❶ 七年級上冊數學知識點總結三篇
學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。
七年級上冊數學知識點總結篇一
單項式與多項式
1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)
2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
七年級上冊數學知識點總結篇二
第一單元有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a〃1
b(b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於
0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同極運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
七年級上冊數學知識點總結篇三
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的 方法 :
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
相關 文章 :
1. 初一數學復習三篇
2. 初一上冊數學知識點歸納整理
3. 初一數學上冊知識點歸納
4. 初一數學課本知識點總結
❷ 七年級數學全冊知識點梳理
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初中 一年級數學 上冊知識點
二元一次方程組
1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
七年級下冊數學知識點
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。
4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。
二、等可能性:是指幾種事件發生的可能性相等。
1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。
2、必然事件發生的概率為1,記作P(必然事件)=1;
3、不可能事件發生的概率為0,記作P(不可能事件)=0;
4、不確定事件發生的概率在0—1之間,記作0
三、幾何概率
1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所佔的面積與總面積的關系;
(2)然後計算出各部分的面積;
(3)最後代入公式求出幾何概率。
初一數學的 學習 方法 技巧
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。
5、學會 總結 :
馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。
目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。
提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。
有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。
七年級數學全冊知識點梳理相關 文章 :
★ 七年級數學知識點整理大全
★ 七年級數學知識點梳理總結
★ 七年級數學知識點整理部編版
★ 初一數學知識點梳理歸納
★ 初中七年級數學知識點歸納整理
★ 初一數學上冊知識點歸納
★ 初一數學上冊知識點梳理
★ 初一上冊數學知識點歸納整理
★ 七年級數學知識點總結
★ 初一數學知識點梳理
❸ 七年級上冊數學知識點歸納
很多同學都需要及時整理自己學過的知識點,我整理了一些七年級的數學知識點,大家一起來看看吧。
七年級數學知識點
第一章:有理數的運算:本章節主要介紹概念性知識,通過圖形或符號來區分數之間的關系。定義如下:
1、有理數的概念:正整數、0、負整數、正分數、負分數統稱為有理數;數軸與原點:用一條直線上的點表示數,這條直線就叫做數軸,在這條直線上任取一個點表示0,這個點叫做原點,在原點的左邊或原點下邊的點到原點的距離用負數表示,在原點的右邊或上邊的數到原點的距離用正數表示,在數軸上與原點距離相反相等的兩個點代表的兩個數為相反數,在數軸上表示的點a到原點的距離叫這個數的絕對值。
2、有理數的加減法:同號的兩個數相加,符號不變,絕對值相加;絕對值不相等的異號兩數相加,和取絕對值較大的加數的符號,並用較大的數的絕對值減較小的數的絕對值,互為相反數的兩個數相加得0;一個有理數減去另一個有理數,相當於加這個數的相反數;
3、有理數的乘除法:同號兩個數相乘,同號得正,異號得負,乘法的積為他們的絕對值相乘,除法為被除數乘以除數的倒數,除數不能為0;乘積是1的兩個數互為倒數,0沒有倒數;整數的乘法交換率和結合率同樣適用於有理數;求n個相同因數的積的運算叫乘方,乘方的結果叫做冪,在a的n次方中a叫做底數,n叫做指數,寫作a∧n;
4、有理數的混合運算:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
5、科學記數法:把一個大於10的數表示成a×10∧n的形式叫做科學計數法,其中a大於或等於1且小於10,n為正整數。
第二章:整式的加減:整式的加減即是合並同類項的計算;在一個式子中,所含字母相同,並且相同字母的指數也相同的項叫做同類項,幾個常數項也是同類項;把多項式中的同類項合並成一項叫做合並同類項,合並同類項後,所得項的系數是合並前各同類項的系數和,且字母連同他的指數不變;一般幾個整數相加,如果有括弧先去括弧,然後在合並同類項,如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同,如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
第三章:一元一次方程:一個方程中,只含有一個未知數,且未知數的次數都是1,等號兩邊都是整數,這樣的方程叫做一元一次方程;方程的兩邊同時加上或減去同一個數或式子結果仍相等,方程兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。
第四章:本章主要介紹立體圖形及幾何圖形的認識;點、線、面、體的關系的認識;直線、射線、線段的認識;不同角的概念及大小的比較。
1、平面圖形和立體圖形:各部分都在同一個平面內的幾何圖形叫做平面圖形;有些幾何圖形的各部分不在同一個平面上,它們被稱為立體圖形,如長方體、圓柱、圓錐等;有些立體圖形是由一些平面圖形圍成的,將它們展開成平面圖形,展開的平面圖形就叫做這個立體圖形的展開圖;
2、點、線、面、體的認識:幾何體叫做體,包圍著體的叫做面,面和面相交的地方叫作線,線和線相交的地方叫做點,線由無數個點構成;
3、直線、射線、線段的認識:經過兩個點由且只有一條直線,兩點確定一條直線,兩個點之間的連線,最短的叫做線段,線段的長度叫做這兩點的距離,由線段向一端無限延長,叫射線;
4、角:如果兩個角的和等於90°,那麼這兩個角互為餘角;如果兩個角的和等於180°,那麼這兩個角互為補角;從一個角的頂點出發。把這個角分成兩個相等的角的射線叫做這個角的平分線,把這3個相等角的兩條射線叫這個角的三分線。
七年級數學考點歸納
1.大於0的數叫做正數。
2.在正數前面加上負號「-」的數叫做負數。
3.整數和分數統稱為有理數。
4.人們通常用一條直線上的點表示數,這條直線叫做數軸。
5.在直線上任取一個點表示數0,這個點叫做原點。
6.一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。
7.由絕對值的定義可知:
一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
0的絕對值是0。
8.正數大於0,0大於負數,正數大於負數。
9.兩個負數,絕對值大的反而小。
10.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11.有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12.有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13.有理數減法法則:減去一個數,等於加上這個數的相反數。
14.有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。
15.有理數中仍然有:乘積是1的兩個數互為倒數。
16.一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17.三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18.一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19.有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
20.兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21.求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數。
初一數學上冊知識點
1、幾個重要的代數式(m、n表示整數)。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;
(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.
2、列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.
3、有理數比大小:
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大於一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0.
以上就是一些七年級數學的知識點整理,希望對大家有所幫助。
❹ 七年級數學上冊知識點歸納總結
七年級數學是整個初中數學的基礎,一定要好好把握,我整理了一些重要的知識點。
有理數
1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b)。
2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式。
3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加號的和的形式。
4、加減混合運算的方法和步驟
(1)將減法統一成加法,並寫成省略加號的和的形式;
(2)運用加法的交換律和結合律,簡化運算。
5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0。
6、有理數乘法步驟:先確定積的符號;再計算絕對值的積。
7、倒數:乘積是1的兩個數互為倒數。
8、有理數的除法法則
(1)除以一個數等於乘以這個數的倒數;
(2)兩數相除,同號得正,異號得負,並把絕對值相除;
(3)0除以任何一個不等於零的數,都得0。
整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式。單獨一個數或一個字母也是單項式。因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式。
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和。
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號。
5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統稱為整式。
一元一次方程
1、方程是含有未知數的等式。
2、方程都只含有一個未知數x,未知數x的指數都是1,這樣的方程叫做一元一次方程。
注意:判斷一個方程是否是一元一次方程要抓住三點:
(1)未知數所在的式子是整式(方程是整式方程);
(2)化簡後方程中只含有一個未知數;
(3)經整理後方程中未知數的次數是1。
3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
4、等式的性質:
(1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;
(2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。
注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數。
以上是我整理的七年級上冊數學知識點,希望能幫到你。
❺ 七年級上冊數學總結歸納提綱
數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。這次我給大家整理了七年級上冊數學 總結 歸納提綱,供大家閱讀參考。
目錄
七年級上冊數學總結歸納提綱
數學學習方法
數學學習技巧
七年級上冊數學總結歸納提綱
1.有理數:
(1)凡能寫成 形式的數,都是有理數,整數和分數統稱有理數.
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;
(2)有理數的分類:① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數?0和正整數;a>0?a是正數;a<0?a是負數;
a≥0?a是正數或0?a是非負數;a≤0?a是負數或0?a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0?a+b=0?a、b互為相反數.
(4)相反數的商為-1.
(5)相反數的絕對值相等
4.絕對值:
(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為: 或 ;
(3) ; ;
(4)|a|是重要的非負數,即|a|≥0;
5.有理數比大小:
(1)正數永遠比0大,負數永遠比0小;
(2)正數大於一切負數;
(3)兩個負數比較,絕對值大的反而小;
(4)數軸上的兩個數,右邊的數總比左邊的數大;
(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差,絕對值越小,越接近標准。
6.倒數:
乘積為1的兩個數互為倒數;
注意:0沒有倒數;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數.
等於本身的數匯總:
相反數等於本身的數:0
倒數等於本身的數:1,-1
絕對值等於本身的數:正數和0
平方等於本身的數:0,1
立方等於本身的數:0,1,-1.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10有理數乘法法則:
(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。
11有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0?a=0,b=0;
(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:不省過程,不跳步驟。
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。
<<<
數學 學習方法
1、基礎很重要
是不是感覺數學都能考滿分的同學,連書都不用看,其實數學學霸更重視基礎。,數學公式,幾何圖形的性質,函數的性質等,都是數學學習的基礎,甚至可以說基礎的好壞,直接決定中考數學成績的高低。
李現良表示,班裡某位同學來找自己講題,其實題目並不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路。基礎不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。
2、錯題本很重要
在所有科目中,數學這個科目最重要錯題本學習法。李現良同學也特別提倡大家整理錯題,李現良對於錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對於一些徹底掌握的,可以做個標記,以後就不用再次復習,這樣錯題本使用起來就會效率更高。
3、做題要多 反思
數學學習要大量做題去鞏固,但做題不要只講究數量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程後,需要進行分析和反思,多問幾個為什麼,這樣才能把題真正做透。
4、把數學知識形成體系
數學學霸李現良表示,課本上的知識都是零散的,建議大家自己畫 思維導圖 把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。
<<<
數學學習技巧
1.想做數學學霸,要格外重視綜合性強,難度大的題目,也就是試卷上最後的一至三道大題。這是拉開你和同學分數差距的重點。
2.避免生硬的套用公式。歸納很重要,一是歸納科學的思維方法,二是歸納重要題型的解題方法。
3.不僅要熟悉知識的縱向聯系,而且要熟悉知識的橫向聯系,逆向聯系,達到信手拈來,呼之既出的程度。
4.多做題。做題是鞏固知識的最有效方法。
5.錯題本。數學的錯題本尤為重要。
<<<
七年級上冊數學總結歸納提綱相關 文章 :
★ 人教版七年級數學上冊復習提綱
★ 七年級上冊數學知識點總結三篇
★ 人教版七年級上冊數學考試提綱
★ 初一數學上冊知識點匯總歸納
★ 初一數學上冊知識點總結
★ 初一人教版數學上冊知識點總結歸納
★ 浙教版七年級上冊數學復習提綱
★ 初一上冊數學重點知識點歸納總結
★ 初一數學學習經驗總結 七年級數學學習心得體會
★ 七年級數學上冊知識點匯總
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❻ 七年級上冊數學知識點歸納整理
數學的知識點是很重要的,下面我就大家整理一下七年級上冊數學 知識點 歸納整理,僅供參考。
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
「圓和扇形」知識點圓的周長和弧長
1.圓的周長
2.弧長
圓和扇形面積
1.圓的面積
2.扇形的面積
重要程度--四顆星。弧長與扇形面積的計算公式需要熟記,這一部分的知識點會鏈接到初三下學期「正多邊形與圓」,會有一些組合圖形的陰影面積需要計算,這里也會是孩子學習的一個難點。
平行線1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、 判定兩條直線平行的方法:
(1) 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2) 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3) 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
以上就是我為大家整理的七年級上冊數學知識點歸納整理。
❼ 七年級數學上冊知識點總結
七年級數學上冊知識點總結(通用8篇)總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。
七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
❽ 初一上冊數學重點知識點歸納
數學學習數學不光有做一些習題,還要注重知識點的總結與歸納。下面,我為大家整理一下初一上冊數學重點知識點歸納僅供大家參考。
初一上冊數學重點知識點:有理數
(一)正負數
1.正數:大於0的數。
2.負數:小於0的數。
3.0即不是正數也不是負數。
4.正數大於0,負數小於0,正數大於負數。
( 二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2.整數:正整數、0、負整數,統稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5.a-b=a+(-b)減去一個數,等於加這個數的相反數。
絕對值
(1)絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。(2)正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。?a(a?0)?|a|?0(a?0)??a(a?0)?越來越大或?a(a?0)|a|???a(a?0)-3-2-10123(3)絕對值的性質:①除0外,絕對值為正數的數有兩個,它們互為相反數;②互為相反數的兩數(除0外)的絕對值相等;即:|a|=|b|,則a+b=0③任何數的絕對值總是非負數,即|a|≥0④對任何有理數a,都有|a|=|-a|5.比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:①先求出兩個數負數的絕對值;②比較兩個絕對值的大小;③根據「兩個負數,絕對值大的反而小」做出正確的判斷。
以上就是我為大家整理的初一上冊數學重點知識點歸納,希望能幫助到大家,更多中考信息請繼續關注本站!