㈠ 人教版六年級數學(下冊)期末知識要點
第一模塊 數與代數
【點擊重難點】
1.理解分數乘法和分數除法的意義,掌握分數乘除法的計算方法,
2.理解比的意義、比的基本性質及比與分數和除法間的聯系,掌握比、分數、除法的轉化,應用比的知識解決實際問題。
3.正確解答「求一個數的幾分之幾是多少」和「已知一個數的幾分之幾是多少,求這個數」的實際問題。
【必考題重現】
【例題1】下面哪幅圖表示×的積?( )
【思路點睛】
×表示「求的是多少」,大長方形是單位「1」,將單位「1」平均分成4份,塗其中的3份就是,再將平均分成5份,塗其中的2份就是的,所以圖B是正確的。
讀書分割線
【例題2】永和麵粉廠小時可以磨麵粉噸。照這樣計算,小時可以磨麵粉多少噸?
【思路點睛】要求小時可以磨麵粉多少噸,可以先求出1小時磨麵粉多少噸。用工作總量除以工作時間等於工作效率,即÷=(噸)。再求小時可以磨麵粉多少噸,×=1(噸)。
讀書分割線
【例題3】學校九月份用電7000度,十月份比九月份節約了71,十月份比九月份節約用電多少度?
【思路點睛】十月份比九月份節約了71,就是十月份比九月份節約九月份的71。把九月份的用電數看作單位「1」。九月份的用電數×71=十月份比九月份節約的用電數。求十月份比九月份節約的用電數,也就是求九月份的71是多少。7000×71=1000(度)
讀書分割線
【例題4】0.25×( )=0.8×( )=23×( )=( )×37=1.5×( )=1
【思路點睛】這里實際上就是求一個數的倒數。分數的倒數只需將分子、分母調換位置。其他數將其化為分數,再把分子、分母調換位置。例如:0.25=,的倒數是4。
讀書分割線
【例題5】配置一種混凝土,下圖表示所用材料的份數。如果這三種材料各有24噸,配製這種混凝土,當黃沙全部用完時,水泥還剩多少噸?石子增加了多少噸?
【思路點睛】由圖中可知水泥、黃沙、石子的份數比是2:3:5,需要水泥的噸數是黃沙的,24×=16(噸),水泥剩下的噸數是24-16=8(噸)。需要石子的噸數是黃沙的,24×=40(噸),石子增加的噸數是40-24=16(噸)。
花,枝條
第二模塊 圖形與幾何
【點擊重難點】
1.理解長方體和正方體的特徵及其相互間的聯系和區別。
2.掌握長方體和正方體的展開圖,根據展開圖想像相應的長方體或正方體。
3.掌握長方體和正方體表面積和體積的含義,運用長方體和正方體表面積和體積的計算方法解決生活中的實際問題。
4.理解長方體或正方體的動態變化,掌握長方體和正方體之間的轉化。
【必考題重現】
【例題1】把體積是1立方分米的正方體木塊切割成體積是1立方厘米的小正方體,能切成( )塊。把這些小正方體排成一行,長是( )分米。
【思路點睛】因為1立方分米=1000立方厘米,所以把體積是1立方分米的正方體木塊切割成體積是1立方厘米的小正方體,能切成1000塊。1000個1立方厘米的正方體排成一行長1000厘米,1000厘米=100分米,所以長100分米。
讀書分割線
【例題2】一間教室的長是8米,寬是6米,高4米。要粉刷教室的四壁和頂面,除去門窗和黑板面積24平方米,粉刷面積是多少平方米?
【思路點睛】粉刷教室的四壁和頂面即需要粉刷5個面,需要先求出教室前後、左右和上面的面積和,(8×4+6×4)×2+8×6=160(平方米)。也可以用6個面的面積和減去地面面積,(8×4+6×4+8×6)×2-8×6=160(平方米)。門窗和黑板不需要粉刷,最後減去門窗和黑板面積,160-24=136(平方米)。
讀書分割線
【例題3】一段方鋼長1米,橫截面是邊長5厘米的正方形。如果每立方厘米的方鋼重7.8克,這段方鋼重多少千克?
【思路點睛】由「一段方鋼長1米,橫截面是邊長5厘米的正方形」可以求出這段方鋼的體積是多少立方厘米,1米=100厘米,100×5×5=2500(立方厘米)。因為每立方厘米的方鋼重7.8克,所以2500立方厘米方鋼重7.8×2500=19500(克),最後一定要注意單位的換算,19500克=19.5千克。
讀書分割線
【例題4】做一節長方體通風管,底面的長和寬都是15厘米,高是0.4米,至少用多少平方米的鐵皮?
【思路點睛】做長方體通風管,沒有上、下兩個面,只有4個側面,這里又是4個完全相同的面。其次要注意單位的統一。15厘米=0.15米。0.15×0.4×4=0.24(平方厘米)
讀書分割線
【例題5】一個長40厘米,截面是正方形的長方體,如果長增加5厘米,表面積就增加80平方厘米,求原長方體的表面積。
【思路點睛】長增加5厘米,增加了5個面,但是也遮住了一個面,實際上只增加了4個面,因為側面是一個正方形,所以增加的4個面的面積是相等的,用80÷4=20(平方厘米),又知道增加面的長是5厘米,用20÷5-4(厘米),求出增加面的寬,也就是原長方體的寬和高。這樣就可以求出原長方體的表面積。(40×4+40×4+4×4)×2=672(平方厘米)。
人教版六年級數學(下冊)期末知識要點
第一單元 負數
1、負數的由來
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0、1、3.4……是遠遠不夠的,所以出現了負數。
2、正數和負數
小於0的數叫負數(不包括0),數軸上0左邊的數叫做負數。
負數有無數個。
大於0的數叫正數(不包括0),數軸上0右邊的數叫做正數。
正數有無數個。
3、正數和負數的寫法
負數:在數字前面加「-」號,負號不可以省略。
正數:在數字前面加「+」號,正號可以省略不寫。
4、0 既不是正數,也不是負數,它是正、負數的分界限
5、數軸:
第二單元 百分數(二)
1、折扣和成數
(1)折扣:用於商品,現價是原價的百分之幾,叫做折扣。通稱「打折」。
幾折就是十分之幾,也就是百分之幾十。
(2)成數:幾成就是十分之幾,也就是百分之幾十
(3)打折問題
先將打的折數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
現價=原價×折扣
便宜的錢數=原價-原價×折扣=原價×(1-折扣)
(4)成數問題
先將成數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
2、稅率和利率
(1)稅率應納稅額與各種收入的比率叫做稅率。繳納的稅款叫做應納稅額。
(2)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
(3)存入銀行的錢叫做本金。取款時銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
(4)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(5)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅後利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅後利息=本金×利率×時間×(1-利息稅率)
3、購物策略
(1)估計費用:根據實際的問題,選擇合理的估算策略,進行估算。
(2)根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案
第三單元 圓柱和圓錐
1、圓柱
(1)圓柱是由兩個底面和一個側面圍成的。
它的底面是大小相同的兩個圓,側面是一個曲面。
圓柱的側面沿高展開後是一個長方形(或正方形),這個長方形(或正方形)的一邊長等於圓柱的底面周長,另一邊長等於圓柱的高。
(2)圓柱的高是兩個底面之間的距離。
(3)圓柱的特徵
圓柱的底面是完全相等的兩個圓。
圓柱的側面是一個曲面。
圓柱有無數條高
(4)圓柱的相關計算公式
底面積 :S底=πr²
底面周長:C底=πd=2πr
側面積 :S側=2πrh
表面積 :S表=2S底+S側=2πr²+2πrh
體積 :V柱=πr²h
2、圓錐
(1)圓錐是由一個底面和一個側面圍成的,它的底面是一個圓,側面是一個曲面。
(2)從圓錐的頂點到底面圓心的距離是圓錐的高。
(3)圓錐的特徵
圓錐的底面一個圓。
圓錐的側面是一個曲面。
圓錐只有一條高。
(4)圓錐的相關計算公式
底面積:S底=πr²
底面周長:C底=πd=2πr
體積:V錐=πr²h
第四單元 比例
1、比的意義
(1)兩個數相除又叫做兩個數的比
(2)「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
(3)同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。
(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。
(5)比的後項不能是零。
(6)根據分數與除法的關系,可知比的前項相當於分子,後項相當於分母,比值相當於分數值。
2、比的基本性質
比的前項和後項同時乘或者除以相同的數(0除外),比值不變,這叫做比的基本性質。
3、求比值和化簡比
(1)求比值的方法
用比的前項除以後項,它的結果是一個數值可以是整數,也可以是小數或分數。
(2)化簡比
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
4、按比例分配
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
5、比例的意義
表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
6、比例的基本性質
在比例里,兩個外項的積等於兩個兩個內項的積。這叫做比例的基本性質。
7、比和比例的區別
(1)比表示兩個量相除的關系,它有兩項(即前、後項);比例表示兩個比相等的式子,它有四項(即兩個內項和兩個外項)。
(2)比有基本性質,它是化簡比的依據;比例也有基本性質,它是解比例的依據。
8、成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯的量中相對就的兩個數的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數值比例尺和線段比例尺
(2)縮小比例尺和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮小:形狀相同,大小不同。
第五單元 數學廣角-鴿巢問題
1、鴿巢問題
(1)鴿巣原理
先從一個簡單的例子入手, 把3個蘋果放在2個盒子里, 共有四種不同的放法,。
無論哪一種放法, 都可以說「必有一個盒子放了兩個或兩個以上的蘋果」。 這個結論是在「任意放法」的情況下, 得出的一個「必然結果」。
類似的, 如果有5隻鴿子飛進四個鴿籠里, 那麼一定有一個鴿籠飛進了2隻或2隻以上的鴿子。
如果有6封信, 任意投入5個信箱里, 那麼一定有一個信箱至少有2封信。
我們把這些例子中的「蘋果」、「鴿子」、「信」看作一種物體,把「盒子」、「鴿籠」、「信箱」看作鴿巣, 可以得到鴿巣原理最簡單的表達形式。
(2)利用公式進行解題
物體個數÷鴿巣個數=商……余數
至少個數=商+1
2、摸球問題
(1)要保證摸出兩個同色的球,摸出的球的數量至少要比顏色數多1。即物體數=顏色數×(至少數-1)+1。
(2)利用極端思想
用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什麼顏色的球,都能保證一定有兩個球是同色的。
(3)計算公式
兩種顏色:2+1=3(個)
三種顏色:3+1=4(個)
四種顏色:4+1=5(個)
㈡ 六年級數學下冊重要知識點有哪些
六年級數學下冊重要知識點有:
1、數的認識:在復習數的認識相關知識的時候,一定要幫助孩子構建一個完成的知識體系,在構建完成之後還需要幫助孩子理解運用。
2、整數和分數的意義和分類。我們需要了解並記住整數和分數的定義是什麼,他們表示的意義是什麼,分數整數又有哪些分類,比如整數有奇數偶數合數質數等等,還有自然數、負數等等。再比如分數有真分數、假分數、帶分數等等,還有負分數等等。
3、數位和計數單位。這一塊的內容考查的不算太多,但是需要掌握數位之間的進率和計數單位的分類。在考試中有時候會涉及到利用數位來解決問題。
4、數的讀寫和改寫。數包括整數分數小數和負數等等,我們必須掌握所有數的讀法和寫法,讀的時候需要注意什麼,寫的時候需要注意什麼。在進行改寫的時候,需要注意哪些方面,一定要看清楚後邊的單位再利用四捨五入進行改寫。
5、分數和小數的基本性質。分數的性質和小數的性質這是經常考查的內容,學生們首先需要知道這兩個性質分別是什麼,注意的是什麼。小數點後末尾的0可以去掉,為何前邊的不能去掉呢?同乘或者除以相同的數,分數大小不變,那麼同加或者同減會怎麼樣呢。另外還需要注意小數點的移動導致數的變化規律。
6、因數與倍數。因數與倍數是五年級下冊的內容,內容雖然不算很多,但是非常難理解,所以這一塊內容一定要多下功夫,畢竟這塊內容還是初中學習的基礎。利用最大公因數和最小公倍數做題,也是有一定難度和技巧的。
㈢ 六年級下冊數學知識點總結
六年級下冊數學知識點總結
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。下面我整理了一些關於六年級下冊數學知識點總結,歡迎大家參考!
第一單元分數乘法
一、分數乘法
(一)分數乘法的意義:
1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。
例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?
2、一個數乘分數的意義是求一個數的幾分之幾是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)
4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。
(三)、 乘法中比較大小的規律
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分數乘法的解決問題(已知單位“1”的量(用乘法),即求單位“1”的幾分之幾是多少)
1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。
2、找單位“1”: 單位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相當於”的後面。
3、寫數量關系式的技巧:
(1)“的” 相當於 “×” ,“占”、“相當於”“是”、“比”是 “ = ”
(2)分率前是“的”字:用單位“1”的量×分率=具體量
例如:甲數是20,甲數的1/3是多少?列式是:20×1/3
4、看分率前有沒有多或少的問題;分率前是“多或少”的關系式:
(比少):單位“1”的量×(1-分率)=具體量;
例如:甲數是50,乙數比甲數少1/2,乙數是多少?
列式是:50×(1-1/2)
(比多):單位“1”的量×(1+分率)=具體量
例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?
列式是:50×(1+3/5)
3、求一個數的幾倍是多少:用 一個數×幾倍;
4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。
5、求幾個幾分之幾是多少:用幾分之幾×個數
6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:
(1)、單位“1”的量×(1-分率)=另一個部分量(建議用)
(2)、單位“1”的量-已知占單位“1”的幾分之幾的部分量=要求的部分量
例如:教材15頁做一做和16頁練習第七題(題目中有時候會有這種題的'關鍵字“其中”)
第二單元位置與方向(二)
一、確定物體位置的方法:1、先找觀測點;2、再定方向(看方向夾角的度數);3、最後確定距離(看比例尺)
二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關系的相對性:1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
四、相對位置:東--西;南--北;南偏東--北偏西。
第三單元分數除法
三、倒數
1、倒數的意義: 乘積是1的兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。(要說清誰是誰的倒數)。
2、求倒數的方法:
(1)、求分數的倒數:交換分子分母的位置。
(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。
(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數: 把小數化為分數,再求倒數。
3、 1的倒數是1; 因為1×1=1;0沒有倒數,因為0乘任何數都得0,(分母不能為0)
4、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
5、運用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等於1,也就是求2/3的倒數和求1/4的倒數。
1、分數除法的意義:
乘法: 因數 × 因數 = 積
除法: 積 ÷ 一個因數 = 另一個因數
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
例如:1/2÷3/5意義是:已知兩個因數的積是1/2與其中一個因數3/5,求另一個因數的運算。
2、分數除法的計演算法則:
除以一個不為0的數,等於乘這個數的倒數。
3、分數除法比較大小時的規律:
(1)當除數大於1,商小於被除數;
(2)當除數小於1(不等於0),商大於被除數;
(3)當除數等於1,商等於被除數。
“[ ]”叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
二、分數除法解決問題
1,解法:(1)方程: 根據數量關系式設未知量為X,用方程解答。
解:設未知量為X (一定要解設),再列方程 用 X×分率=具體量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知.)解:設母雞有X只。列方程為:X×1/3=20
(2)算術(用除法):單位“1”的量未知用除法:
即已知單位“1”的幾分之幾是多少,求單位“1”的量。
分率對應量÷對應分率 = 單位“1”的量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知,)用除法,列式是:20÷1/3
2、看分率前有沒有比多或比少的問題;
分率前是“多或少”的關系式:
(比少):具體量÷ (1-分率)= 單位“1”的量;
例如:桃樹有50棵,比蘋果樹少1/6,蘋果樹有多少棵。
列式是:50÷(1-1/6)
(比多):具體量÷ (1+分率)= 單位“1”的量
例如:一種商品現在是80元,比原價增加了1/7,原價多少?
列式是:80÷(1+1/7)
3、求一個數是另一個數的幾分之幾是多少: 用一個數除以另一個數,結果寫為分數形式。
例如:男生有20人,女生有15人,女生人數占男生人數的幾分之幾。
列式是:15÷20=15/20=3/4
4、求一個數比另一個數多幾分之幾的方法:
用兩個數的相差量÷單位“1”的量 =分數
即①求一個數比另一個數多幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:5比3多幾分之幾?(5-3)÷3=2/3
②求一個數比另一個數少幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:3比5少幾分之幾?(5-3)÷5=2/5
說明:多幾分之幾不等於少幾分之幾,因為單位一不同。
5、工程問題:把工作總量看作單位“1”,合做多長時間完成一項工程用1÷效率和,即1÷(1/時間+1/時間),(工作效率=1/時間)
例如:一項工程甲單獨做要5天完成,乙單獨做要10天完成,甲單獨做要3天完成,三人合做幾天可以完成?列式:1÷(1/5+1/10+1/3)
第四單元比
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分數表示,也可以用小數或整數表示)
15 ∶ 10 = 3/2
前項 比號 後項 比值
3、比可以表示兩個相同量的關系,即倍數關系。例:長是寬的幾倍。
也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、比和除法、分數的聯系:
比 前 項 比號“:” 後 項 比值
除 法 被除數 除號“÷” 除 數 商
分 數 分 子 分數線“—” 分 母 分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
9、體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
10、求比值:用前項除以後項,結果最好是寫為分數(不會約分的就不約分)
例如:15∶ 10=15÷10=15/10=3/2
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
(2)用求比值的方法。注意: 最後結果要寫成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2
還可以15∶10 = 15÷10 = 3/2最簡整數比是3∶2
5、比中有單位的,化簡和求比值時要把單位化相同再化簡和求比值,結果沒有單位。
6.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。一般有兩種解題法
1,用分率解:按比例分配通常把總量看作單位一,即轉化成分率。要先求出總份數,再求出幾份占總份數的幾分之幾,最後再用總量分別乘幾分之幾。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
1+4=5 糖佔1/5 用 25×1/5得到糖的數量,水佔4/5 用 25×4/5得到水的數量。
2,用份數解:要先求出總份數,再求出每一份是多少,最後分別求出幾份是多少。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
糖和水的份數一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五單元圓的認識
一、認識圓形
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同一個圓內或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2
8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是: 長方形;只有3條對稱軸的圖形是: 等邊三角形;只有4條對稱軸的圖形是: 正方形;有無數條對稱軸的圖形是: 圓、圓環。
11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長。或者用線圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。
發現,圓周長與它直徑的比值(圓周長除以直徑)是一個固定數即3倍多一點,我們把它叫做圓周率用字母π表示。
3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。用字母π(pai) 表示。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
4、圓的周長公式: 圓的周長等於圓周率乘直徑用字母表示C= πd
(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示
d = C ÷π或圓的周長等於2乘圓周率乘半徑,用字母表示C=2πr
(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1)、周長的一半:等於圓的周長÷2
計算方法:2π r ÷ 2 即C半= π r
(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:半圓的周長=5.14 r (推導過程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圓的面積
1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。
2、圓面積公式的推導:(1)把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。長方形的長相當於圓的周長的一半,長方形的寬相當於圓的半徑。
(2)拼出的圖形與圓的周長和半徑的關系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
3、圓面積的計算方法:因為:長方形面積 = 長 ×寬
所以:圓的面積 = 圓周長的一半 × 圓的半徑
即S圓 = C÷2× r=πr × r=πr
圓的面積公式:S圓 =πr → r = S 圓÷ π
4、環形的面積:一個環形,外圓的半徑用字母R表示,內圓的半徑用字母r表示。(R=r+環的寬度.)
S環 = πR -πr 或環形的面積公式:S環 = π(R -r )(建議用這個公式)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小的倍數是這倍數的平方倍。
例如:在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。
例如:兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。
9、常用各π值結果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方內圓(內切圓)公式S=0.86r 推導過程:S=S正-S圓=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圓內方(外切圓)公式S=1.14r 推導過程:S=S圓-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)
12、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關。
13、S扇=S圓×n/360;S扇環=S環×n/360
14、扇形也是軸對稱圖形,有一條對稱軸。
15、常見半徑與直徑的周長和面積的結果。
半徑 半徑的平方 直徑 周長 面積
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
;㈣ 六年級下冊數學期末復習資料
小學六年級 數學總復習指導提綱 一、總復習的內容和目標 數的認識 ① 理解整數、小數、分數、百分數的意義,能按要求寫數和讀數。 ② 會比較數的大小,能把幾個不同類的數按要求排列。 ③ 會改變計數單位進行數的改寫;會用四捨五入法取一個數的近似值。 ④ 理解小數、分數、百分數間的聯系和區別,會小數、分數、百分數的互化。 ⑤ 理解小數的性質,會應用小數的性質和小數點位移規律解答有關問題。 ⑥ 理解分數的基本性質,會約分和通分。 數的計算 ① 理解四則運算的意義,掌握四則運算的計演算法則,能口算,會筆算。 ② 掌握加法、減法、乘法、除法各部分間的關系,會靈活應用關系進行驗算。 ③ 掌握四則混合運算的運算步驟和方法,會計算兩、三步計算的混算式題。 ④ 掌握運算定律和性質,能靈活應用定律或性質進行簡便計算。 ⑤ 會使用小括弧和中括弧,會列綜合算式解兩、三步計算的文字題。 ⑥ 掌握整除和除盡的關系,理解約數和倍數、質數和合數、奇數和偶數,區 分質數、互質數、質因數,會分解質因數,會求兩個數的最大公約數和兩、三個數的最小公倍數。 比和比例 ① 理解比的意義和基本性質,會寫出兩個數(量)的比,會求比值和化簡比。 ② 掌握比、除法、分數之間的關系,能進行三者之間的相互轉換。 ③ 知道比例尺,會按比例分配,會解答有關比例尺和按比例分配的應用題。 ④ 理解比例的意義,掌握比例的基本性質,會組比例、解比例。 ⑤ 掌握正、反比例的判定方法,能判斷兩個量成不成比例、成什麼比例, 會解答正、反比例應用題。 代數知識 ① 會用含有字母的式子表示一般數量關系。 ② 會用數字代替字母,然後求式子的值。 ③ 明確等式和方程的關系,會解簡易方程,會檢驗方程的解。 ④ 會用字母表示要求的數,列方程解已知含求的文字題和逆向思考的應用題。 幾何知識 ① 知道直線、射線、線段的關系;知道各種類型的角。 ② 會畫:⑴角;⑵線段;⑶垂線和平行線;⑷三角形、平行四邊形、梯形的高。 ③ 掌握平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓)的基本 特徵,知道周長和面積公式的推導,會求周長和面積。 ④ 掌握立體圖形(長方體、正方體、圓柱、圓錐)的基本特徵,知道表面積、 側面積、體積公式的推導,會求表面積、側面積、體積和容積。 ⑤ 知道長度、面積、體積(容積)、質量(重量)、時間、人民幣的 單位和進率,會進行同類名數的改寫。 解決問題 ① 掌握解答應用題的步驟和方法,會解決實際問題。 ② 會收集、整理數據,會補充完成統計表、統計圖的製作,會從圖表中找出 有關數據,通過計算解決問題;會根據圖表中的數據提出並解決數學問題。 二、總復習的具體做法 總復習的四個基本策略: 1.鞏固知識,以練為主。 鞏固知識是復習課的主要任務。以練為主,且以學生自己筆練為主,應作為鞏固知識的主要策略。復習時教師除了幫助學生理清要點和說明常見錯誤的防止和糾正策略外,應大膽放心地讓學生自己練習,通過練習,鞏固知識,獲得提高。 2.整理知識,學生為主。 整理知識是復習課的重要一環。在教師引導下以學生自己為主,井通過同學之間的交流來整理知識,學生容易理清知識和理解知識之間的聯系區別,記牢知識和應用知識解決簡單實際問題。 3.查漏補缺,調查為先。 查漏補缺是復習的重要內容。所以在復習前摸清學生中的「漏」和「缺」非常重要,在復習課中應十分重視補「缺漏」和糾錯誤。摸清「缺漏」和常見的錯誤,平時摘記學生作業中的問題不失為一個好方法,在復習課之前,作些摸底調查也非常必要。 4.發展提高,思維為先。 發展提高是復習的又一重要目的。通過復習在鞏固知識的同時,應讓大多數學生除了在知識技能方面有所發展和提高外,更主要的應該讓學生在思維方面有所發展有所提高,特別要注意發展提高學生的發現探索數學規律的能力、解決簡單實際問題的能力和綜合應用的能力。擬好或選好復習題是重要一環。通過練習達到既鞏固整理知識又能發展提高的目的。 復習課的三條教學原則: 1.自主性原則 在復習過程中,要充分發揮學生的自主性,讓學生積極、主動參與復習全過程,特別是要讓學生參與歸納、整理的過程,不要用教師的歸納代替學生的整理。在復習中要體現:知識讓學生疏理;規律讓學生尋找;錯誤讓學生判斷。充分調動學生學習的積極性和主動性,激發學生學習興趣。 2.針對性原則 復習必須突出重點,針對性強,注重實效。在復習過程中,一是要注意全班學生的薄弱環節,二是要針對個別學生的存在問題。要緊扣知識的易混點、易錯點設計復習內容,做到有的放矢,對症下葯。 3.系統性原則 在復習過程中,必須根據知識間的縱橫聯系,系統規劃復習和訓練內容,使學生所學的分散知識系統化。 總復習要做到「四抓」: 一抓重點——數學總復習,決不能只是多做一些題目,應該復習數學的基礎知識。小學數學一共有十二冊書,內容很多,要抓住教材中最主要的內容復習。如復習數的概念時,就要抓整數、分數和小數的意義和性質。又如整、小數應用題,千變萬化,種類很多,復習時就要抓數量關系和分析、思考應用題的一般方法。對一些掌握較好的知識,只要適當復習,引起回憶就可以了;對一些還沒有掌握住的知識,就需要重點復習,把它們徹底弄懂。 二抓串連——數學知識相互之間是密切聯系的,總復習時不能把它們孤立起來死記硬背。要注意知識的系統性,把有關的知識串連起來,能幫助學生理解,幫助學生記憶。如比、分數和除法之間是有關的,比的性質、分數的性質和除法的商不變規律也是一致的,弄清它們之間的聯系,就能掌握住一大片知識。 三抓比較——有些數學知識之間容易混淆,要把那些往往會弄錯的概念、練習題列舉出來,相互比較,把它們正確地區別開來。在總復習時,要把多方面的知識靈活的綜合運用,這對提高解題能力是很重要的。 四抓合理安排——應當合理安排時間,切不可整天埋頭去啃書本、做練習,要積極參加體育鍛煉和文娛活動。豐富的課餘生活能調節大腦,提高復習的效率。 復習課的六種方法: 預習法:讓學生自己復習。因為復習課講的內容基本上是學生已學過的知識,布置學生預習,可以發揮學生的主動性。學生通過預習,加深了對已有知識的理解,會收到事半功倍的效果。 整理歸納法:教師在研究教材的基礎上,把學過的知識按一定的模式予以分類、整理,以求系統連貫,便於學生的復習與提高。 比較法:比較是重要的也是常用的思維方法。在數學復習課中利用比較法復習,可以幫助學生分清知識的聯系與區別,便於對知識的理解和記憶。 討論法:討論法便於有針對性地解決一些復習中的疑難問題,提高復習效果。同時也便於教師及時掌握復習過程的反饋信息,以便更有效地進行下一步復習。討論法可以由教師精心設計問題,引導學生利用已有的知識和方法對問題進行正確的分析,圓滿地解決問題。 變題法:變題是加深對應用題理解的良好訓練方法。利用變題法復習有兩個好處:一是進一步深化對應用題的理解,掌握規律;二是加強對不同類型的應用題的比較,防止知識負遷移。 補缺法:平時學習中,學生不可避免地存在一些缺漏。教師要通過課堂練習、課外作業等,掌握這方面的情況,有的錯誤和缺點,教師雖然作了糾正,但不一定能完全解決問題。因此,對於教材上那些容易混淆和學生在練習時容易出差錯的地方,要通過復習課來補缺。利用補缺法復習,需要教師精心設計例題和習題,要使學生感到補充的例題和習題不是乏味的重復,從而激發他們的復習興趣,得到求知的滿足。 復習課的五步操作程序: 憶→清→析→練→評 一憶——讓學生回憶所學的主要內容,並讓學生進行討論、口述。回憶,就是學生將過去學過的舊知識不斷提取而再現的過程。教師要有意識地引導學生看課題回憶所學的知識,看課本目錄回憶單元知識。復習開始時,先向學生說明復習的內容和要求,然後引導學生回憶。回憶時,可先粗後細,並讓學生進行充分討論,在此基礎上引導學生進行口述,或出示有關復習提綱,引導學生進行系統的回憶。 二清——「清」是引導學生對所學的知識進行梳理、總結、歸納,幫助學生理清知識線索,分清解題思路,弄清各種解題方法聯系的過程。要根據學生的回憶,進行從點——線——面的總結,做到以一點或一題串一線、聯一面,特別是要注意知識間縱橫向的聯系和比較,構建知識網路。要教會學生歸納、總結的方法。在幫助學生理清知識脈絡時,可以根據復習內容、教學信息容量的多少,分項、分步進行整理。 「清」的過程是疏理、溝通的過程,是將所學知識前後貫通,把知識進行泛化的過程。「清」是復習課的鮮明特徵。 三析——對專題中的重點內容和學生中的疑難作進一步的分析,幫助學生解決重點、難點和疑點,從而使學生全面、准確地掌握教材內容,加深理解。這一環節重在設疑、答疑和析疑上。如果專題的內容較多時,可以分類、分專項進行分析、對比。 四練——選擇有針對性、典型性、啟發性和系統性的問題,引導學生進行練習。通過練習,提高學生運用知識解決實際問題的能力,發展學生的思維能力。練習時,可通過題組的形式呈現練習內容。內容要注意算理、規律或知識技能、知識的縱橫聯系,抓一題多解或一題多變,做到舉一反三,使學生通過練習不斷受到啟發,在練習中進一步形成知識結構。在練習設計中,可通過典型多樣的練習,幫助學生系統整理;設計對比練習,幫助學生溝通辯析;設計綜合發展練習,提高學生的解題能力。 五評——讓學生對復習的結果進行評價與反饋。通過教學評價給予學生一種成功的體驗或緊迫感,從而強化或激勵學生好好學習,並進行及時的反饋和調控,改進學習方法。復習完成時,可適當選取數量適當的題目進行當堂檢測。 構建主體參與的五個做法: 看、思、說、做、評 一看——觀察。教師引導學生通過課前觀察,課中呈求直觀材料,引導學生仔細觀察,從而積累豐富的生活經驗和形象直觀的表象,為開展復習提供相對清淅的表象,為提取和組合表象奠定良好的基礎。 二思——思考。教師引導學生在觀察的基礎上,通過認真地思考,尋找解決問題的方法,理清解題思路,明確解題方法。 三說——討論。讓學生在自主思考的基礎上,在組內認真地交流自己的思考所得;或者在組間交流本小組研究的結晶,使復習的思路越辯越清。 四做——解題。讓學生在明確思路的基礎上,通過分工與合作,自己動手操作,解決研究問題。 五評——評價。讓學生參與到復習的評價活動中來,使學生們在評價他人的時候,得到啟迪,受到鼓舞。同時,對自己的研究行為進行相對公正、客觀、合理地評價。 總復習中應注意的十點: 1.堅持教材為本,扣緊數學大綱,參考課程標准,把握復習要求,制定復習計 劃,設計復習過程。(理解概念,計算驗算,分析列式,幾何作圖,應用公式) 教師應把復習課上成促進學生智能發展的課。要改變過去以教師的串講 為主的傳統做法,做到內容、形式豐富多彩,生氣勃勃;結構合理。復習課力求上得既輕松愉快、又有實效。雖然復習的基本內容學生是學過的,熟知的,但復習不應是簡單的重復,要靠教師精心組織,著意引導。要選擇學生喜聞樂見、富於啟發思考的形式,吸引學生參與復習的全過程。 2.在復習分塊章節時,重視基礎知識的復習,加強知識之間的聯系,使學生在 理解的基礎上進行記憶。比如:概念、法則、性質、公式等,在系統復習中糾正學生的錯誤,同時防止學生機械的背誦;對於計量單位要求學生在記憶時,理順關系。 3.在復習基礎知識的同時,緊抓學生的能力培養。 ① 在四則混合運算方面,既要提高學生計算的正確率,又要培養學生善於利 用簡便方法計算。利用自習與課後輔導時間對學生進行多次的過關練習。 ② 在量的計量和幾何初步知識的復習中,要多利用實物的直觀性培養學生的 空間想像能力,利用習題類型的衍射性指導學生學習。 ③ 在應用題的復習中著重訓練學生的審題,分析數量關系,尋求合理的簡便 的方法,講練結合,歸納總結,抓訂正、抓落實。 4.在復習過程中注意啟發,加強導優輔差。對學習能力較差,基礎薄弱的學生, 要求盡量跟上復習進度,同時開「小灶」,利用課間與課後時間,按最低的要求進行輔導。而對於能力較強,程度較好的學生,鼓勵他們多看多想多做,老師隨時給他們提供指導和幫助。要做到突出尖子生,重視學困生,提高中等生。 5.在復習期間,引導學生主動自覺的復習,學習系統化的歸納整理,對學生要 多採用鼓勵的方法,調動學習的積極性。 6.加強審題訓練,提高解題能力。在復習時,教師應切實加強學生認真讀題, 審題習慣的培養。讓學生在讀題時讀清、讀透。 7.在復習中,對學生的掌握知識的情況要及時,做到心中有數,認真與學生進 行反饋交流,以達到預期的復習目標。 8.克服下列錯誤的思想和做法: ① 單純為應付考試而復習,猜題押題,死記硬背; ② 加重學生負擔,擠占學生休息和活動的時間; ③ 重少數學生的培優,輕多數學生的提高; ④ 只注重解題,忽視必要的歸納總結和尋找規律; ⑤ 只重知識技能,不重發展學生的數學思維能力; ⑥ 只管上課不管效果。 9.實行「復習——檢測——分析——補救」,全面掌握知識,培養數學能力。 10.在學生自主復習的基礎上,組織小組合作學習,開展組間競賽活動,盡最大 可能使優秀生更優秀,盡量縮小優生與差生的距離。
㈤ 六年級下冊數學必考重點有哪些
一、負數
1、在熟悉的生活情境中初步認識負數,能正確的讀.寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能藉助數軸初步學會比較正數.0和負數之間的大小。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面.側面和高。認識圓錐的底面和高。
2、探索並掌握圓柱的側面積.表面積的計算方法,以及圓柱.圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察,設計和製作圓柱,圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
三、比例
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5、認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙教育
四、統計
1、會綜合應用學過的統計知識,能從統計圖中准確提取統計信息,能夠正確解釋統計結果。
2、能根據統計圖提供的信息,做出正確的判斷或簡單預測。
五、數學廣角
1、經歷「抽屜原理」的探究過程,初步了解「抽屜原理」,會用「抽屜原理」解決簡單的實際問題。
2、通過「抽屜原理」的靈活應用感受數學的魅力。
㈥ 小學六年級數學畢業考必考的知識點是什麼
一、整數和小數
1、最小的一位數是1,最小的自然數是0。
2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4、整數和小數都是按照十進制計數法寫出的數。
5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二、數的整除
1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。
2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。
3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4
5、1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
「1」既不是質數,也不是合數。
6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。
5的倍數的數的特徵:個位上的數是0或者5。
3的倍數的數的特徵:各個數位上的數的和是3的倍數。
既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。
7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。
11、互質數:公因數只有1的兩個數叫做互質數。
12、兩數之積等於最小公倍數和最大公約數的積。
三、四則運算
1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差
一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商
2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3、運算定律:
(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a
兩個數相加,交換加數的位置,它們的和不變。
兩個數相加,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)
三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)
從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
一個數連續除以兩個數,等於這個數除以兩個除數的積。
四 、兩個規律
1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。
2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。
3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小
一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大
五、關系式
速度×時間=路程
路程÷時間=速度
路程÷速度=時間
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
單價×數量=總價
總價÷數量=單價
總價÷單價=數量
㈦ 六年級下冊數學知識點歸納
知識是人生旅途中的資糧。從而,只要我們有了更多的知識,哪怕是最可怕,最艱難的任何事,我們多有了力量去克服,有了知識我們就有了向前走的勇氣,勇往直前。下面我給大家分享一些六年級下冊數學知識點,希望能夠幫助大家,歡迎閱讀!
六年級下冊數學知識點1
第一單元 負數
1、負數的由來:
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0 1 3.4 2/5……是遠遠不夠的。所以出現了負數,以盈利為正、虧損為負;以收入為正、支出為負
2、負數:小於0的數叫負數(不包括0),數軸上0左邊的數叫做負數。
若一個數小於0,則稱它是一個負數。
負數有無數個,其中有(負整數,負分數和負小數)
負數的寫法:
數字前面加負號「-」號,不可以省略
例如:-2,-5.33,-45,-2/5
正數:
大於0的數叫正數(不包括0),數軸上0右邊的數叫做正數
若一個數大於0,則稱它是一個正數。正數有無數個,其中有(正整數,正分數和正小數)
正數的寫法:數字前面可以加正號「+」號,也可以省略不寫。
例如:+2,5.33,+45,2/5
4、0 既不是正數,也不是負數,它是正、負數的分界限
6、比較兩數的大小:
①利用數軸:
負數<0<正數 或 左邊<右邊
②利用正負數含義:正數之間比較大小,數字大的就大,數字小的就小。負數之間比較大小,數字大的反而小,數字小的反而大
六年級下冊數學知識點2
第二單元 百分數二
(一)、折扣和成數
1、折扣:用於商品,現價是原價的百分之幾,叫做折扣。通稱「打折」。
幾折就是十分之幾,也就是百分之幾十。
解決打折的問題,關鍵是先將打的折數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題 方法 進行解答。
商品現在打八折:現在的售價是原價的80﹪
商品現在打六折五:現在的售價是原價的65﹪
2、成數:
幾成就是十分之幾,也就是百分之幾十。
解決成數的問題,關鍵是先將成數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據國家稅法的有關規定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發展經濟、科技、 教育 、 文化 和國防安全等事業。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅後利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅後利息=本金×利率×時間×(1-利息稅率)
購物策略:
估計費用:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案
學後 反思 :做事情運用策略的好處
六年級下冊數學知識點3
第三單元 圓柱和圓錐
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得的。
圓柱也可以由長方形捲曲而得到。
兩種方式:
1.以長方形的長為底面周長,寬為高;
2.以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數條高,他們的數值是相等的
3、圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵 :圓柱有無數條高
4、圓柱的切割:
①橫切:切面是圓,表面積增加2倍底面積,即S 增 =2πr?
②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側面展開圖:
①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
②不沿著高展開,展開圖形是平行四邊形或不規則圖形
③無論怎麼展開都得不到梯形
6、圓柱的相關計算公式:
底面積 :S底=πr?
底面周長:C底=πd=2πr
側面積 :S側=2πrh
表面積 :S表=2S底+S側=2πr?+2πrh
體積 :V柱=πr?h
考試常見題型:
①已知圓柱的底面積和高,求圓柱的側面積,表面積,體積,底面周長
②已知圓柱的底面周長和高,求圓柱的側面積,表面積,體積,底面積
③已知圓柱的底面周長和體積,求圓柱的側面積,表面積,高,底面積
④已知圓柱的底面面積和高,求圓柱的側面積,表面積,體積
⑤已知圓柱的側面積和高,求圓柱的底面半徑,表面積,體積,底面積
以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據圓柱的相關計算公式進行計算
無蓋水桶的表面積=側面積+一個底面積油桶的表面積=側面積+兩個底面積
煙囪通風管的表面積=側面積
只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、 游泳 池
側面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形捲曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
4、圓錐的切割:
①橫切:切面是圓
②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,
即S增=2rh
5、圓錐的相關計算公式:
底面積:S底=πr?
底面周長:C底=πd=2πr
體積:V錐=1/3πr?h
考試常見題型:
①已知圓錐的底面積和高,求體積,底面周長
②已知圓錐的底面周長和高,求圓錐的體積,底面積
③已知圓錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據圓柱的相關計算公式進行計算
三、圓柱和圓錐的關系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高 ,體積相差2/3Sh
題型 總結
①直接利用公式:分析清楚求的的是表面積,側面積、底面積、體積
分析清楚半徑變化導致底面周長、側面積、底面積、體積的變化
分析清楚兩個圓柱(或兩個圓錐)半徑、底面積、底面周長、側面積、表面積、體積之比
②圓柱與圓錐關系的轉換:包括削成最大體積的問題(正方體,長方體與圓柱圓錐之間)
③橫截面的問題
④浸水體積問題:(水面上升部分的體積就是浸入水中物品的體積,等於盛水容積的底面積乘以上升的高度)容積是圓柱或長方體,正方體
⑤等體積轉換問題:一個圓柱融化後做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的 問題,注意不要乘以1/3
六年級下冊數學知識點4
第四單元 比例
1、比的意義(1)兩個數相除又叫做兩個數的比
(2)「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
(3)同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。
(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。
(5)比的後項不能是零。
(6)根據分數與除法的關系,可知比的前項相當於分子,後項相當於分母,比值相當於分數值。
2、比的基本性質:比的前項和後項同時乘或者除以相同的數(0除外),比值不變,這叫做比的基本性質。
3、求比值和化簡比:
求比值的方法:用比的前項除以後項,它的結果是一個數值可以是整數,也可以是小數或分數。
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
4、按比例分配:
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
5、比例的意義:表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
6、比例的基本性質:在比例里,兩個外項的積等於兩個兩個內項的積。這叫做比例的基本性質。
7、比和比例的區別
(1)比表示兩個量相除的關系,它有兩項(即前、後項);比例表示兩個比相等的式子,它有四項(即兩個內項和兩個外項)。
(2)比有基本性質,它是化簡比的依據;比例也有基本性質,它是解比例的依據。
8、成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯的量中相對就的兩個數的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數值比例尺和線段比例尺 (2)縮小比例尺和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮小:形狀相同,大小不同。
16、用比例解決問題:
根據問題中的不變數找出兩種相關聯的量,並正確判斷這兩種相關聯的量成什麼比例關系,並根據正、反比例關系式列出相應的方程並求解。
17、常見的數量關系式:(成正比例或成反比例)
單價×數量=總價
單產量×數量=總產量
速度×時間=路程
工效×工作時間=工作總量
18、
已知圖上距離和實際距離可以求比例尺。
已知比例尺和圖上距離可以求實際距離。
已知比例尺和實際距離可以求圖上距離。
計算時圖距和實距單位必須統一。
19、播種的總公頃數一定,每天播種的公頃數和要用的天數是不是成反比例?
答:每天播種的公頃數×天數=播種的總公頃數
已知播種的總公頃數一定,就是每天播種的公頃數和要用的天數的積是一定的,所以每天播種的公頃數和要用的天數成反比例。
六年級下冊數學知識點5
第五單元 數學廣角-鴿巢問題
1、鴿巣原理是一個重要而又基本的組合原理, 在解決數學問題時有非常重要的作用
②利用公式進行解題:
物體個數÷鴿巣個數=商……余數
至少個數=商+1
2、摸2個同色球計算方法。
①要保證摸出兩個同色的球,摸出的球的數量至少要比顏色數多1。
物體數=顏色數×(至少數-1)+1
②極端思想: 用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什麼顏色的球,都能保證一定有兩個球是同色的。
③公式:
兩種顏色:2+1=3(個)
三種顏色:3+1=4(個)
四種顏色:4+1=5(個)
六年級下冊數學知識點歸納相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 人教版六年級數學(下冊)期末知識要點
★ 六年級數學下冊必背知識點總結
★ 六年級上冊數學知識點整理歸納
★ 六年級數學幾何的初步知識知識點總結
★ 小學六年級數學知識點總結
★ 小升初考試必備數學一到六年級的知識點
★ 小升初一至六年級數學知識點整理
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點盤點