『壹』 一年級數學必考知識點
沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 一年級數學 的知識點,希望對大家有所幫助。
一年級下冊數學第一單元知識點:100以內數的認識
1、能讀寫100以內的數,掌握數的組成,能說出100以內各個數位的名稱以及這些數位的排列順序,識別各數位上數字的含義,會用100以內的數表示物體的個數,掌握數的順序,會比較數的大小。
2、認識元、角、分,並了解它們之間的十進制關系,會進行簡單的換算和應用。
3、會口算100以內的不進位加法和不退位減法,能用豎式計算兩位數加兩位數的進位加法和兩位數減兩位數的退位減法,能進行100以內的連加、連減和加減混合運算。
4、認識鍾面、時針和分針,掌握整時、幾時半和大約幾時在鍾面上的表示 方法 ,能認、讀這些時間。
5、能辨認前、後、左、右、上、下等方向,並用這些方向來描述物體的相對位置,能用第幾組第幾排描述物體的相對位置,會辨認從正面、背面、側面觀察到的簡單物體的形狀。
6、能辨認正方形、正方形、三角形和圓,初步感知一些簡單的平面圖形和立體圖形的聯系和區別,會用這些平面圖形拼圖。能認識生活中這些簡單圖形。
7、能按照給定的標准或選擇某個標准對物體進行比較、排列和分類、在比較、排列、分類活動中,體會活動結果在同一標准下的餓一致性,在學習尋找簡單平面圖形的共性。
8、認識象形統計圖,能根據統計的需要進行簡單的分類,能根據統計的需要進行簡單的分類,能根據統計圖的數據提出並回答簡單的數學問題,會進行生活中的一些最簡單的統計活動。
小學一年級上冊數學知識點
第一單元
1、數一數
數數:數數時,按一定的順序數,從1開始,數到最後一個物體所對應的那個數,即最後數到幾,就是這種物體的總個數。
2、比多少
同樣多:當兩種物體一一對應後,都沒有剩餘時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應後,其中一種物體有剩餘,有剩餘的那種物體多,沒有剩餘的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
第二單元
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、後
體會前、後的含義:一般指面對的方向就是前,背對的方向就是後。
同一物體,相對於不同的參照物,前後位置關系也會發生變化。
從而得出:確定兩個以上物體的前後位置關系時,要找准參照物,選擇的參照物不同,相對的前後位置關系也會發生變化。
3、認識左、右
以自己的左手、右手所在的位置為標准,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為准。
一年級 數學 學習方法
第一、認真聽老師講課。這是我取得好成績的主要原因。聽講時要做到全神貫注,聚精會神,跟著老師的思路走,不能開小差,更切忌一邊講話一邊聽講。其次要專心凝聽老師講的每一個字,因為數學是以嚴謹著稱的,一字之差就非同小可,一字之間就隱藏玄機無限。聽講時還要注意記筆記。一次老師講了一個高難度的幾何題,我一時沒有聽懂,多虧我記下了這道題以及解法,回家後仔細琢磨,終於理解透了,以至在一次競賽中我輕而易舉地解出了類似的一道題,獲得了寶貴的10分。上課還要積極舉手發言,舉手發言的好處可真不少!①可以鞏固當堂學到的知識。②鍛煉了自己的口才。③那些模糊不清的觀念和錯誤能得到老師的指教。真是一舉三得。總之,聽講要做到手到、口到、眼到、耳到、心到。
第二、課外練習。孔子曰:「學而時習之」。課後作業也是學習和鞏固數學的重要環節。我很注意解題的精度和速度。精度就是准確度,專心致志地獨立完成作業,力求一次性准確,而一旦有了錯,要及時改正。而速度是為了鍛煉自己注意力集中,有緊迫感。我經常是這樣做的,在開始做作業時定好鬧鍾,放在自己看不見的地方再做作業,這樣有助於提高作業速度。考試時,就不會緊張,也不會顧此失彼了。
第三、復習、預習。對數學的復習,預習我定在每天晚上,在完成當天作業後,我將第二天要學的新知識簡要地看一看,再回憶一下老師已講過的內容。睡覺時躺在床上,腦海里再像看電影一樣將老師上課的過程「看」一遍,如果有什麼疑難,我立即爬起來看書,直到搞懂為止。每個星期天我還作一星期功課的小結復習、預習。這樣對學數學有好處,並掌握得牢固,就不會忘記了。
第四、提高。在完成作業和預習、復習之後,我就做一些爬坡題。做這類題,盡可能自己獨立思考,努力找出隱藏的條件,這是解題的關鍵。如果實在想不出來就需要看一看參考書,以及請教師長和同學。總之,要做到多看、多做、多問、虛心、勤奮,保持積極向上的精神這才是關鍵的關鍵。
一年級數學必考知識點相關 文章 :
★ 一年級數學必備知識點
★ 一年級數學必背知識點
★ 一年級數學重點知識點總結
★ 一年級數學重點知識點
★ 小學一年級數學重點知識點總結
★ 一年級數學考試知識點總結
★ 一年級數學知識點梳理
★ 數學考試知識點一年級
★ 一年級數學的主要知識點
『貳』 整數和小數小升初數學必考知識點
整數和小數小升初數學必考知識點
在平時的學習中,大家都沒少背知識點吧?知識點就是一些常考的內容,或者考試經常出題的地方。你知道哪些知識點是真正對我們有幫助的嗎?以下是我為大家收集的整數和小數小升初數學必考知識點,歡迎閱讀,希望大家能夠喜歡。
整數和小數小升初數學必考知識點1
1.最小的一位數是1,最小的自然數是0。
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數、有限小數、無限循環小數、無限小數、無限不循環小數、
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
整數和小數小升初數學必考知識點2
1 簡單應用題
(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。
C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
2 復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
( 3 ) 解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(4 ) 解答減法應用題:
a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。
-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
(5 ) 解答乘法應用題:
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
( 6) 解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
3典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題: 平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題: 已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題: 是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題: 已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數大數-差=小數
(和-差)÷2=小數和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題: 已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題: 已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題: 關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題: 一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題: 已知某未知數,經過一定的四則運算後所得的`結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題: 這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈虧問題: 是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題: 將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題: 已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
整數和小數小升初數學必考知識點3
1.分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2.分數單位:把單位「1」平均分成若干份,表示其中一份的數,叫做分數單位。
3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000……的分數。
分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項。
4.分數的分類:分數可以分為真分數和假分數。
5.真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:前提是這
個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用「%」來表示。
整數和小數小升初數學必考知識點4
升初數學運演算法則常考知識點
運演算法則
1. 整數加法計演算法則:
相同數位對齊,從低位加起,哪位上的數相加滿,就向前位進。
2. 整數減法計演算法則:
相同數位對齊,從低位加起,哪位上的數不夠減,就從它的前位退作,和本位上的數合並
3. 整數乘法計演算法則:
先個因數每位上的數分別去乘另個因數各個數位上的數,因數哪位上的數去乘,乘得的數的末尾就對齊哪位,然後把各次乘得的數加起來。
4. 整數除法計演算法則:
先從被除數的位除起,除數是位數,就看被除數的前位; 如果不夠除,就多看位,除到被除數的哪位,商就寫在哪位的上。如果哪位上不夠商1,要補「0」佔位。每次除得的余數要於除數。
5. 數乘法法則:
先按照整數乘法的計演算法則算出積,再看因數中共有位數,就從積的右邊起數出位,點上數點;如果位數不夠,就「0」補。
6. 除數是整數的數除法計演算法則:
先按照整數除法的法則去除,商的數點要和被除數的數點對齊;如果除到被除數的末尾仍有餘數,就在余數後添「0」,再繼續除。
7. 除數是數的除法計演算法則:
先移動除數的數點,使它變成整數,除數的數點也向右移動位(位數不夠的補「0」),然後按照除數是整數的除法法則進計算。
8. 同分母分數加減法計演算法:同分母分數相加減,只把分相加減,分母不變。
9. 異分母分數加減法計演算法:先通分,然後按照同分母分數加減法的的法則進計算。
10. 帶分數加減法的計演算法:整數部分和分數部分分別相加減,再把所得的數合並起來。
11. 分數乘法的計演算法則:分數乘整數,分數的分和整數相乘的積作分,分母不變;分數乘分數,分相乘的積作分,分母相乘的積作分母。
12. 分數除法的計演算法則:甲數除以數(0除外),等於甲數乘數的倒數。升初數學整數和數的應知識點整數和數的應
簡單應題
(1) 簡單應題:只含有種基本數量關系,或步運算解答的應題,通常叫做簡單應題。
a 審題理解題意:了解應題的內容,知道應題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應題的中作。從題中告訴什麼,要求什麼著,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進解答並標明正確的單位名稱。
C檢驗:就是根據應題的條件和問題進檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
2 復合應題
(1)有兩個或兩個以上的基本數量關系組成的,兩步或兩步以上運算解答的應題,通常叫做復合應題。
(2)含有三個已知條件的兩步計算的應題。求兩個數的和多(少)個數的應題。較兩數差與倍數關系的應題。
(3)含有兩個已知條件的兩步計算的應題。已知兩數相差多少(或倍數關系)與其中個數,求兩個數的和(或差)。已知兩數之和與其中個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應題。
(5)解答三步計算的應題。
(6)解答數計算的應題:數計算的加法、減法、乘法和除法的應題,他們的數量關系、結構、和解題式都與正式應題基本相同,只是在已知數或未知數中間含有數。
(2) 解題步驟:
d答案:根據計算的結果,先答,逐步過渡到筆答。
( 3 ) 解答加法應題:
a求總數的應題:已知甲數是多少,數是多少,求甲兩數的和是多少。
b求個數多的數應題:已知甲數是多少和數甲數多多少,求數是多少。
(4 ) 解答減法應題:
a求剩餘的應題:從已知數中去掉部分,求剩下的部分。
b求兩個數相差的多少的應題:已知甲兩數各是多少,求甲數數多多少,或數甲數少多少。
c求個數少的數的應題:已知甲數是多少,,數甲數少多少,求數是多少。
(5 ) 解答乘法應題:
a求相同加數和的應題:已知相同的加數和相同加數的個數,求總數。
b求個數的倍是多少的應題:已知個數是多少,另個數是它的倍,求另個數是多少。
( 6) 解答除法應題:
a把個數平均分成份,求每份是多少的應題:已知個數和把這個數平均分成份的,求每份是多少。
b求個數包含個另個數的應題:已知個數和每份是多少,求可以分成份。
C 求個數是另個數的的倍的應題:已知甲數數各是多少,求較數是較數的倍。
d已知個數的倍是多少,求這個數的應題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
作總量=作時間×效
總產量=單產量×數量
;『叄』 初一數學必考知識點總結歸納
初中數學的必考知識點大都在初一的課程里,所以初一的學生學好數學很重要。以下是我分享給大家的初一數學必考知識點,希望可以幫到你!
初一數學代數初步知識必考知識點
1. 代數式:用運算符號“+ - × ÷ …… ”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;
(2)數與數相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
初一數學有理數必考知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數 0和正整數;a>0 a是正數;a<0 a是負數;
a≥0 a是正數或0 a是非負數;a≤ 0 a是負數或0 a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0 a+b=0 a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
(3) ; ;
(4) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 a=0,b=0;
(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
初一數學整式的加減必考知識點
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
整式分類為:
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.
7.合並同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是“+”號,括弧里的各項都不變號;若括弧前邊是“-”號,括弧里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
猜你喜歡:
1. 初一數學上冊知識點匯總整理
2. 7年級上冊數學知識點歸納
3. 初一數學知識點整理
4. 人教版七年級數學復習知識點
5. 初一數學上冊知識點匯總歸納
6. 初一數學上冊知識點復習
『肆』 初中數學必考知識點總結
初中馬上要升入高中,數學是考試拉分科目之一,那麼初中數學必考知識點有哪些呢。以下是由我為大家整理的「初中數學必考知識點總結」,僅供參考,歡迎大家閱讀。
初中數學必考知識點總結
一元二次方程
學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 —— 一元二次方程。「一元二次方程」一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。
本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,
「降次——解一元二次方程」一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了「公式法」以後,學生對這個內容會有進一步的理解。
(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
「實際問題與一元二次方程」一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。
旋轉
學生已經認識了平移、軸對稱,探索了它們的性質,並運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。「旋轉」一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
「旋轉」一節首先通過實例介紹旋轉的概念。然後讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉後的圖形的方法。最後舉例說明用旋轉可以進行圖案設計。
「中心對稱」一節首先通過實例介紹中心對稱的概念。然後讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之後,通過線段、平行四邊形引出中心對稱圖形的概念。最後介紹關於原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
拓展閱讀:提升數學成績的方法
該記的記,該背的背,不要以為理解了就行
因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。
因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍微難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。
『伍』 小升初數學必考知識點歸納總結
小升初數學是非常容易拉分的科目,那麼小升初數學必考知識點有哪些呢。以下是由我為大家整理的「小升初數學必考知識點歸納總結」,僅供參考,歡迎大家閱讀。
小升初數學必考知識點歸納總結
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
比
什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的化發。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
拓展閱讀:小升初數學應用題答題技巧
1、簡單應用題
(1) 簡單應用題:
只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b 選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。
c 檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
d 答案:根據計算的結果,先口答,逐步過渡到筆答。
(3)解答加法應用題:
a 求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b 求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(4)解答減法應用題:
a 求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。
b 求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c 求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
(5)解答乘法應用題:
a 求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b 求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
(6)解答除法應用題:
a 把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b 求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
c 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d 已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
2、復合應用題
(1)有兩個或兩個以上的基本數量關系組成的。
用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:
小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
3、典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:
平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數
最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用
公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為100 ,所用的時間為,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為2 ÷ =75 (千米)
(2)歸一問題:
已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
『陸』 小升初數學必考知識點 歸納
小升初數學必考知識點 歸納
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O. 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的`分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1.
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
四、體積和表面積
三角形的面積=底×高÷2. 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
五、數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
;『柒』 小升初數學必考知識點有哪些
小升初數學是非常容易拉分的科目,那麼小升初數學必考知識點有哪些呢。以下是由我為大家整理的「小升初數學必考知識點有哪些」,僅供參考,歡迎大家閱讀。
小升初數學必考知識點有哪些
一、整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.整數和小數都是按照十進制計數法寫出的數。
5.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
6.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二、數的整除
1.因數和倍數:20÷4=5,20是4和5的倍數,4和5是20的因數。
2.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。
3.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
4.質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。
合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
5.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上數的和能被3整除,這個數就能被3整除。
6.公約因數、公倍數:幾個數公有的因數,叫做這幾個數的因數;其中最大的一個,叫做這幾個數的最大公因數。 幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
7.互質數:公因數只有1的兩個數叫做互質數。
三、四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積÷另一個因數 被除數=商×除數 除數=被除數÷商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 兩個數相加,交換加數的位置,它們的和不變。
乘法交換律:a×b=b×a 兩個數相乘,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
乘法結合律:(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
除法的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於這個數除以兩個除數的積。
拓展閱讀:小學提升數學成績的方法
一、培養認真審題的習慣
認真審題是正確解題、准確計算的前提。小學生因審題不嚴而導致錯誤的現象較重,原因是一方面學生識字量少,理解水平低;另一方面是做題急於求 成,不願審題。因此,教師在教學中,要引導學生認識審題的重要性,增強審題意識。同時,還要教給學生審題方法,建立解題的基本程序如審題—列式—計算—驗 算—作答等,把審題擺在解題過程的第一位。
二、培養認真驗算的習慣
在解題過程中,要培養認真驗算的習慣,這是保證解題正確性的關鍵。教師在教學中要把驗算作為解題過程的基本環節之一。加強訓練,嚴格要求和督促學生去做,要向學生講清什麼叫驗算以及驗算的方法、意義等。
三、培養認真估算的習慣
估算是保障計算準確的快捷手段,但現在不少教師認為估算很少作為考試內容而不予重視,這是十分錯誤的。教師要抓住各種時機,有意識的讓學生掌握 估算方法,引導學生發現一些和、差、積、商的規律。如2040÷40,估算時將2040看作2000,把2040÷40看作2000÷40來估算,可用來 檢驗計算的最高位是否正確,讓學生明白估算的重要性。
四、培養獨立完成作業的習慣
小學數學課堂作業較多,一些能力強的同學做的快、算的准,他們做完後便迫不及待的報出解題方法和結果。這使得一部分做題較慢的同學不假思索的照抄他們的結果,時間長了,這部分同學就養成了懶於思考的不良習慣。因此,培養學生獨立完成作業的習慣是學生學好數學的前提。
五、培養質疑問難的習慣
學生在學習中要多動腦筋,勤於思考。對概念、公式、定律等不要滿足於會背誦,更要力求理解。質疑問難是一種可貴的學習品質,能使學生在學習中刻 苦鑽研、勤於思考、主動進取。遇到不懂的問題主動請教,不恥下問,和同學展開討論,不弄清問題決不罷休,當問題得到解決時,學生就會享受到成功的喜悅,提 高學習數學的興趣。
六、培養自己發現錯誤的習慣
學生在學習中,必然會出現差錯,對此,老師不能等閑視之。因為學生出現差錯的地方,正是學生掌握知識的薄弱點,並且可能是典型的、普遍的。教師應有針對性地引導學生自己發現錯誤,用自己學到的檢驗方法去找出錯誤。在對比中把握問題的關鍵,力求自己發現並改正錯誤,提高解題技巧。