A. 小學五年級數學蘇教版下冊知識整理!急!
第一單元 方程
1、表示相等關系的式子叫做等式。
2、含有未知數的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。
等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。
5、求方程中未知數的過程,叫做解方程。
解方程時常用的關系式:
一個加數=和-另一個加數 減數=
-差
=減數+差
一個因數=積÷另一個因數 除數=
÷商
=商×除數
注意:解完方程,要養成檢驗的好習慣。
6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和÷個數=中間數
7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和×個數÷2(高斯求和公式)
8、列方程
的思路:A、審題並弄懂題目的已知條件和所求問題。B、理清題目的
。C、設未知數,一般是把所求的數用X表示。D、根據
列出方程E、解方程F、檢驗G、作答。
第二單元 確定位置
1、確定位置時,豎排叫做列,橫排叫做行。確定第幾列一般從左往右數,確定第幾行一般從前往後數。
2、數對(x,y)第1個數表示第幾列(x),第2個數表示第幾行(y),寫數對時,是先寫列數,再寫行數。
3、從
上看,連接北極和南極兩點的是經線,垂直於經線的線圈是
,經線和
、分別按一定的順序編排表示「
」和「緯度」,「
」和「緯度」都用度(°)、分(′)、秒(″)表示。
4、將某個點向左右平移幾格,只是列(x)上的數字發生加減變化,向左減,向右加,行(y)上的數字不變。舉例:將點(6,3)的位置向右平移2個單位後的位置是(8,3),列6+2=8;將點(6,3)的位置向左平移2個單位後的位置是(4,3),列6-2=4。
5、將某個點向上下平移幾格,只是行(y)上的數字發生加減變化,向上減,向下加,列(x)上的數字不變。舉例:將點(6,3)的位置向上平移2個單位後的位置是(6,5),行3+2=5;將點(6,3)的位置向下平移2個單位後的位置是(6,1),列3-2=1。
第三單元 公倍數和
1、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。
一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
一個數最大的因數等於這個數最小的倍數。
2、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,用符號[ ,]表示。幾個數的公倍數也是無限的。
3、兩個數公有的因數,叫做這兩個數的
,其中最大的一個,叫做這兩個數的最大
,用符號( , )。兩個數的公因數也是有限的。
4、兩個素數的積一定是
。舉例:3×5=15,15是
。
5、兩個數的最小公倍數一定是它們的最大公因數的倍數。舉例:[6,8]=24,(6,8)=2,24是2的倍數。
6、求最大公因數和最小公倍數的方法:
倍數關系的兩個數,最大公因數是較小的數,最小公倍數是較大的數。舉例:15和5,[15,5]=15,(15,5)=5
素數關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。舉例:[3,7]=21,(3,7)=1
一個素數和一個
,最大公因數是1,最小公倍數是它們的乘積。[5,8]=40,(5,8)=1
的兩個數,最大公因數是1,最小公倍數是它們的乘積。[9,8]=72,(9,8)=1
的數(兩個都是合數,一個是奇數,一個是偶數,但他們之間只有一個公因數1),比如4和9、4和15、10和21,最大公因數是1,最小公倍數是它們的乘積。
一般關系的兩個數,求最大公因數用
或
,求最小公倍數用大數翻倍法或
。(詳見課本31頁內容)
數字與信息
1、我國目前採用的郵政編碼為「四級六碼」制。第一、二位代表省(自治區、直轄市),第三位代表郵區,第四位代表縣(市)郵電局,最後兩位是投遞局(區)的編號。
2、身份證編碼規則:1-6位數字為
,其中1、2位數為各省級政府的代碼,3、4位數為地、市級政府的代碼,5、6位數為縣、區級政府代碼。 7-14位為您的出生日期,其中7-10位為出生年份(4位),11-12位為出生月份,13-14位為出生日期,15-17位為
,是縣、區級政府所轄派出所的分配碼,其中單數為男性分配碼,雙數為女性分配碼。18位為
,是由號碼編制單位按照統一的公式計算得出來的,其取值范圍是0至10,當值等於10時,用
符χ表示。
B. 數學趣味小知識大全
1. 數學趣味小知識 簡短的 20到50字左右
趣味數學小知識
數論部分:
1、沒有最大的質數。歐幾里得給出了優美而簡單的證明。
2、哥德巴赫猜想:任何一個偶數都能表示成兩個質數之和。陳景潤的成果為:任何一個偶數都能表示成一個質數和不多於兩個質數的乘積之和。
3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數解。歐拉證明了3和4,1995年被英國數學家 安德魯*懷爾斯 證明。
拓撲學部分:
1、多面體點面棱的關系:定點數+面數=棱數+2,笛卡爾提出,歐拉證明,也稱歐拉定理。
2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面體。
3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節很好的頭腦體操,
摘自:/bbs2/ThreadDetailx?id=31900
2. 數學小知識
這是一個有趣的數學常識,做數學報用上它也很不錯。
人們把12345679叫做「缺8數」,這「缺8數」有許多讓人驚訝的特點,比如用9的倍數與它相乘,乘積竟會是由同一個數組成,人們把這叫做「清一色」。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 這些都是9的1倍至9的9倍的。
還有99、108、117至171。最後,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是「清一色數學小常識(轉載) [ 2007-11-28 12:58:00 | By: gnwz ] 數學小常識1.悖論: (1)羅素悖論 一天,薩維爾村理發師掛出了一塊招牌:村裡所有不自己理發的男人都由我給他們理發。
於是有人問他:「您的頭發誰給理呢?」理發師頓時啞口無言。 1874年,德國數學家康托爾創立了 *** 論,很快滲透到大部分數學分支,成為它們的基礎。
到十九世紀末,全部數學幾乎都建立在 *** 論的基礎上了。就在這時, *** 論接連出現了一系列自相矛盾的結果。
特別是1902年羅素提出理發師故事反映的悖論,它極為簡單、明確、通俗。於是,數學的基礎被動搖了,這就是所謂的第三次「數學危機」。
此後,為了克服這些悖論,數學家們做了大量研究工作,由此產生了大批新成果,也帶來了數學觀念的革命。 (2)說謊者悖論: 「我正在說的這句話是慌話。」
公元前四世紀的希臘數學家歐幾里德提出的這個悖論,至今還在困擾著數學家和邏輯學家。這就是著名的說慌者悖論。
類似的悖論最早是在公元前六世紀出現的,當時克里特島哲學家愛皮梅尼特曾說過:「所有的克里特島人都說慌。」在中國古代《墨經》中,也有一句十分相似的話:「以言為盡悖,悖,說在其言。」
意思是:以為所有的話都是錯的,這是錯的,因為這本身就是一句話。 說慌者悖論有多種變化形式,例如,在同一張紙上寫出下列兩句話: 下一句話是慌話。
上一句話是真話。 更有趣的是下面的對話。
甲對乙說:「你下面要講的是『不』,對不對?請用『是』或『不』來回答!」 還有一個例子。有個虔誠的教徒,他在演說中口口聲聲說上帝是無所不能的,什麼事都做得到。
一位過路人問了一句話:「上帝能創造一塊他自己也舉不起來的石頭嗎?」 2. *** 數字 在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎? 這些數字元號原來是古代印度人發明的,後來傳到 *** ,又從 *** 傳到歐洲,歐洲人誤以為是 *** 人發明的,就把它們叫做「 *** 數字」,因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做 *** 數字。
現在, *** 數字已成了全世界通用的數字元號。
3. 趣味的數學小短文
趣味數學故事1、蝴蝶效應 氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。
就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢? 這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。
平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。 這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。
當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。
結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。
所以長期的准確預測天氣是不可能的。 參考資料:阿草的葫蘆(下冊)——遠哲科學教育基金會2、動物中的數學「天才」 蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。
組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。
丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。
更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契」? 蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。 冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。
真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。
奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。
(生活時報)3、麥比烏斯帶 每一張紙均有兩個面和封閉曲線狀的棱(edge),如果有一張紙它有一條棱而且只有一個面,使得一隻螞蟻能夠不越過棱就可從紙上的任何一點到達其他任何一點,這有可能嗎?事實上是可能的只要把一條紙帶半扭轉,再把兩頭貼上就行了。這是德國數學家麥比烏斯(M?bius.A.F 1790-1868)在1858年發現的,自此以後那種帶就以他的名字命名,稱為麥比烏斯帶。
有了這種玩具使得一支數學的分支拓樸學得以蓬勃發展。4、數學家的遺囑 *** 數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。
「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二 的遺產,我的女兒將得三分之一。」。
而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。
如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?5、火柴游戲 一個最普通的火柴游戲就是兩人一起玩,先置若干支火柴於桌上,兩人輪流取,每次所取的數目可先作一些限制,規定取走最後一根火柴者獲勝。 規則一:若限制每次所取的火柴數目最少一根,最多三根,則如何玩才可致勝? 例如:桌面上有n=15根火柴,甲、乙兩人輪流取,甲先取,則甲應如何取才能致勝? 為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。
如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。
由上之分析可知,甲只要使得桌面上的火柴數為4、8、12、16。等讓乙去取,則甲必穩操勝券。
因此若原先桌面上的火柴數為15,則甲應取3根。(∵15-3=12)若原先桌面上的火柴數為18呢?則甲應先取2根(∵18-2=16)。
規則二:限制每次所取的火柴數目為1至4根,則又如何致勝? 原則:若甲先取,則甲每次取時,須留5的倍數的火柴給乙去取。 通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數目必須為k+1之倍數。
規則三:限制每次所取的火柴數目不是連續的數,而是一些不連續的數,如1、3、7,則又該如何玩法? 分析:1、3、7均為奇數,由於目標為0,而0為偶數,所以先取者甲,須使桌上的火柴數為偶數,因為乙在偶數的火柴數中,不可能再取去1、3、7根火柴後獲得0,但假使。
4. 誰有數學小知識
楊輝三角是一個由數字排列成的三角形數表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 楊輝三角最本質的特徵是,它的兩條斜邊都是由數字1組成的,而其餘的數則是等於它肩上的兩個數之和。
其實,中國古代數學家在數學的許多重要領域中處於遙遙領先的地位。中國古代數學史曾經有自己光輝燦爛的篇章,而楊輝三角的發現就是十分精彩的一頁。
楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章演算法》一書中,輯錄了如上所示的三角形數表,稱之為「開方作法本源」圖。
而這樣一個三角在我們的奧數競賽中也是經常用到,最簡單的就是叫你找規律。現在要求我們用編程的方法輸出這樣的數表。
同時 這也是多項式(a+b)^n 打開括弧後的各個項的二次項系數的規律 即為 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。 。
。 。
。 因此 楊輝三角第x層第y項直接就是 (y nCr x) 我們也不難得到 第x層的所有項的總和 為 2^x (即(a+b)^x中a,b都為1的時候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 組合數] 其實,中國古代數學家在數學的許多重要領域中處於遙遙領先的地位。
中國古代數學史曾經有自己光輝燦爛的篇章,而楊輝三角的發現就是十分精彩的一頁。 楊輝,字謙光,北宋時期杭州人。
在他1261年所著的《詳解九章演算法》一書中,輯錄了如上所示的三角形數表,稱之為「開方作法本源」圖。 而這樣一個三角在我們的奧數競賽中也是經常用到,最簡單的就是叫你找規律。
具體的用法我們會在教學內容中講授。 在國外,這也叫做"帕斯卡三角形". 還有小故事: (一)失之毫釐,謬以千里 1967年8月23日,蘇聯的聯盟一號宇宙飛船在返回大氣層時,突然發生了惡性事故——減速降落傘無法打開。
蘇聯 *** 研究後決定:向全國實況轉播這次事故。當電視台的播音員用沉重的語調宣布,宇宙飛船在兩小時後將墜毀,觀眾將目睹宇航員弗拉迪米·科馬洛夫殉難的消息後,舉國上下頓時被震撼了,人們都沉浸在巨大的悲痛之中。
在電視上,觀眾們看到了宇航員科馬洛夫鎮定自若的形象。他面帶微笑地對母親說:「媽媽,您的圖像我在這里看得清清楚楚,包括您頭上的每根白發,您能看清我嗎?」 「能,能看清楚。
兒啊,媽媽一切都很好,你放心吧!」 這時,科馬洛夫的女兒也出現在電視屏幕上,她只有12歲。科馬洛夫說:「女兒,你不要哭。」
「我不哭……」女兒已泣不成聲,但她強忍悲痛說:「爸爸,你是蘇聯英雄,我想告訴你,英雄的女兒會像英雄那樣生活的!」 科馬洛夫叮囑女兒說:「你學習時,要認真對待每一個小數點。聯盟一號今天發生的一切,就是因為地面檢查時忽略了一個小數點……」 時間一分一秒地過去了,距離宇宙飛船墜毀的時間只有7分鍾了。
科馬洛夫向全國的電視觀眾揮揮手說:「同胞們,請允許我在這茫茫的太空中與你們告別。」 即使是一個小數點的錯誤,也會導致永遠無法彌補的悲壯告別。
古羅馬的愷撒大帝有句名言:「在戰爭中,重大事件常常就是小事所造成的後果。」 換成我們中國的警句大概就是「失之毫釐,謬以千里」吧。
(二)一個故事引發的數學家 陳景潤一個家喻戶曉的數學家,在攻克歌德巴赫猜想方面作出了重大貢獻,創立了著名的「陳氏定理」,所以有許多人親切地稱他為「數學王子」。但有誰會想到,他的成就源於一個故事。
1937年,勤奮的陳景潤考上了福州英華書院,此時正值抗日戰爭時期,清華大學航空工程系主任留英博士沈元教授回福建奔喪,不想因戰事被滯留家鄉。幾所大學得知消息,都想邀請沈教授前進去講學,他謝絕了邀請。
由於他是英華的校友,為了報達母校,他來到了這所中學為同學們講授數學課。 一天,沈元老師在數學課上給大家講了一故事:「200年前有個法國人發現了一個有趣的現象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每個大於4的偶數都可以表示為兩個奇數之和。因為這個結論沒有得到證明,所以還是一個猜想。
大數學歐拉說過:雖然我不能證明它,但是我確信這個結論是正確的。 它像一個美麗的光環,在我們不遠的前方閃耀著眩目的光輝。
……」陳景潤瞪著眼睛,聽得入神。 從此,陳景潤對這個奇妙問題產生了濃厚的興趣。
課余時間他最愛到圖書館,不僅讀了中學輔導書,這些大學的數理化課程教材他也如飢似渴地閱讀。因此獲得了「書獃子」的雅號。
興趣是第一老師。正是這樣的數學故事,引發了陳景潤的興趣,引發了他的勤奮,從而引發了一位偉大的數學家。
(三)為科學而瘋的人 由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。
他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上。
5. 生活中的趣味數學知識
1.一個服裝的工人每人每天可以生產4件上衣或7條褲子,一件上衣和一條褲子為一套服裝。
現有66名工人生產,每天最多能生產多少套服裝?2、小王有三本集郵冊,全部郵票的五分之一在第一本上,N除以8(N為非零自然數)在第二本上,剩餘的39張在第三本上。小王有多少張郵票?3.小明看著自己的成績表預測:如果下次數學考試100分,那麼總平均分是91分,如果下次考80分,那麼數學總平均成績是86分,小明數學統計表是已經有幾次考試?1設x名工人生產上衣,得 4x=7*(66-x)則x=42所以一天可以生產 4*42=168 套服裝2設其有x張郵票.得x/5+N/8+39=x化簡得 4x/5-N/8=39由題意知,N為8的陪數,又4x/5為偶數,39為奇數.則N為8的奇數陪數.設N=(2t+1)*8 得4x/5-(2t+1)=39x=(100+5t)/2則5t為偶數,再設t=2w,得x=(100+5*2w)/2=50+5w由此可知,共有50+5w 張郵票, w為0,1,2,3,4,。
此時N=32w+83設有x次考試的成績,現在的平均分為a.則有 (xa+100)/(x+1)=91(xa+80)/(x+1)=86兩式相減得20/(x+1)=5則x=3 a=88即 現有3次考試的成績。
6. 搜集整理有關數學的趣味小故事
1.符號「+」「-」是五百年前一位德國人最先使用的。
當時他們並不表示「加上」「減去」。知道三百多年前才正式用來表示「加上」「減去」。
2.「七巧板」是我國古代的一種拼板玩具,有七個塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千。後來傳到國外叫做「唐圖」。
「七巧板」流傳到今天,成為人們喜愛的一種智力玩具。 3.傳說早在四五千年前,我們的祖先就用一種滴水的器具來計時,名叫刻漏。
4.乘號「*」是三百多年前一位英國數學家最先使用的。因為乘法是一種特殊的加法,所以他把加號斜過來表示。
5.公元前46年,羅馬統帥儒略· 愷撒指定歷法。由於他出生在7月,為了表示他的偉大,決定將7月改為「儒略月」,連同所有的單月都規定為31天,雙月為30天。
這樣一年多出一天,2月是古羅馬處死犯人的月份,為了減少處死的人數,將2月減少1天,為29天。6.小方是一個木匠,但他很傲慢,有一天,師傅問他:「桌子有4個角,我砍去一個,還剩幾個?」小芳說4-1=3,三個。
師傅告訴他,有5個 7.大約1500年前,歐洲的數學家們是不知道用「0」的。他們使用羅馬數字。
羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。
而在當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,他非常高興,還把印度人使用「0」的方法向大家做了介紹。
過了一段時間,這件事被當時的羅馬教皇知道了。當時是歐洲的中世紀,教會的勢力非常大,羅馬教皇的權利更是遠遠超過皇帝。
教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,如今誰要把它給引進來,誰就是褻瀆上帝!於是,教皇就下令,把這位學者抓了起來,並對他施加了酷刑,用夾子把他的十個手指頭緊緊夾注,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。
但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。
8.小朋友你們可知道數學天才高斯小時候的故事呢? 高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是: 1+2+3+ 。.. +97+98+99+100 = ? 老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎? 高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說: 1+2+3+4+ 。
.. +96+97+98+99+100 100+99+98+97+96+ 。.. +4+3+2+1 =101+101+101+ 。
.. +101+101+101+101 共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050> 從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才! 在日常生活中,數學無處不在,比如說:買菜、賣菜、算多少錢…… 9.下面就是一個小故事,是一個數字之間的故事。 有一天,數字卡片在一起吃午飯的時候,最小的一位說起話來了。
0弟弟說:「我們大傢伙兒,一起拍幾張合影吧,你們覺得怎麼樣?」 0的兄弟姐妹們一口齊聲的說:「好啊。」 8哥哥說:「0弟弟的主意可真不錯,我就做一回好人吧,我老8供應照相機和膠卷,好吧?」 老4說話了:「8哥,好是好,就是太麻煩了一點,到不如用我的數碼照相機,就這么定了吧。」
於是,它們變忙了起來,終於+號幫它們拍好了,就立刻把數碼照相機送往沖印店,沖是沖好了,電腦姐姐身手想它們要錢,可它們到底誰付錢呢?它們一個個獃獃的望著對方,這是電腦姐姐說:「一共5元錢,你們一共十一個兄弟姐妹,平均一人付多少元錢?」 在它們十一個人中,就數老六最聰明,這回它還是第一個算出了結果,你知道它是怎麼算出來的嗎? 10.唐僧師徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不長時間,徒弟三人摘完桃子高高興興回來。
師父唐僧問:你們每人各摘回多少個桃子? 八戒憨笑著說:師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。
你算算,我們每人摘了多少個? 沙僧神秘地說:師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。
你算算,我們每人摘了多少個? 悟空笑眯眯地說:師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。
你算算,我們每人摘多少個? 唐僧很快說出他們每人摘桃子的個數。你知道他們摘了多少桃子嗎?。
7. 收集20個數學小常識
1。
對頂角相等. 2。圓周率是一個無理數。
3。三角形內角和為180度 4。
多邊形內角和為(邊數-2)*180度 5。多邊形外角和恆等於360度 6。
一次函數的圖象是一根直線。 7。
正比例函數的圖象是一根過原點的直線。 8。
反比例函數的圖象是雙曲線。 9。
兩次函數的圖象是拋物線。 10。
同底數冪相乘,底數不變,指數相加。 11。
兩條平行線被第三條直線所截,同位角相等。 12。
兩條平行線被第三條直線所截,內錯角相等。 13。
兩條平行線被第三條直線所截,同旁內角互補。 14。
一個三角形的三條中線交於一點,這個點叫做重心。 15。
一個三角形的三個角的角平分線交於一點,這個點叫做內心。 16。
一個三角形三邊上的三條高交於一點,這個點叫做垂心。 17。
一個三角形三邊的中垂線交於一點,這個點叫做外心。 18。
同底等高的兩個三角形面積相等。 19。
1+2+3+……+n=(1+n)*n/2 20。 Sin90=1,Cos90=0,Sin0=0,Cos0=1。
C. 蘇教版五年級下冊數學知識點
1. 五年級數學知識點的小故事
五年級數學知識點的小故事 1.有關於數學的趣味故事
1、數學小故事——找零錢 一家手杖店來了一個顧客,買了30元一根的手杖.他拿出一張50元的票子,要求找錢. 店裡正巧沒有零錢,店主到鄰居處把50元的票子換成零錢,給了顧客20元的找頭. 顧客剛走,鄰居慌慌張張地奔來,說這張50元的票子是假的.店主不得已向鄰居賠償了50元.隨後出門去追那個顧客,並把他抓住說:「你這個騙子,我賠給鄰居50元,又給你找頭20元,你又拿走了一根手杖,你得賠償我100元的損失.」 這個顧客卻說:「一根手杖的費用就是鄰居給你換零錢時你留下的30元,因此我只拿了你70元.」請你計算一下,手杖店真正的損失是多少?這里要補充一下,手杖的成本是20元.如果這個顧客行騙成功,那麼共騙得了多少錢?2、故事:猴子撈帽一群猴子在井旁玩,一陣風將一隻猴子的帽子吹到井裡,他招呼來18個小夥伴,從井上方的松上一個接一個去撈帽子,有4隻猴子沒有上樹,就撈著了帽子,問:是幾只猴子上樹下井接在一起把帽子撈上來的?3、故事:蝸牛何時爬上井?一隻蝸牛不小心掉進了一隻枯井裡,它趴在井底上哭起來,一隻癩蛤蟆過來,翁聲翁氣的對蝸牛說:「別哭了,小兄弟,哭也沒用,這井壁又高又滑,掉到這里只能在這里生活了.我已經在這里生活了許多年了.蝸牛望著又老又丑的癩蛤蟆,心裡想:「井外的世界多美呀!我決不能像它那樣生活在又黑又冷的井底里.」蝸牛對癩蛤蟆說:「癩大叔,我不能生活在這里,我一定要爬出去,請問這口井有多深?」「哈哈哈……,真是笑話,這井有10米深,你小小年紀.又背負著這么重的殼,怎麼能爬出去呢?」「我不怕苦不怕累,每天爬一段,總能爬出去!」第二天,蝸牛吃得飽飽的,開始順著井壁往上爬了,它不停的爬呀爬,到了傍晚,終於爬了5米,蝸牛特別高興,心想:「照這樣的速度,明天傍晚我就可以爬出去了.」想著想著不知不覺睡著了,早上,蝸牛被一陣呼嚕聲吵醒了,一看,原來是癩大叔還以睡覺,他心裡一驚:「我怎麼離井底這么近?」原來,蝸牛睡著以後,從井壁上滑下來4米,蝸牛嘆了一口氣,咬咬牙,又開始往上爬,到傍晚又往上爬了5米,可晚上,蝸牛又滑下來4米,就這樣,爬呀爬,滑呀滑,最後堅強的蝸牛終於爬上了井台.聰明的小朋友你能猜出來蝸牛用了多少天才爬上井台的嗎.。
2.數學小故事10篇(最簡短的)
一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪斗肢伏污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
分蘋果
小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。
小咪的爸爸是怎樣做的呢?
小馬虎數雞
春節里,養雞空攜專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問 *** ,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎? 『本文由第一範文網整理,版權歸原作者、原出處所有。』
來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「
家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?
3.求五年級數學小故事3個
蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。
冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。 真正的數學「天才」是珊瑚蟲。
珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一飢亮條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。
天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。 10、唐僧師徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。
不長時間,徒弟三人摘完桃子高高興興回來。師父唐僧問:你們每人各摘回多少個桃子?八戒憨笑著說:師父,我來考考你。
我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。你算算,我們每人摘了多少個? 沙僧神秘地說:師父,我也來考考你。
我筐里的桃子,如果4個4個地數,數到最後還剩1個。你算算,我們每人摘了多少個? 悟空笑眯眯地說:師父,我也來考考你。
我筐里的桃子,如果5個5個地數,數到最後還剩1個。你算算,我們每人摘多少個? 11、「>」、「 很久很久以前,數學王國里亂糟糟的,沒有任何秩序。
0~9十個兄弟不僅在王國中稱王稱霸,而且他們彼此之間總是吹噓自己的本領最大。數字天使看見這種情況很生氣,於是就派「>」、「」、「 12、「0」的故事 羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。
在這種數字的運用里,不需要「0」這個數字當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,還把印度人使用「0」的方法向大家做了介紹。
這件事被當時的羅馬教皇知道了。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,於是下令,把這位學者抓了起來,用夾子把他的十個手指頭緊緊夾住,使他兩手殘廢,讓他再也不能握筆寫字。
就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。
後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。 13、最古老的數學趣題 在七間房子里,每間都養著七隻貓;在這七隻貓中,不論哪只,都能捕到七隻老鼠;而這七隻老鼠,每隻都要吃掉七個麥穗;如果每個麥穗都能剝下七合①麥粒,請問:房子、貓、老鼠、麥穗、麥粒,都加在一起總共該有多少數? 答案:總數是19607 房子有7間,貓有7X7=49隻,鼠有7X7X7=343隻,麥穗有7X7X7X7=2401個,麥粒有7X7X7X7X7=16807合。
全部加起來是7+72+73+74+75=19607 14、蜂窩猜想 蜂窩是一座十分精密的建築工程。蜜蜂建巢時,青壯年工蜂負責分泌片狀新鮮蜂蠟,每片只有針頭大小而另一些工蜂則負責將這些蜂蠟仔細擺放到一定的位置,以形成豎直六面柱體。
每一面蜂蠟隔牆厚度及誤差都非常小。6面隔牆寬度完全相同,牆之間的角度正好120度,形成一個完美的幾何圖形。
人們一直疑問,蜜蜂為什麼不讓其巢室呈三角形、正方形或其他形狀呢?隔牆為什麼呈平面,而不是呈曲面呢?雖然蜂窩是一個三維體建築,但每一個蜂巢都是六面柱體,而蜂蠟牆的總面積僅與蜂巢的截面有關。由此引出一個數學問題,即尋找面積最大、周長最小的平面圖形。
15、蝸牛爬井 德國數學家裡斯曾出過這樣一道數學題:井深20尺,蝸牛在井底,白天爬7尺,夜裡降2尺,幾天可以到達井頂? 分析:如果認為答案是20/(7-2)=4就大錯特錯了!解這道題的關鍵是把最後一天爬行的情況與前面幾天爬行的情況區別考慮。 解:蝸牛前3天晝夜爬行的高度: (7-2)*3=15(尺)最後一天爬行的時間:共用的時間: 16測量金字塔的高度 有一天,泰勒斯看到人們都在看告示,他也上去看。
原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。泰勒斯就到找法老了。
法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,大家都覺得很奇怪。
他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,就去量金字塔。他量了金字塔影子的長度和金字塔底面邊長的一半。
把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。
大約1500年前,歐洲的數學家們是不知道用「0」的。他們使用羅馬數字。
羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。
而在當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,他非常高興,還把印度人使用「0」的方法向大家做了介紹。
過了一段時間,這件事被當時的羅馬教皇知道了。當時是歐洲的中世紀,教會的勢力非常大,羅馬教皇的權利更是遠遠超過皇。
4.數學小故事30篇,短一點
數學小故事 口算對許多學生來說枯燥無味,更有時,它的重要性往往被忽略了。
然而,在口算中添加了數學小故事這些「蔥蒜調味料」後,它變成了學生的「美食」。讓我們一起去「品嘗」一下吧:●八戒吃了幾個山桃.八戒去花果山找悟空,大聖不在家。
小猴子們熱情地招待八戒,采了山中最好吃的山桃整整100個,八戒高興地說:「大家一起吃!」可怎樣吃呢,數了數共30隻猴子,八戒找個樹枝在地上左畫右畫,列起了算式,100÷30=3。..1 八戒指著上面的3,大方的說,「你們一個人吃3個山桃吧,瞧,我就吃那剩下的1個吧!」小猴子們很感激八戒,紛紛道謝,然後每人拿了各自的一份。
悟空回來後,小猴子們對悟空講今天八戒如何大方,如何自已只吃一個山桃,悟空看了八戒的列式,大叫,「好個獃子,多吃了山桃竟然還嘴硬,我去找他!」 哈哈,你知道八戒吃了幾個山桃? ● *** 數字的由來 小明是個喜歡提問的孩子。一天,他對0—9這幾個數字產生興趣:為什麼它們被稱為「 *** 數字」呢?於是,他就去問媽媽:「0—9既然叫『 *** 數字』,那肯定是 *** 人發明的了,對嗎媽媽?」 媽媽搖搖頭說:「 *** 數字實際上是印度人發明的。
大約在1500年前,印度人就用一種特殊的字來表示數目,這些字有10個,只要一筆兩筆就能寫成。後來,這些數字傳入 *** , *** 人覺得這些數字簡單、實用,就在自己的國家廣泛使用,並又傳到了歐洲。
就這樣,慢慢變成了我們今天使用的數字。因為 *** 人在傳播這些數字發揮了很大的作用,人們就習慣了稱這種數字為『 *** 數字』。」
小明聽了說:「原來是這樣。媽媽,這可不可以叫做『將錯就錯』呢?」媽媽笑了。
●兒歌比賽 動物學校舉辦兒歌比賽,大象老師做裁判。小猴第一個舉手,開始朗誦:「進位加法我會算,數位對齊才能加。
個位對齊個位加,滿十要向十位進。十位相加再加一,得數算得快又准。」
小猴剛說完,小狗又開始朗誦:「退位減法並不難,數位對齊才能減。個位數小不夠減,要向十位借個一。
十位退一是一十,退了以後少個一。十位數字怎麼減,十位退一再去減。」
大家都為它們的精彩表演鼓掌。大象老師說:「它們的兒歌讓我們明白了進位加法和退位減法,它們兩個都應該得冠軍,好不好?」大家同意並鼓掌祝賀它們。
●﹤、﹥和﹦的本領 很久以前,數學王國比較混亂。0—9十個兄弟不僅在王國稱霸,而且彼此吹噓自己的本領最大。
數學天使看到這種情況很生氣,派﹤、﹥和﹦三個小天使到數學王國建立次序,避免混亂。三個小天使來到數學王國,0—9十個兄弟輕蔑地看著它們。
9問道:「你們三個來數學王國干什麼,我們不歡迎你們!」 ﹦笑著說:「我們是天使派來你們王國的法官,幫你們治理好你們國家。我是『等號』,這兩位是『大於號』和『小於號』,它們開口朝誰,誰就大;它們尖尖朝誰,誰就小。」
0—9十個兄弟聽說它們是天使派來的法官,就乖乖地服從﹤、﹥和﹦的命令。從此,數學王國有了嚴格的次序,任何人不會違反。
●小熊開店 小熊不喜歡學習,只想做生意,於是在學校旁邊開了個水果店。小兔和小猴是它的同學,它們商量好,要教訓這個不愛上學的懶傢伙。
它們來到小熊的水果店。「桃子怎麼賣呀?」小猴問。
「第一筐里6元3公斤,第二筐里6元2公斤。」小熊回答。
小猴又說:「如果我從兩筐里拿5公斤,要付你12元,對嗎?」 小熊點點頭。「那我全買下,既然5公斤12元,那60公斤就是12*12=144元,對不對?」 「正是,正是。」
小熊講。於是小猴買了所有的桃子,付了錢,和小兔高興地走了。
晚上回到家,小熊結帳,怎麼算都是虧本的。第二天,小猴、小兔找到小熊把情況說了,笑著說:「都是你學習不好,我們才來教訓你一下」,並把少給的錢補給了小熊。
小熊慚愧地低下了頭,從此每天上課都很認真。它們三個成了好朋友。
●唐僧師徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高興興回來。
師父唐僧問:你們每人各摘回多少個桃子?八戒憨笑著說:師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。
你算算,我們每人摘了多少個?沙僧神秘地說:師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。
你算算,我們每人摘了多少個?悟空笑眯眯地說:師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。
你算算,我們每人摘多少個?唐僧很快說出他們每人摘桃子的個數。你知道他們每人摘多少個桃子嗎 ●數學優秀小故事 有一個年輕的小夥子來找劉先生,並自我介紹說:「我叫於江,這次我帶領了一個旅遊團到香港旅遊,聽說您的大酒店環境舒適,服務周到,我們想來住你們酒店。」
劉先生連忙熱情地說:「歡迎,歡迎,不知貴團一共有多少人?」 「人嘛,還可以,是一個大團。」 劉先生心裡一陣驚喜:一個大團,又是一筆大生意,真是太好了。
作為一個導游,於江看出了劉先生的心思,他慢條斯理地說:「先生,如果你能算出我團的人數,我們就住您們酒店了。」 「你請說吧。」
劉。
5.求5篇5年級數學故事,要50字就行,再給我說下答案
泰勒斯 來到埃及,人們想試探一下他的能力,就問他是否能測量金字塔高度.泰勒斯說可以,但有一個條件——法老必須在場.第二天,法老如約而至,金字塔周圍也聚集了不少圍觀的老百姓.秦勒斯來到金字塔前,陽光把他的影子投在地面上.每過一會兒,他就讓人測量他影子的長度,當測量值與他身高完全吻合時,他立刻在大金字塔在地面上的投影處作一記號,然後再丈量金字塔底到投影尖頂的距離.這樣,他就報出了金字塔確切的高度.在法老的請求下,他向大家講解了如何從「影長等於身長」推到「塔影等於塔高」的原理.也就是今天所說的相似三角形定理。
阿基米德 敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。
根據這一道理,就可以判斷皇冠是否摻假。 華羅庚的故事 同學們都知道,華羅庚是一位靠自學成才的世界一流的數學家。
他僅有初中文憑,因一篇論文在《科學》雜志上發表,得到數學家熊慶來的賞識,從此華羅庚北上清華園,開始了他的數學生涯。
6.五年級的數學故事30字以下
*** 數字的由來
小明是個喜歡提問的孩子。一天,他對0—9這幾個數字產生興趣:為什麼它們被稱為「 *** 數字」呢?於是,他就去問媽媽:「0—9既然叫『 *** 數字』,那肯定是 *** 人發明的了,對嗎媽媽?」
媽媽搖搖頭說:「 *** 數字實際上是印度人發明的。大約在1500年前,印度人就用一種特殊的字來表示數目,這些字有10個,只要一筆兩筆就能寫成。後來,這些數字傳入 *** , *** 人覺得這些數字簡單、實用,就在自己的國家廣泛使用,並又傳到了歐洲。就這樣,慢慢變成了我們今天使用的數字。因為 *** 人在傳播這些數字發揮了很大的作用,人們就習慣了稱這種數字為『 *** 數字』。」
小明聽了說:「原來是這樣。媽媽,這可不可以叫做『將錯就錯』呢?」媽媽笑了。
兒歌比賽
動物學校舉辦兒歌比賽,大象老師做裁判。
小猴第一個舉手,開始朗誦:「進位加法我會算,數位對齊才能加。個位對齊個位加,滿十要向十位進。十位相加再加一,得數算得快又准。」
小猴剛說完,小狗又開始朗誦:「退位減法並不難,數位對齊才能減。個位數小不夠減,要向十位借個一。十位退一是一十,退了以後少個一。十位數字怎麼減,十位退一再去減。」
大家都為它們的精彩表演鼓掌。大象老師說:「它們的兒歌讓我們明白了進位加法和退位減法,它們兩個都應該得冠軍,好不好?」大家同意並鼓掌祝賀它們。
﹤、﹥和﹦的本領
很久以前,數學王國比較混亂。0—9十個兄弟不僅在王國稱霸,而且彼此吹噓自己的本領最大。數學天使看到這種情況很生氣,派﹤、﹥和﹦三個小天使到數學王國建立次序,避免混亂。
三個小天使來到數學王國,0—9十個兄弟輕蔑地看著它們。9問道:「你們三個來數學王國干什麼,我們不歡迎你們!」
﹦笑著說:「我們是天使派來你們王國的法官,幫你們治理好你們國家。我是『等號』,這兩位是『大於號』和『小於號』,它們開口朝誰,誰就大;它們尖尖朝誰,誰就小。」
0—9十個兄弟聽說它們是天使派來的法官,就乖乖地服從﹤、﹥和﹦的命令。從此,數學王國有了嚴格的次序,任何人不會違反。
小熊開店
小熊不喜歡學習,只想做生意,於是在學校旁邊開了個水果店。小兔和小猴是它的同學,它們商量好,要教訓這個不愛上學的懶傢伙。
它們來到小熊的水果店。
「桃子怎麼賣呀?」小猴問。
「第一筐里6元3公斤,第二筐里6元2公斤。」小熊回答。
小猴又說:「如果我從兩筐里拿5公斤,要付你12元,對嗎?」
小熊點點頭。
「那我全買下,既然5公斤12元,那60公斤就是12*12=144元,對不對?」
「正是,正是。」小熊講。
於是小猴買了所有的桃子,付了錢,和小兔高興地走了。
晚上回到家,小熊結帳,怎麼算都是虧本的。第二天,小猴、小兔找到小熊把情況說了,笑著說:「都是你學習不好,我們才來教訓你一下」,並把少給的錢補給了小熊。
小熊慚愧地低下了頭,從此每天上課都很認真。它們三個成了好朋友。
7.5年級數學故事150字大全
今天,我們一家去龍港的肯德基去吃全家套餐。
到了那兒,人一直擠著,我們好不容易點好菜,就找到位子坐下。菜來了,是一桶大套餐。裡面有12個雞腿,我想:怎麼平均分呢?這時,我想起除法12÷3=4。我們每人四個雞腿,我後來又吃了老媽的1個雞腿,阿姨的2個雞腿,阿姨說:「這總不能白吃,我問你,你吃了幾分之幾?你再吃幾份就全吃了?「我想了想,回答:「我吃了7/12,再吃5/12就全吃了。」幸好,我學了分數的知識,可以正確回答問題了.
(二)
今天,媽媽給了我10元錢去超市買東西。我買了一串鞭炮用了錢的2/10,又買了棒棒糖四根用了錢的1/10,還買了7個汽球,用了錢的2/10,最後買了一把梳子,用了錢的4/10,一共用了2/10+1/10+2/10+4/10=9/10。還剩下一元錢只好還給媽媽了。(三)傍晚,我在奧林匹克書中看到一道難題:果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天後,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?
我沒有被這道題嚇倒,難題能激發我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給「20*3」棵蘋果樹和20棵梨樹施肥。而實際他每天只給50棵蘋果樹施肥,差了10棵,最後共差了80棵,從這里可以得知,老王師傅已經施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
(四)
今天,數學作業有一道題是要稱一雙鞋子的重量。於是,我便去找媽媽要「秤」。媽媽說她沒有「秤」。怎麼辦呢?不過,俗語說:「世上無難事」。我想,一定有辦法的。
於是,我開動了自己聰明的腦袋,想出了:自製天平。
我把空月餅盒的紙皮一塊塊相應地剪下來,拿來透明折盒膠紙,把其中一塊紙皮折成一個正的三角體,貼好放在檯面上。另一塊紙皮做天平的左右盤,平衡地放在三角體的頂上。然後在家裡找來一些已標有重量的東西作砝碼。如:媽媽新買回來的牙膏,唇膏等物品,有120克的,有40克的,有18克的,有3
克的都有。
激動人心的稱鞋子活動開始了。我將鞋子放在自製天平的左邊,「物品砝碼」便放在右邊,重量放至兩邊平衡為好。然後把砝碼重量相加的和就是我鞋子的重量了。剛好86克。功夫不負有心人!我終於完成數學作業了。媽媽知道後對我贊不絕口。
還開玩笑地對我說:「古代有聰明的曹沖稱象,現代就有聰明的晗晗稱鞋呢!」
說完,大家便哈哈地笑起來了。
原來,生活上處處都有「秤」呢!
(五)
今天,我在家發現了一個數學問題.
我發現一杯可樂800克,一杯綠茶500克,一杯冰紅茶不知道多少克,於是我又補充了一個信息-------冰紅華考範文網察身邊的數學問題.
我按照老師教的方法算:800-200=600,再600+500=1100,最後1100+800=1900,所以一共1900克.
我認為在日常生活中還有許許多多的數學問題,希望小朋友們能多多觀察身邊的數學問題.
給分~-~