1. 高一數學必修一知識點梳理
是孩子適應學校,適應老師,適應各種學習環境的時候,簡單說就是磨合期。高中知識點那麼多,學科壓力很大,很多人剛進入高一,還存在著新鮮勁和學習的動力,雖然有些吃力,但是依舊在力挺。下面是我給大家帶來的 高一數學 必修一知識點梳理,希望能幫助到你!
高一數學必修一知識點梳理1
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
【第三章:第三章函數的應用】
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
1(代數法)求方程的實數根;
2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
高一數學必修一知識點梳理2
1、函數零點的定義
(1)對於函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy的零點。
(2)方程0)(xf有實根?函數()yfx的圖像與x軸有交點?函數()yfx有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是()fx的零點(3)變號零點與不變號零點
①若函數()fx在零點0x左右兩側的函數值異號,則稱該零點為函數()fx的變號零點。②若函數()fx在零點0x左右兩側的函數值同號,則稱該零點為函數()fx的不變號零點。
③若函數()fx在區間,ab上的圖像是一條連續的曲線,則0)()(
2、函數零點的判定
(1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,並且有()()0fafb,那麼,函數)(xfy在區間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。
(2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定 方法
①代數法:函數)(xfy的零點?0)(xf的根;②(幾何法)對於不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,並利用函數的性質找出零點。
(3)零點個數確定
0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對於二次函數在區間,ab上的零點個數,要結合圖像進行確定.
3、二分法
(1)二分法的定義:對於在區間[,]ab上連續不斷且()()0fafb的函數()yfx,通過不斷地把函數()yfx的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
①確定區間[,]ab,驗證()()0fafb,給定精確度e;
②求區間(,)ab的中點c;③計算()fc;
(ⅰ)若()0fc,則c就是函數的零點;
(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);
④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.
高一數學必修一知識點梳理3
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,;當時,;當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解;方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
高一數學必修一知識點梳理相關 文章 :
★ 高一數學必修一知識點匯總
★ 高一數學必修1知識點歸納
★ 高中數學必修1知識點總結
★ 高一數學必修一公式歸納
★ 高一數學必修一知識點總結
★ 高中數學高一數學必修一知識點
★ 高中必修一數學知識點歸納
★ 高一人教版數學必修一第一章知識點整理
★ 高一數學知識點匯總大全
★ 高一數學知識點總結
2. 高一數學必修一知識點總結
【 #高一# 導語】高一新生要根據自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。 為各位同學整理了《高一數學必修一知識點總結》,希望對您的學習有所幫助!1.高一數學必修一知識點總結
1、集合的概念
集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:「一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)」。理解這告裂孝句話,應該把握4個關鍵詞:對象、確定的、不同的、整體。
對象――即集合中的元素。集合是由它的元素確定的。
整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。
確定的――集合元素的確定性――元素與集合的「從屬」關系。
不同的――集合元素的互異性。
2、有限集、無限集、空集的意義
有限集和無限集是針對非空集合來說的。我們理解起來並不困難。
我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下「0與Φ」及「Φ與{Φ}」的關系。
幾個常用數集N、N*N+、Z、Q、R要記牢。
2.高一數學必修一知識點總結
求函數值域的方法
①直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數;
②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調性法:利用函數的單調性求值域;
⑥圖象法:二次函數必畫草圖求其值域;
⑦利用對號函數
⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數
3.高一數學必修一知識點總結
1.多面體的結構特徵
(1)稜柱有兩個面相互平行,其餘各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
正稜柱:側棱垂直於底面的稜柱叫做直稜柱,底面是正多邊形的直稜柱叫做正稜柱.反之,正稜柱的底面是正多邊形,側棱垂直於底面,側面是矩形。
(2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。
正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。
(3)稜台可由平行於底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉體的結構特徵
(1)圓柱可以由矩形繞一邊所在直線旋轉一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到.
(3)圓台可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行於底面的平面截圓錐得到。
(4)球可以由襪稿半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3.空間幾何體的三視圖源態
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。
三視圖的長度特徵:「長對正,寬相等,高平齊」,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交於點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交於點O′,且使∠x′O′y′=45°或135°,已知圖形中平行於x軸、y軸的線段,在直觀圖中平行於x′軸、y′軸.已知圖形中平行於x軸的線段,在直觀圖中長度不變,平行於y軸的線段,長度變為原來的一半。
(2)畫幾何體的高
在已知圖形中過O點作z軸垂直於xOy平面,在直觀圖中對應的z′軸,也垂直於x′O′y′平面,已知圖形中平行於z軸的線段,在直觀圖中仍平行於z′軸且長度不變。
4.高一數學必修一知識點總結
1、函數零點的概念:
對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:
函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根函數的圖象與軸有交點函數有零點。
3、函數零點的求法:
求函數的零點:
1)(代數法)求方程的實數根;
2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數:
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
3. 高中數學必修1知識點總結
知識的總結總是必要的,那麼高中數學必修1的知識點同學們總結過嗎,如果還沒有來得及,就我這里瞧瞧吧。下面是由我為大家整理的「高中數學必修1知識點總結」,僅供參考,歡迎大家閱讀。
高中數學必修1知識點總結
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。
把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確孝啟吵定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。
(2)元素的互異性:一個給定集合中的元素是的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員巧侍},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。
{xR|x-3>2},{x|x-3>2}
②語言描述法:例:{不是直角三角形的三角形}
③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關系:
(1)元素在集合里,則元素屬於集合,即:aA
(2)元素不在集合里,則元素不屬於集合,即:a¢A
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N*或N+
整數集Z
有理數集Q
實數集R
6、集合間的基本關系
(1).「包含」關系(1)—子集旁埋
定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。
二、函數的概念
函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那麼就稱f:A---B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.
(1)其中,x叫做自變數,x的取值范圍A叫做函數的定義域;
(2)與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
函數的三要素:定義域、值域、對應法則
函數的表示方法:(1)解析法:明確函數的定義域
(2)圖想像:確定函數圖像是否連線,函數的圖像可以是連續的曲線、直線、折線、離散的點等等。
(3)列表法:選取的自變數要有代表性,可以反應定義域的特徵。
4、函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。
(3)函數圖像平移變換的特點:
1)加左減右——————只對x
2)上減下加——————只對y
3)函數y=f(x)關於X軸對稱得函數y=-f(x)
4)函數y=f(x)關於Y軸對稱得函數y=f(-x)
5)函數y=f(x)關於原點對稱得函數y=-f(-x)
6)函數y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得
函數y=|f(x)|
7)函數y=f(x)先作x≥0的圖像,然後作關於y軸對稱的圖像得函數f(|x|)
三、函數的基本性質
1、函數解析式子的求法
(1、函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2、求函數的解析式的主要方法有:
1)代入法:
2)待定系數法:
3)換元法:
4)拼湊法:
2.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
3、相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致(兩點必須同時具備)
4、區間的概念:
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示
5、值域(先考慮其定義域)
(1)觀察法:直接觀察函數的圖像或函數的解析式來求函數的值域;
(2)反表示法:針對分式的類型,把Y關於X的函數關系式化成X關於Y的函數關系式,由X的范圍類似求Y的范圍。
(3)配方法:針對二次函數的類型,根據二次函數圖像的性質來確定函數的值域,注意定義域的范圍。
(4)代換法(換元法):作變數代換,針對根式的題型,轉化成二次函數的類型。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
(4)常用的分段函數有取整函數、符號函數、含絕對值的函數
7.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那麼就稱對應f:A---B為從集合A到集合B的一個映射。記作「f(對應關系):A(原象)---B(象)」
對於映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,並且象是的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
注意:映射是針對自然界中的所有事物而言的,而函數僅僅是針對數字來說的。所以函數是映射,而映射不一定的函數
8、函數的單調性(局部性質)及最值
(1、增減函數
(1)設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
(2)如果對於區間D上的任意兩個自變數的值x1,x2,當x1
注意:函數的單調性是函數的局部性質;函數的單調性還有單調不增,和單調不減兩種
(2、圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3、函數單調區間與單調性的判定方法
(A)定義法:
任取x1,x2∈D,且x1
作差f(x1)-f(x2);
變形(通常是因式分解和配方);
定號(即判斷差f(x1)-f(x2)的正負);
下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數:如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其並集.
9:函數的奇偶性(整體性質)
(1、偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2、奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3、具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
a、首先確定函數的定義域,並判斷其是否關於原點對稱;若是不對稱,則是非奇非偶的函數;若對稱,則進行下面判斷;
b、確定f(-x)與f(x)的關系;
c、作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
(4)利用奇偶函數的四則運算以及復合函數的奇偶性
a、在公共定義域內,偶函數的加減乘除仍為偶函數;
奇函數的加減仍為奇函數;
奇數個奇函數的乘除認為奇函數;
偶數個奇函數的乘除為偶函數;
一奇一偶的乘積是奇函數;
a、復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇。
注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,
(1)再根據定義判定;
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定.
10、函數最值及性質的應用
(1、函數的最值
a利用二次函數的性質(配方法)求函數的(小)值
b利用圖象求函數的(小)值
c利用函數單調性的判斷函數的(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
(2、函數的奇偶性與單調性
奇函數在關於原點對稱的區間上有相同的單調性;
偶函數在關於原點對稱的區間上有相反的單調性。
(3、判斷含糊單調性時也可以用作商法,過程與作差法類似,區別在於作差法是與0作比較,作商法是與1作比較。
(4)絕對值函數求最值,先分段,再通過各段的單調性,或圖像求最值。
(5)在判斷函數的奇偶性時候,若已知是奇函數可以直接用f(0)=0,但是f(0)=0並不一定可以判斷函數為奇函數。(高一階段可以利用奇函數f(0)=0)。
【篇二】
方程的根與函數的零點
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點.
3、函數零點的求法:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
拓展閱讀:高一生物必修一知識點總結整理
高一生物必修一走近細胞知識點總結
第一節從生物圈到細胞
1病毒沒有細胞結構,但必須依賴(活細胞)才能生存。
2生命活動離不開細胞,細胞是生物體結構和功能的(基本單位)。
3生命系統的結構層次:(細胞)、(組織)、(器官)、(系統)、(個體)、(種群)(群落)、(生態系統)、(生物圈)。
4血液屬於(組織)層次,皮膚屬於(器官)層次。
5植物沒有(系統)層次,單細胞生物既可化做(個體)層次,又可化做(細胞)層次。
6地球上最基本的生命系統是(細胞)。
7種群:在一定的區域內同種生物個體的總和。例:一個池塘中所有的鯉魚。
8群落:在一定的區域內所有生物的總和。例:一個池塘中所有的生物。(不是所有的魚)
9生態系統:生物群落和它生存的無機環境相互作用而形成的統一整體。
10以細胞代謝為基礎的生物與環境之間的物質和能量的交換;以細胞增殖、分化為基礎的生長與發育;以細胞內基因的傳遞和變化為基礎的遺傳與變異。
第二節細胞的多樣性和統一性
一、高倍鏡的使用步驟(尤其要注意第1和第4步)
1、在低倍鏡下找到物象,將物象移至(視野中央)
2、轉動(轉換器),換上高倍鏡。
3、調節(光圈)和(反光鏡),使視野亮度適宜。
4、調節(細准焦螺旋),使物象清晰。
二、顯微鏡使用常識
1、調亮視野的兩種方法(放大光圈)、(使用凹面鏡)。
2、高倍鏡:物象(大),視野(暗),看到細胞數目(少)。
低倍鏡:物象(小),視野(亮),看到的細胞數目(多)。
3、物鏡:(有)螺紋,鏡筒越(長),放大倍數越大。
目鏡:(無)螺紋,鏡筒越(短),放大倍數越大。
放大倍數越大、視野范圍越小、視野越暗、視野中細胞數目越少、每個細胞越大
放大倍數越小、視野范圍越大、視野越亮、視野中細胞數目越多、每個細胞越小
4、放大倍數=物鏡的放大倍數х目鏡的放大倍數
5、一行細胞的數目變化可根據視野范圍與放大倍數成反比
計算方法:個數×放大倍數的比例倒數=最後看到的細胞數
如:在目鏡10×物鏡10×的視野中有一行細胞,數目是20個,在目鏡不換物鏡換成40×,那麼在視野中能看見多少個細胞?20×1/4=5
6、圓行視野范圍細胞的數量的變化可根據視野范圍與放大倍數的平方成反比計算
如:在目鏡為10×物鏡為10×的視野中看見布滿的細胞數為20個,在目鏡不換物鏡換成20×,那麼在視野中我們還能看見多少個細胞?20×(1/2)2=5
三、原核生物與真核生物主要類群:
原核生物:藍藻,含有(葉綠素)和(藻藍素),可進行光合作用,屬自養型生物。細菌:(球菌,桿菌,螺旋菌,乳酸菌);放線菌:(鏈黴菌)支原體,衣原體,立克次氏體
真核生物:動物、植物、真菌:(青黴菌,酵母菌,蘑菇)等、
四、細胞學說
1、創立者:(施萊登,施旺)
2、細胞的發現者及命名者:英國科學家、羅伯特?虎克
3、內容要點:P10,共三點
4、揭示問題:揭示了(細胞統一性,和生物體結構的統一性)。
4. 楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
1.楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
銆銆闆嗗悎鐨勮繍綆
銆銆1.浜ら泦鐨勫畾涔夛細涓鑸鍦幫紝鐢辨墍鏈夊睘浜嶢涓斿睘浜嶣鐨勫厓緔犳墍緇勬垚鐨勯泦鍚堝彨鍋欰B鐨勪氦闆.
銆銆璁頒綔A鈭〣(璇諱綔鈥滱浜B鈥)錛屽嵆A鈭〣={x|x鈭圓錛屼笖x鈭圔}.
銆銆2銆佸苟闆嗙殑瀹氫箟錛氫竴鑸鍦幫紝鐢辨墍鏈夊睘浜庨泦鍚圓鎴栧睘浜庨泦鍚圔鐨勫厓緔犳墍緇勬垚鐨勯泦鍚堬紝鍙鍋欰B鐨勫苟闆嗐傝頒綔錛欰鈭狟(璇諱綔鈥滱騫禕鈥)錛屽嵆A鈭狟={x|x鈭圓錛屾垨x鈭圔}.
銆銆3銆佷氦闆嗕笌騫墮泦鐨勬ц川錛欰鈭〢=AA鈭┫=蠁A鈭〣=B鈭〢錛孉鈭獮=A
銆銆A鈭蠁=AA鈭狟=B鈭獮.
銆銆4銆佸叏闆嗕笌琛ラ泦
銆銆(1)琛ラ泦錛氳維鏄涓涓闆嗗悎錛孉鏄瘲鐨勪竴涓瀛愰泦(鍗)錛岀敱S涓鎵鏈変笉灞炰簬A鐨勫厓緔犵粍鎴愮殑闆嗗悎錛屽彨鍋歋涓瀛愰泦A鐨勮ˉ闆(鎴栦綑闆)
銆銆璁頒綔錛欳SA鍗矯SA={x?x?S涓攛?A}
銆銆(2)鍏ㄩ泦錛氬傛灉闆嗗悎S鍚鏈夋垜浠鎵瑕佺爺絀剁殑鍚勪釜闆嗗悎鐨勫叏閮ㄥ厓緔狅紝榪欎釜闆嗗悎灝卞彲浠ョ湅浣滀竴涓鍏ㄩ泦銆傞氬父鐢║鏉ヨ〃紺恆
銆銆(3)鎬ц川錛氣懘CU(CUA)=A鈶(CUA)鈭〢=桅鈶(CUA)鈭獮=U
2.楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
銆銆1銆佸嚱鏁扮殑鍊煎煙鍙栧喅浜庡畾涔夊煙鍜屽瑰簲娉曞垯錛屼笉璁洪噰鐢ㄤ綍縐嶆柟娉曟眰鍑芥暟鍊煎煙閮藉簲鍏堣冭檻鍏跺畾涔夊煙錛屾眰鍑芥暟鍊煎煙甯哥敤鏂規硶濡備笅錛
銆銆(1)鐩存帴娉曪細浜︾О瑙傚療娉曪紝瀵逛簬緇撴瀯杈冧負綆鍗曠殑鍑芥暟錛屽彲鐢卞嚱鏁扮殑瑙f瀽寮忓簲鐢ㄤ笉絳夊紡鐨勬ц川錛岀洿鎺ヨ傚療寰楀嚭鍑芥暟鐨勫煎煙.
銆銆(2)鎹㈠厓娉曪細榪愮敤浠f暟寮忔垨涓夎掓崲鍏冨皢鎵緇欑殑澶嶆潅鍑芥暟杞鍖栨垚鍙︿竴縐嶇畝鍗曞嚱鏁板啀奼傚煎煙錛岃嫢鍑芥暟瑙f瀽寮忎腑鍚鏈夋牴寮忥紝褰撴牴寮忛噷涓嬈″紡鏃剁敤浠f暟鎹㈠厓錛屽綋鏍瑰紡閲屾槸浜屾″紡鏃訛紝鐢ㄤ笁瑙掓崲鍏.
銆銆(3)鍙嶅嚱鏁版硶錛氬埄鐢ㄥ嚱鏁癴(x)涓庡叾鍙嶅嚱鏁癴-1(x)鐨勫畾涔夊煙鍜屽煎煙闂寸殑鍏崇郴錛岄氳繃奼傚弽鍑芥暟鐨勫畾涔夊煙鑰屽緱鍒板師鍑芥暟鐨勫煎煙錛屽艦濡(a鈮0)鐨勫嚱鏁板煎煙鍙閲囩敤姝ゆ硶奼傚緱.
銆銆(4)閰嶆柟娉曪細瀵逛簬浜屾″嚱鏁版垨浜屾″嚱鏁版湁鍏崇殑鍑芥暟鐨勫煎煙闂棰樺彲鑰冭檻鐢ㄩ厤鏂規硶.
銆銆(5)涓嶇瓑寮忔硶奼傚煎煙錛氬埄鐢ㄥ熀鏈涓嶇瓑寮廰+b鈮[a錛宐鈭(0錛+鈭)]鍙浠ユ眰鏌愪簺鍑芥暟鐨勫煎煙錛屼笉榪囧簲娉ㄦ剰鏉′歡鈥滀竴姝d簩瀹氫笁鐩哥瓑鈥濇湁鏃墮渶鐢ㄥ埌騫蟲柟絳夋妧宸.
銆銆(6)鍒ゅ埆寮忔硶錛氭妸y=f(x)鍙樺艦涓哄叧浜巟鐨勪竴鍏冧簩嬈℃柟紼嬶紝鍒╃敤鈥溾柍鈮0鈥濇眰鍊煎煙.鍏墮樺瀷鐗瑰緛鏄瑙f瀽寮忎腑鍚鏈夋牴寮忔垨鍒嗗紡.
銆銆(7)鍒╃敤鍑芥暟鐨勫崟璋冩ф眰鍊煎煙錛氬綋鑳界『瀹氬嚱鏁板湪鍏跺畾涔夊煙涓(鎴栨煇涓瀹氫箟鍩熺殑瀛愰泦涓)鐨勫崟璋冩э紝鍙閲囩敤鍗曡皟鎬ф硶奼傚嚭鍑芥暟鐨勫煎煙.
銆銆(8)鏁板艦緇撳悎娉曟眰鍑芥暟鐨勫煎煙錛氬埄鐢ㄥ嚱鏁版墍琛ㄧず鐨勫嚑浣曟剰涔夛紝鍊熷姪浜庡嚑浣曟柟娉曟垨鍥捐薄錛屾眰鍑哄嚱鏁扮殑鍊煎煙錛屽嵆浠ユ暟褰㈢粨鍚堟眰鍑芥暟鐨勫煎煙.
銆銆2銆佹眰鍑芥暟鐨勬渶鍊間笌鍊煎煙鐨勫尯鍒鍜岃仈緋
銆銆奼傚嚱鏁版渶鍊肩殑甯哥敤鏂規硶鍜屾眰鍑芥暟鍊煎煙鐨勬柟娉曞熀鏈涓婃槸鐩稿悓鐨勶紝浜嬪疄涓婏紝濡傛灉鍦ㄥ嚱鏁扮殑鍊煎煙涓瀛樺湪涓涓鏈灝(澶)鏁幫紝榪欎釜鏁板氨鏄鍑芥暟鐨勬渶灝(澶)鍊.鍥犳ゆ眰鍑芥暟鐨勬渶鍊間笌鍊煎煙錛屽叾瀹炶川鏄鐩稿悓鐨勶紝鍙鏄鎻愰棶鐨勮掑害涓嶅悓錛屽洜鑰岀瓟棰樼殑鏂瑰紡灝辨湁鎵鐩稿紓.
銆銆濡傚嚱鏁扮殑鍊煎煙鏄(0錛16]錛屽兼槸16錛屾棤鏈灝忓.鍐嶅傚嚱鏁扮殑鍊煎煙鏄(-鈭烇紝-2]鈭猍2錛+鈭)錛屼絾姝ゅ嚱鏁版棤鍊煎拰鏈灝忓礆紝鍙鏈夊湪鏀瑰彉鍑芥暟瀹氫箟鍩熷悗錛屽倄>0鏃訛紝鍑芥暟鐨勬渶灝忓間負2.鍙瑙佸畾涔夊煙瀵瑰嚱鏁扮殑鍊煎煙鎴栨渶鍊肩殑褰卞搷.
銆銆3銆佸嚱鏁扮殑鏈鍊煎湪瀹為檯闂棰樹腑鐨勫簲鐢
銆銆鍑芥暟鐨勬渶鍊肩殑搴旂敤涓昏佷綋鐜板湪鐢ㄥ嚱鏁扮煡璇嗘眰瑙e疄闄呴棶棰樹笂錛屼粠鏂囧瓧琛ㄨ堪涓婂父甯歌〃鐜頒負鈥滃伐紼嬮犱環鏈浣庘濓紝鈥滃埄娑︹濇垨鈥滈潰縐(浣撶Н)(鏈灝)鈥濈瓑璇稿氱幇瀹為棶棰樹笂錛屾眰瑙f椂瑕佺壒鍒鍏蟲敞瀹為檯鎰忎箟瀵硅嚜鍙橀噺鐨勫埗綰︼紝浠ヤ究鑳芥g『奼傚緱鏈鍊.
3.楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
銆銆瀹氫箟錛
銆銆褰㈠倅=x^a(a涓哄父鏁)鐨勫嚱鏁幫紝鍗充互搴曟暟涓鴻嚜鍙橀噺騫備負鍥犲彉閲忥紝鎸囨暟涓哄父閲忕殑鍑芥暟縐頒負騫傚嚱鏁般
銆銆瀹氫箟鍩熷拰鍊煎煙錛
銆銆褰揳涓轟笉鍚岀殑鏁板兼椂錛屽籙鍑芥暟鐨勫畾涔夊煙鐨勪笉鍚屾儏鍐靛備笅錛氬傛灉a涓轟換鎰忓疄鏁幫紝鍒欏嚱鏁扮殑瀹氫箟鍩熶負澶т簬0鐨勬墍鏈夊疄鏁;濡傛灉a涓鴻礋鏁幫紝鍒檟鑲瀹氫笉鑳戒負0錛屼笉榪囪繖鏃跺嚱鏁扮殑瀹氫箟鍩熻繕蹇呴』鏍筟鎹畄鐨勫囧伓鎬ф潵紜瀹氾紝鍗沖傛灉鍚屾椂q涓哄伓鏁幫紝鍒檟涓嶈兘灝忎簬0錛岃繖鏃跺嚱鏁扮殑瀹氫箟鍩熶負澶т簬0鐨勬墍鏈夊疄鏁;濡傛灉鍚屾椂q涓哄囨暟錛屽垯鍑芥暟鐨勫畾涔夊煙涓轟笉絳変簬0鐨勬墍鏈夊疄鏁般傚綋x涓轟笉鍚岀殑鏁板兼椂錛屽籙鍑芥暟鐨勫煎煙鐨勪笉鍚屾儏鍐靛備笅錛氬湪x澶т簬0鏃訛紝鍑芥暟鐨勫煎煙鎬繪槸澶т簬0鐨勫疄鏁般傚湪x灝忎簬0鏃訛紝鍒欏彧鏈夊悓鏃秖涓哄囨暟錛屽嚱鏁扮殑鍊煎煙涓洪潪闆剁殑瀹炴暟銆傝屽彧鏈塧涓烘f暟錛0鎵嶈繘鍏ュ嚱鏁扮殑鍊煎煙銆
銆銆鎬ц川錛
銆銆瀵逛簬a鐨勫彇鍊間負闈為浂鏈夌悊鏁幫紝鏈夊繀瑕佸垎鎴愬嚑縐嶆儏鍐墊潵璁ㄨ哄悇鑷鐨勭壒鎬э細
銆銆棣栧厛鎴戜滑鐭ラ亾濡傛灉a=p/q錛宷鍜宲閮芥槸鏁存暟錛屽垯x^(p/q)=q嬈℃牴鍙(x鐨刾嬈℃柟)錛屽傛灉q鏄濂囨暟錛屽嚱鏁扮殑瀹氫箟鍩熸槸R錛屽傛灉q鏄鍋舵暟錛屽嚱鏁扮殑瀹氫箟鍩熸槸[0錛+鈭)銆傚綋鎸囨暟n鏄璐熸暣鏁版椂錛岃綼=-k錛屽垯x=1/(x^k)錛屾樉鐒秞鈮0錛屽嚱鏁扮殑瀹氫箟鍩熸槸(-鈭烇紝0)鈭(0錛+鈭).鍥犳ゅ彲浠ョ湅鍒皒鎵鍙楀埌鐨勯檺鍒舵潵婧愪簬涓ょ偣錛屼竴鏄鏈夊彲鑳戒綔涓哄垎姣嶈屼笉鑳芥槸0錛屼竴鏄鏈夊彲鑳藉湪鍋舵暟嬈$殑鏍瑰彿涓嬭屼笉鑳戒負璐熸暟錛岄偅涔堟垜浠灝卞彲浠ョ煡閬擄細
銆銆鎺掗櫎浜嗕負0涓庤礋鏁頒袱縐嶅彲鑳斤紝鍗沖逛簬x>0錛屽垯a鍙浠ユ槸浠繪剰瀹炴暟;
銆銆鎺掗櫎浜嗕負0榪欑嶅彲鑳斤紝鍗沖逛簬x
銆銆鎺掗櫎浜嗕負璐熸暟榪欑嶅彲鑳斤紝鍗沖逛簬x涓哄ぇ浜庝笖絳変簬0鐨勬墍鏈夊疄鏁幫紝a灝變笉鑳芥槸璐熸暟銆
4.楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
銆銆鍑芥暟鐨勫簲鐢
銆銆1銆佸嚱鏁伴浂鐐圭殑姒傚康錛氬逛簬鍑芥暟錛屾妸浣挎垚絝嬬殑瀹炴暟鍙鍋氬嚱鏁扮殑闆剁偣銆
銆銆2銆佸嚱鏁伴浂鐐圭殑鎰忎箟錛氬嚱鏁扮殑闆剁偣灝辨槸鏂圭▼瀹炴暟鏍癸紝浜﹀嵆鍑芥暟鐨勫浘璞′笌杞翠氦鐐圭殑妯鍧愭爣銆傚嵆錛
銆銆鏂圭▼鏈夊疄鏁版牴鍑芥暟鐨勫浘璞′笌杞存湁浜ょ偣鍑芥暟鏈夐浂鐐.
銆銆3銆佸嚱鏁伴浂鐐圭殑奼傛硶錛
銆銆奼傚嚱鏁扮殑闆剁偣錛
銆銆(浠f暟娉)奼傛柟紼嬬殑瀹炴暟鏍;
銆銆(鍑犱綍娉)瀵逛簬涓嶈兘鐢ㄦ眰鏍瑰叕寮忕殑鏂圭▼錛屽彲浠ュ皢瀹冧笌鍑芥暟鐨勫浘璞¤仈緋昏搗鏉ワ紝騫跺埄鐢ㄥ嚱鏁扮殑鎬ц川鎵懼嚭闆剁偣.
銆銆4銆佷簩嬈″嚱鏁扮殑闆剁偣錛
銆銆浜屾″嚱鏁.
銆銆1)鈻>0錛屾柟紼嬫湁涓や笉絳夊疄鏍癸紝浜屾″嚱鏁扮殑鍥捐薄涓庤醬鏈変袱涓浜ょ偣錛屼簩嬈″嚱鏁版湁涓や釜闆剁偣.
銆銆2)鈻=0錛屾柟紼嬫湁涓ょ浉絳夊疄鏍(浜岄噸鏍)錛屼簩嬈″嚱鏁扮殑鍥捐薄涓庤醬鏈変竴涓浜ょ偣錛屼簩嬈″嚱鏁版湁涓涓浜岄噸闆剁偣鎴栦簩闃墮浂鐐.
銆銆3)鈻<0錛屾柟紼嬫棤瀹炴牴錛屼簩嬈″嚱鏁扮殑鍥捐薄涓庤醬鏃犱氦鐐癸紝浜屾″嚱鏁版棤闆剁偣.
5.楂樹竴蹇呬慨涓鏁板︾煡璇嗙偣姊崇悊
銆銆鎶婁竴涓鍚堟暟鐢ㄨ川鍥犳暟鐩鎬箻鐨勫艦寮忚〃紺哄嚭鏉ワ紝鍙鍋氬垎瑙h川鍥犳暟銆備緥濡傛妸28鍒嗚В璐ㄥ洜鏁28=2脳2脳7
銆銆鍑犱釜鏁板叕鏈夌殑鍥犳暟錛屽彨鍋氳繖鍑犱釜鏁扮殑鍏鍥犳暟銆傚叾涓鐨勪竴涓錛屽彨鍋氳繖鍑犱釜鏁扮殑鍏鍥犳暟錛屼緥濡12鐨勭害鏁版湁1銆2銆3銆4銆6銆12;18鐨勭害鏁版湁1銆2銆3銆6銆9銆18銆傚叾涓錛1銆2銆3銆6鏄12鍜18鐨勫叕鍥犳暟錛6鏄瀹冧滑鐨勫叕鍥犳暟銆傚叕綰︽暟鍙鏈1鐨勪袱涓鏁幫紝鍙鍋氫簰璐ㄦ暟錛屾垚浜掕川鍏崇郴鐨勪袱涓鏁幫紝鏈変笅鍒楀嚑縐嶆儏鍐碉細
銆銆1鍜屼換浣曡嚜鐒舵暟浜掕川銆傜浉閭葷殑涓や釜鑷鐒舵暟浜掕川銆備袱涓涓嶅悓鐨勮川鏁頒簰璐ㄣ
銆銆褰撳悎鏁頒笉鏄璐ㄦ暟鐨勫嶆暟鏃訛紝榪欎釜鍚堟暟鍜岃繖涓璐ㄦ暟浜掕川銆備袱涓鍚堟暟鐨勫叕綰︽暟鍙鏈1鏃訛紝榪欎袱涓鍚堟暟浜掕川錛屽傛灉鍑犱釜鏁頒腑浠繪剰涓や釜閮戒簰璐錛屽氨璇磋繖鍑犱釜鏁頒袱涓や簰璐ㄣ
銆銆濡傛灉杈冨皬鏁版槸杈冨ぇ鏁扮殑鍥犳暟錛岄偅涔堣緝灝忔暟灝辨槸榪欎袱涓鏁扮殑鍏鍥犳暟銆
銆銆濡傛灉涓や釜鏁版槸浜掕川鏁幫紝瀹冧滑鐨勫叕鍥犳暟灝辨槸1銆傚嚑涓鏁板叕鏈夌殑鍊嶆暟錛屽彨鍋氳繖鍑犱釜鏁扮殑鍏鍊嶆暟錛屽叾涓鏈灝忕殑涓涓錛屽彨鍋氳繖鍑犱釜鏁扮殑鏈灝忓叕鍊嶆暟錛屽2鐨勫嶆暟鏈2銆4銆6銆8銆10銆12銆
銆銆3鐨勫嶆暟鏈3銆6銆9銆12銆15銆18鍏朵腑6銆12銆18鏄2銆3鐨勫叕鍊嶆暟錛6鏄瀹冧滑鐨勬渶灝忓叕鍊嶆暟銆
銆銆濡傛灉杈冨ぇ鏁版槸杈冨皬鏁扮殑鍊嶆暟錛岄偅涔堣緝澶ф暟灝辨槸榪欎袱涓鏁扮殑鏈灝忓叕鍊嶆暟銆
銆銆濡傛灉涓や釜鏁版槸浜掕川鏁幫紝閭d箞榪欎袱涓鏁扮殑縐灝辨槸瀹冧滑鐨勬渶灝忓叕鍊嶆暟銆
銆銆鍑犱釜鏁扮殑鍏鍥犳暟鐨勪釜鏁版槸鏈夐檺鐨勶紝鑰屽嚑涓鏁扮殑鍏鍊嶆暟鐨勪釜鏁版槸鏃犻檺鐨勩
5. 高中必修一數學知識點總結
高中必修一數學知識點總結
高一數學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數學知識點總結是我為大家整理的,在這里跟大家分享一下。
高中必修一數學知識點總結
第一章 集合與函數概念
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:X Kb 1.C om
非負整數集(即自然數集) 記作:N
正整數集 :N*或 N+
整數集: Z
有理數集: Q
實數集: R
1)列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xR|x-3>2} ,{x|x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1)有限集 含有有限個元素的集合
(2)無限集 含有無限個元素的集合
(3)空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。AA
② 真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③ 如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=
A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
二、函數的有關概念
1.函數的概念
設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);
②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法 (2)配方法 (3)代換法
3. 函數圖象知識歸納
(1)定義:
在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
1.描點法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)”
對於映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2)奇函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵:偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
9.利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
10、函數的解析表達式
(1)函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的.主要方法有:1.湊配法2.待定系數法3.換元法4.消參法
11.函數最大(小)值
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第三章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根,其中 >1,且 ∈ *.
負數沒有偶次方根;0的任何次方根都是0,記作 。
當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
,
0的正分數指數冪等於0,0的負分數指數冪沒有意義
3.實數指數冪的運算性質
(1) • ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數,其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0
定義域 R 定義域 R
值域y>0 值域y>0
在R上單調遞增 在R上單調遞減
非奇非偶函數 非奇非偶函數
函數圖象都過定點(0,1) 函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 • + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0
定義域x>0 定義域x>0
值域為R 值域為R
在R上遞增 在R上遞減
函數圖象都過定點(1,0) 函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
5.函數的模型
;6. 高一數學知識點總結歸納
在學習過程中知識的總結往往很重要,那麼高一數學知識點歸納有哪些呢?下面是由我為大家整理的「高一數學知識點總結歸納」,僅供參考,歡迎大家閱讀。
高一數學知識點歸納總結
第一章:集合與函數概念
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山;
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋};
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1.Com。
非負整數集(即自然數集)記作:N;
正整數集:N*或N+;
整數集:納岩沒Z;
有理數集:Q;
實數集:R;
1)列舉法:{a,b,c……};
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xÎR|x-3>2},{x|x-3>2};
3)語言描述法:例:{不是直角三角形的三角形};
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合;
(2)無限集含有無限個元素的集合;
(3)空集不含任何元素的集合例:{x|x2=-5}。
二、集合間的基本關系
1.「包含」關系—子集
注意:有兩種可能。
(1)A是B的一部分;
(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA;
2.「相等」關系:A=B(5≥5,且5≤5,則5=5)實。
例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」
即:
①任何一個集合是它本身的子集。
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那麼AíC;
④如果AíB同時BíA那麼A=B;
3.不含任何元素的集合叫做空集,記為Φ;
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集並集補集;
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB};
由所有屬於集合A或屬棗搭於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB});
第二章:基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*。
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0)。由此可得:負數沒有偶次方根;0的任何次洞納方根都是0,記作。
注意:當是奇數時,當是偶數時。
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義;
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪。
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R。
注意:指數函數的底數的取值范圍,底數不能是負數、零和1。
2、指數函數的圖象和性質。
第三章:第三章函數的應用
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點。
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。
4、二次函數的零點:
二次函數
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。
拓展閱讀:如何學好高中數學
讀好課本,學會研究
有些「自我感覺良好」的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高騖遠,重「量」輕「質」,陷入題海,到正規作業或考試中不是演算出錯就是中途「卡殼」。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。可以把每條定理、每道例題都當作習題,認真地重證、重解,並適當加些批註,特別是通過對典型例題的講解分析,最後要抽象出解決這類問題的數學思想和方法,並做好書面的解題後的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,學生要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。
記好筆記,注重課堂
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。
其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
最後,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
寫好總結,把握規律
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持「兩先兩後一小結」(先預習後聽課,先復習後做作業,寫好每個單元的總結)的學習習慣。
7. 高中數學必修一知識點歸納
初入高中,數學是每個人的必修課。而學習是需要一個系統的框架的。下面是由我為大家整理的「高中數學必修一知識點歸納」,僅供參考,歡迎大家閱讀。
高中數學必修一知識點歸納
高一數學必修1 知識點歸納(一)
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。
把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。
鉛鎮(2)元素的互異性:一個給定集合中的元素是的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。
{xR|x-3>2},{x|x-3>2}
②語言描述法:例:{不是直角三角形的三角形}
③Venn圖:畫出一條封槐首粗閉的曲線,曲線裡面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關系:
(1)元素在集合里,則元素屬於集合,即:aA
(2)元素不在集合里,則元素不屬於集合,即:a¢A
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N*或N+
整數集Z
有理數集Q
實數集R
高一數學必修1知識點歸納(二)
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形.
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
高一數學必修1知識點歸納(三)
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定芹握它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,;當時,;當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解;方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
拓展閱讀:高一數學必修一目錄
第一章集合與函數概念
1.1集合
閱讀與思考集合中元素的個數
1.2函數及其表示
閱讀與思考函數概念的發展歷程
1.3函數的基本性質
信息技術應用用計算機繪制函數圖象
實習作業
小結
第二章基本初等函數(Ⅰ)
2.1指數函數
信息技術應用藉助信息技術探究指數函數的性質
2.2對數函數
閱讀與思考對數的發明
探究也發現互為反函數的兩個函數圖象之間的關系
2.3冪函數
小結
復習參考題
第三章函數的應用
3.1函數與方程
閱讀與思考中外歷史上的方程求解
信息技術應用藉助信息技術方程的近似解
3.2函數模型及其應用
信息技術應用收集數據並建立函數模型
實習作業
小結
復習參考題