
六年級數學上冊知識點1
比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分數表示,也可以用小數或整數表示)
∶ ∶ ∶ ∶
前項 比號 後項 比值
3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、比和除法、分數的聯系:
比 前 項 比號「:」 後 項 比值
除 法 被除數 除號「÷」 除 數 商
分 數 分 子 分數線 「—」 分 母 分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
六年級數學上冊知識點2
比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
①用比的前項和後項同時除以它們的最大公因數。
(1) ②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的 方法 來化簡。
③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。
(2)用求比值的方法。注意: 最後結果要寫成比的形式。
如: 15∶10 = 15÷10 = = 3∶2
5.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如: 已知兩個量之比為 ,則設這兩個量分別為 。
6、 路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)
六年級數學上冊知識點3
認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的 。
用字母表示為:d=2r或r =
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。
摺痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是: 長方形
只有3條對稱軸的圖形是: 等邊三角形
只有4條對稱軸的圖形是: 正方形;
有無數條對稱軸的圖形是: 圓、圓環。
六年級數學上冊知識點4
圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。
發現一般規律,就是圓周長與它直徑的比值是一個固定數(π)。
3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。
用字母π(pai) 表示。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。
圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)、世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
4、圓的周長公式: C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1) 周長的一半:等於圓的周長÷2 計算方法:2π r ÷ 2 即 π r
(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:πr+2r
六年級數學上冊知識點5
圓的面積
1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。
2、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
3、圓面積公式的推導:
(1)、用逐漸逼近的轉化思想: 體現化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。
(2)、把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。
(3)、拼出的圖形與圓的周長和半徑的關系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
因為: 長方形面積 = 長 × 寬
所以: 圓的面積 = 圓周長的一半 × 圓的半徑
S圓 = πr × r
圓的面積公式: S圓 = πr2
4、環形的面積:
一個環形,外圓的半徑是R,內圓的半徑是r。(R=r+環的寬度.)
S環 = πR?-πr? 或
環形的面積公式: S環 = π(R?-r?)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。
而面積擴大或縮小的倍數是這倍數的平方倍。 例如:
在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。 例如:
兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。
(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)
(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度
(4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
11、常用各π值結果:
π = 3.14
2π = 6.28
3π = 9.42
5π = 15.7
6π = 18.84
7π = 21.98
9π = 28.26
10π = 31.4
16π = 50.24
36π = 113.04
64π = 200.96
96π = 301.44
4π = 12.56
六年級數學上冊知識點總結相關 文章 :
★ 六年級上冊數學知識點整理歸納
★ 六年級數學上冊知識點復習
★ 六年級數學上冊《百分數》知識點總結
★ 六年級數學期末復習知識點匯總
★ 六年級數學上冊復習知識:圓柱和圓錐
★ 小學六年級數學知識點總結
★ 六年級上冊知識點匯總
★ 小學六年級數學學習方法指導與總結
★ 六年級數學的重難點知識總結
★ 小學六年級數學知識點、難點及學習方法
⑸ 六年級上冊數學知識點總結大全
讀書不是為了考試,本來考試是一件正確的事情,它是用來檢查我們對學習過的知識是否懂了,懂了多少 多深 分數只是反映了我們對學過知識的掌握程度,下面我給大家分享一些 六年級數學 知識點,希望能夠幫助大家!
六年級上冊數學知識點大全
六年級上冊數學知識 總結 1
圓
一、圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形。
2、圓的特徵:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π = 周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr
圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
4、半圓周長=圓周長一半+直徑= πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
S圓 =πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
4、環形面積 =大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年級上冊數學知識總結2
比
比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
4、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、用比的前項和後項同時除以它們的最大公約數。
(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的 方法 來化簡。也可以求出比值再寫成比的形式。
(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。
5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
6、比和除法、分數的區別:
除法:被除數除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數:分子 分數線 (—)分母(不能為0) 分數的基本性質 分數是一個數
比:前項比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數除法和比的應用
1、已知單位「1」的量用乘法。
2、未知單位「1」的量用除法。
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙
(2)甲比乙多(少)幾分之幾?
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。(3)找等量關系。(4)列方程。
兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
六年級上冊數學知識總結3
分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b≠0)。< p="">
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a 。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。帶分數的倒數小於1。
(六)分數乘法應用題——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
3、什麼是速度?
速度是單位時間內行駛的路程。
速度=路程÷時間 時間=路程÷速度 路程=速度×時間
單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
4、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年級上冊數學知識總結4
百分數(一)
一、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。
注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。
1、百分數和分數的區別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。
注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。
(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數化小數:分子除以分母。
二、百分數應用題
1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。
2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率
4、已知一個數的百分之幾是多少,求這個數。
部分量÷百分率=一個數(單位「1」)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數=幾分之幾、百分之幾、小數
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
6、利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和 教育 儲蓄的利息不納稅
7、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
六年級上冊數學知識總結5
扇形統計圖的意義
1、扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。
2、常用統計圖的優點:
(1)條形統計圖直觀顯示每個數量的多少。
(2)折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。
(3)扇形統計圖直觀顯示部分和總量的關系。
數學廣角--數與形
2+4+6+8+10+12+14+16+18+20=(110)
規律:從2開始的n個連續偶數的和等於n×(n+1)。
10×(10+1)=10×11=110
位置與方向(二)
1、什麼是數對?
數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
數對的作用:確定一個點的位置。經度和緯度就是這個原理。
2、確定物體位置的方法:
(1)、先找觀測點;(2)、再定方向(看方向夾角的度數);(3)、最後確定距離(看比例尺)。
描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
相對位置:東--西;南--北;南偏東--北偏西。
六年級上冊數學知識點總結相關 文章 :
★ 六年級上冊數學知識點整理歸納
★ 六年級數學上冊知識點總結
★ 六年級數學期末復習知識點匯總
★ 六年級上冊數學知識點
★ 六年級數學上冊《百分數》知識點總結
★ 六年級上冊數學課本知識點歸納
★ 六年級數學上冊知識點復習
★ 小學六年級數學學習方法和技巧大全
★ 六年級數學上冊知識人教版
★ 小學六年級數學知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑹ 小學六年級數學上冊知識點歸納
一、分數乘法
(一)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(二)、規律:(乘法中比較大小時)
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(三)、分數混合運算的運算順序和整數的運算順序相同。
(四)、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分數乘法的解決問題
(已知單位「1」的量(用乘法),求單位「1」的幾分之幾是多少)
1、找單位「1」:在分率句中分率的前面;或「占」、「是」、「比」的後面
2、求一個數的幾倍:一個數×幾倍;求一個數的幾分之幾是多少:一個數×。
3、寫數量關系式技巧:
(1)「的」相當於「×」「占」、「是」、「比」相當於「=」
(2)分率前是「的」:單位「1」的量×分率=分率對應量
(3)分率前是「多或少」的意思:單位「1」的量×(1分率)=分率對應量
三、倒數
1、倒數的意義:乘積是1的兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。
(要說清誰是誰的倒數)。
2、求倒數的方法:
(1)、求分數的倒數:交換分子分母的位置。(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數:把小數化為分數,再求倒數。
3、1的倒數是1;0沒有倒數。因為1×1=1;0乘任何數都得0,(分母不能為0)
4、對於任意數,它的倒數為;非零整數的倒數為;分數的倒數是;
5、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
四.分數除法
一、分數除法
1、分數除法的`意義:
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
2、分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數。
3、規律(分數除法比較大小時):(1)、當除數大於1,商小於被除數;
(2)、當除數小於1(不等於0),商大於被除數;(3)、當除數等於1,商等於被除數。
4、「」叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧裡面的。
二、分數除法解決問題
(未知單位「1」的量(用除法):已知單位「1」的幾分之幾是多少,求單位「1」的量。)
1、數量關系式和分數乘法解決問題中的關系式相同:
(1)分率前是「的」:單位「1」的量×分率=分率對應量
(2)分率前是「多或少」的意思:單位「1」的量×(1分率)=分率對應量
2、解法:(建議:最好用方程解答)
(1)方程:根據數量關系式設未知量為X,用方程解答。
(2)算術(用除法):分率對應量÷對應分率=單位「1」的量
3、求一個數是另一個數的幾分之幾:就一個數÷另一個數
4、求一個數比另一個數多(少)幾分之幾:
①求多幾分之幾:大數÷小數–1②求少幾分之幾:1-小數÷大數
或①求多幾分之幾(大數-小數)÷小數②求少幾分之幾:(大數-小數)÷大數
三、比和比的應用
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如15:10=15÷10=(比值通常用分數表示,也可以用小數或整數表示)
∶∶∶∶
前項比號後項比值
3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例:路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、 比和除法、分數的聯系:
比前項比號「:」後項比值
除法被除數除號「÷」除數商
分數分子分數線「—」分母分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:
比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質, 可以把比化成最簡單的整數比。
4.化簡比:
①用比的前項和後項同時除以它們的最大公因數。
(1)②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。
③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。
(2)用求比值的方法。注意:最後結果要寫成比的形式。
如:15∶10=15÷10==3∶2
5.按比例分配: 把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如:已知兩個量之比為,則設這兩個量分別為。
6、路程一定,速度比和時間比成反比 。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)