當前位置:首頁 » 基礎知識 » 新數學高一必修二知識點總結
擴展閱讀
動漫怎麼勾邊好看 2024-11-29 03:27:04
英語知識點七下年級 2024-11-29 03:11:07

新數學高一必修二知識點總結

發布時間: 2024-04-12 03:41:50

㈠ 高中必修二數學知識點總結

高中數學一直是一個難點,想要學好數學一定要回歸課本,學好基礎知識。下面我給大家分享一些高中必修二數學知識點,希望能夠幫助大家,歡迎閱讀!

高中必修二數學知識點1

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

(4)平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直於已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有無數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解.

高中必修二數學知識點2

1、柱、錐、台、球的結構特徵

(1)稜柱:

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方.

(3)稜台:

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形.

(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑.

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、

俯視圖(從上向下)

註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

4、柱體、錐體、台體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

高中必修二數學知識點3

圓的方程

1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

2、圓的方程

(1)標准方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形.

(3)求圓方程的 方法 :

一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.

3、高中數學必修二知識點 總結 :直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓.

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

5、空間點、直線、平面的位置關系

公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.

應用:判斷直線是否在平面內

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a.

符號語言:

公理2的作用:

①它是判定兩個平面相交的方法.

②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點.

③它可以判斷點在直線上,即證若干個點共線的重要依據.

公理3:經過不在同一條直線上的三點,有且只有一個平面.

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據

公理4:平行於同一條直線的兩條直線互相平行

高中必修二數學知識點4

【一】

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

【二】

兩個平面的位置關系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

【三】

棱錐

棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的棱錐的高與遠棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中必修二數學知識點總結相關 文章 :

★ 高中數學必修二知識點總結(復習提綱)

★ 高中數學必修二知識點總結

★ 高中數學必修二知識點總結

★ 高一數學必修二所有公式總結

★ 高中數學必修2空間幾何體知識點歸納總結

★ 高一數學必修二公式總結全

★ 高二數學必修二知識點總結

★ 高一數學必修2知識點總結

★ 高中數學填空題的常用解題方法與必修二知識點全面總結

★ 高一數學必修2知識總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈡ 高一數學必修二知識點總結

高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都碧盯等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數如扮),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必悔橡和在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.

三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

㈢ 人教版高一數學必修二知識點總結

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於肢渣這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。

多答絕面體

1、稜柱

稜柱的定義:有兩個面互相平行,其餘各面都是四邊形,並且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做稜柱。

稜柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行於底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質歷舉悄:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。

㈣ 高一數學必修2知識總結2020

不盡一切背離公正的知識應當被稱作為詭計而不應當被稱作為智慧,而且即便是臨危不懼的勇氣,如果它不是出於公心,而是出自於知識的目的,那也應當被稱作厚顏而不應當被稱作勇敢!下面給大家分享一些關於 高一數學 必修2知識 總結 2020,希望對大家有所幫助。

高一數學必修2知識總結1

空間直線與直線之間的位置關系①異面直線定義:不同在任何一個平面內的兩條直線

②異面直線性質:既不平行,又不相交.

③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補.

(8)空間直線與平面之間的位置關系

直線在平面內——有無數個公共點.

三種位置關系的符號表示:aαa∩α=Aa‖α

(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

相交——有一條公共直線.α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質

線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平 面相 交,

那麼這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質

兩個平面平行的判定定理

(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行.

(線線平行→面面平行),

(3)垂直於同一條直線的兩個平面平行,

兩個平面平行的性質定理

(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行.(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關系的判定和性質定理

①線面垂直判定定理和性質定理

判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面.

性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行.

②面面垂直的判定定理和性質定理

判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直.

性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面.

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規定為.

②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角.

③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規定為.②平面的垂線與平面所成的角:規定為.

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」.

在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,

在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

③直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角

④求二面角的 方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角

垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高一數學必修2知識總結2

解三角形(1)正弦定理和餘弦定理

掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題.

(2)應用

能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.

高一數學必修2知識總結3

數列(1)數列的概念和簡單表示法

①了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

②了解數列是自變數為正整數的一類函數.

(2)等差數列、等比數列

①理解等差數列、等比數列的概念.

②掌握等差數列、等比數列的通項公式與前項和公式.

③能在具體的問題情境中,識別數列的等差關系或等比關系,並能用有關知識解決相應的問題.

④了解等差數列與一次函數、等比數列與指數函數的關系.

高中數學必修二知識點總結:不等式

高一數學必修2知識總結4

不等關系了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.

(2)一元二次不等式

①會從實際情境中抽象出一元二次不等式模型.

②通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯系.

③會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.

(3)二元一次不等式組與簡單線性規劃問題

①會從實際情境中抽象出二元一次不等式組.

②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組.

③會從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決.

(4)基本不等式:

①了解基本不等式的證明過程.

②會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點


高一數學必修2知識總結2020相關 文章 :

★ 2019年高中數學必修二知識點總結(復習提綱)

★ 高中數學必修二知識點總結

★ 2020高一數學學習方法總結大全

★ 高中數學必修2空間幾何體知識點歸納總結

★ 高一數學必修二公式總結全

★ 高一數學必修二所有公式總結

★ 高一歷史必修二知識點總結2020

★ 高中地理必修2知識點2020總結

★ 高中地理必修2知識點總結2020

★ 2020高中地理必修二知識點總結

㈤ 高一必修二數學知識點整理

1.高一必修二數學知識點整理


空間幾何

一、立體幾何常用公式

S(圓柱全面積)=2πr(r+L);

V(圓柱體積)=Sh;

S(圓錐全面積)=πr(r+L);

V(圓錐體積)=1/3Sh;

S(圓台全面積)=π(r^2+R^2+rL+RL);

V(圓台體積)=1/3[s+S+√(s+S)]h;

S(球面積)=4πR^2;

V(球體積)=4/3πR^3。

二、立體幾何常用定理

(1)用一個平面去截一個球,截面是圓面。

(2)球心和截面圓心的連線垂直於截面。

(3)球心到截面的距離d與球的半徑R及截面半徑r有下面關系:r=√(R^2—d^2)。

(4)球面被經過球心的平面載得的圓叫做大圓,被不經過球心的載面截得的圓叫做小圓。

(5)在球面上兩點之間連線的最短長度,就是經過這兩點的大圓在這兩點間的一段劣弧的長度,這個弧長叫做兩點間的球面距離。

2.高一必修二數學知識點整理


直線與平面有幾種位置關系

直線與平面的關系有3種:直線在平面上,直線與平面相交跡閉,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個子類。

直線在平面內——有無數個公共點;直線與平面相交——有且只有一個公共點;直線與平面平行——沒有公共點。直線與平面相交和平行統稱為直線在平面外。

直線與平面垂直的判定:如果直線L與平面α內的任意一直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。

線面平行:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。

直線與平面的夾角范圍

[0,90°]或者說是[0,π/2]這個范圍。

當兩條直線非垂直的相交的時候,形成了4個角,這4個角分成兩組對頂角。兩個銳角,兩個鈍角。按照規定,選擇銳角的那一對對頂角作為直線和直線的夾角。

直線的方向向量m=(2,0,1),平面的法向量為n=(—1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結果等於0。也就是說,l和平面法向量垂直,那麼l平行於平面。l和平面夾角就為0°

3.高一必修二數學知識點整理


1、稜柱

稜柱的定義:有兩個面互相平行,其餘各面都是四邊形,並且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做稜柱。

稜柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行於底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於尺好截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(2)多個特殊的直角三角形

a、陵州鉛相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

4.高一必修二數學知識點整理


空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)

兩異面直線間距離:公垂線段(有且只有一條)

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;

(2)沒有公共點——平行或異面

5.高一必修二數學知識點整理


圓的性質有哪些

1、圓是定點的距離等於定長的點的集合

2、圓的內部可以看作是圓心的距離小於半徑的點的集合

3、圓的外部可以看作是圓心的距離大於半徑的點的集合

4、同圓或等圓的半徑相等。

圓是一種幾何圖形,指的是平面中到一個定點距離為定值的所有點的集合。這個給定的點稱為圓的圓心。作為定值的距離稱為圓的半徑。當一條線段繞著它的一個端點在平面內旋轉一周時,它的另一個端點的軌跡就是一個圓。圓的直徑有無數條;圓的對稱軸有無數條。圓的直徑是半徑的2倍,圓的半徑是直徑的一半。

用圓規畫圓時,針尖所在的點叫做圓心,一般用字母O表示。連接圓心和圓上任意一點的線段叫做半徑,一般用字母r表示,半徑的長度就是圓規兩個角之間的距離。通過圓心並且兩端都在圓上的線段叫做直徑,一般用字母d表示。

㈥ 高一必修二數學知識點總結歸納

【 #高一# 導語】高一數學在整個高中數學中佔有非常重要的地位,既是高一又是整個高中階段的重難點,所以要保持良好的學習心態和正確的學習方法。 無 為各位同學整理了《高一必修二數學知識點總段稿梁結歸納》,希望對你的學習有所幫助!

1.高一必修二數學知識點總結歸納 篇一


方程的根與函數的零點

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義握運:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,敬孫函數有零點.

3、函數零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

(3)△

㈦ 高一年級必修二數學知識點歸納

1.高一年級必修二數學知識點歸納


函數的圖象

函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.

求作圖象的函數表達式

與f(x)的關系

由f(x)的圖象需經過的變換

y=f(x)±b(b>0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=-f(x)

作關於x軸的對稱圖形

y=f(|x|)

右不動、左右關於y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f-1(x)

作關於直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫敗悉坐標不變

y=f(-x)

作關於y軸對稱的圖形

2.高一年級必修二數學知識點歸納


正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(2)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

3.高一年級必修二數學知識點歸納


函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2)畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法

常用變換方法有三種,即平移變賀鍵換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;

2、利用數形結合的方法分析解題的思路。提高解題的速度。

4.高一年級必修二數學知識點歸納


有界性

設函數f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上XX.

單調性

設函數f(x)的定義域為D,區間I包含於D.如果對於區間上任意兩點x1及x2,當x1f(x2),則稱函數f(x)在區間I上是單調遞減的.單調遞增和單調遞減的函數統稱為單調函數.

奇偶性

設為一個實變數實值函數,若有f(—x)=—f(x),則f(x)為奇函數.

幾何上,一個奇函數關於原點對稱,亦察拍乎即其圖像在繞原點做180度旋轉後不會改變.

奇函數的例子有x、sin(x)、sinh(x)和erf(x).

設f(x)為一實變數實值函數,若有f(x)=f(—x),則f(x)為偶函數.

幾何上,一個偶函數關於y軸對稱,亦即其圖在對y軸映射後不會改變.

偶函數的例子有|x|、x2、cos(x)和cosh(x).

偶函數不可能是個雙射映射.

連續性

在數學中,連續是函數的一種屬性.直觀上來說,連續的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數.如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續的函數(或者說具有不連續性).

5.高一年級必修二數學知識點歸納

求函數值域

(1)、觀察法:通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域;

(2)、配方法;如果一個函數是二次函數或者經過換元可以寫成二次函數的形式,那麼將這個函數的右邊配方,通過自變數的范圍可以求出該函數的值域;

(3)、判別式法:

(4)、數形結合法;通過觀察函數的圖象,運用數形結合的方法得到函數的值域;

(5)、換元法;以新變數代替函數式中的某些量,使函數轉化為以新變數為自變數的函數形式,進而求出值域;

(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函數值來求出值域;

(7)、利用基本不等式:對於一些特殊的分式函數、高於二次的函數可以利用重要不等式求出函數的值域;

(8)、最值法:對於閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;

(9)、反函數法:如果函數在其定義域內存在反函數,那麼求函數的值域可以轉化為求反函數的定義域。

㈧ 高一年級數學必修二知識點歸納總結

1.高一年級數學必修二知識點歸納總結 篇一


系統抽樣

1、系統抽樣(等距抽樣或機械抽樣):

把總體的單位進行排序,再計算出抽樣距離,然後按照這一固定的抽樣距離抽取樣本。第一個樣本採用簡單隨機抽樣的辦法抽取。

K(抽樣距離)=N(總體規模)/n(樣本規模)

前提條件:總體中個體的排列對於研究的變數來說,應是隨機的,即不存在某種與研究變數相關的規則分布。可以在調查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環性規律,且這種循環和抽樣距離重合。

2、系統抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變數可供使用,總體單元按輔助變數的大小順序排隊的話,使用系統抽樣可以大大提高估計精度。

2.高一年級數學必修二知識點歸納總結 篇二


復數與幾何

①幾何形式

復數z=a+bi被復平面上的點z(a,b)確定。這種形式使復數的問題可以藉助圖形來研究。也可反過來用復數的理論解決一些幾何問題。

②向量形式

復數z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數四則運算得到恰當的幾何解釋。

③三角形式

復數z=a+bi化為三角形式

3.高一年級數學必修二知識點歸納總結 篇三


二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面談缺角。

4.高一年級數學必修二知識點歸納總結 篇四


三角函數性質、圖像及其變換:

(1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性

注意:正切函數、餘切函數的定義域;絕對值對三角函數周期性的影響:一般說來,某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變數加絕對值,其周期性不變;其他不定,如的周期都是,但的周期為,y=|tanx|的周期不變,問襲巧函數y=cos|x|,,y=cos|x|是周期函數嗎?

(2)三角函數圖像及其幾何性質:

(3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換

(4)三角函數圖像的作法:三角函數線法、五點法(五點橫坐標成等差數列)和變換法

5.高一年級數學必修二知識點歸納總結 篇五


直線與平面有幾種位置關系

直線與平面的關系有3種:直線在平面上,直線與平面相交,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個子類。

直線在平面內——有無數個公共點;直線與平面相交——有且只有一個公共點;直線與平面平行——沒有公共點。直線與平面相交和平行統稱為直線在平面外。

直線與平面垂直的判定:如果直線L與平面α內的任意一直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。

線面平行:平面外一條直線與此平面內的一條直含禪辯線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。

直線與平面的夾角范圍

[0,90°]或者說是[0,π/2]這個范圍。

當兩條直線非垂直的相交的時候,形成了4個角,這4個角分成兩組對頂角。兩個銳角,兩個鈍角。按照規定,選擇銳角的那一對對頂角作為直線和直線的夾角。

直線的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結果等於0。也就是說,l和平面法向量垂直,那麼l平行於平面。l和平面夾角就為0°。

6.高一年級數學必修二知識點歸納總結 篇六


簡單隨機抽樣

1、總體和樣本

在統計學中,把研究對象的全體叫做總體,把每個研究對象叫做個體,把總體中個體的總數叫做總體容量,為了研究總體的有關性質,一般從總體中隨機抽取一部分:研究,我們稱它為樣本,其中個體的個數稱為樣本容量。

2、簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法。

3、簡單隨機抽樣常用的方法:

抽簽法;

隨機數表法;

計算機模擬法;

使用統計軟體直接抽取。

在簡單隨機抽樣的樣本容量設計中,主要考慮:

總體變異情況;

允許誤差范圍;

概率保證程度。

4、抽簽法:

給調查對象群體中的每一個對象編號;

准備抽簽的工具,實施抽簽

對樣本中的每一個個體進行測量或調查