① 初二數學上冊課本內容 必背知識點概括
初二是初中生學習非常重要的一個階段,下面我為大家總結了初二數學上冊課本內容,僅供大家參考。
初二數學知識點
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
數學實數知識點
1. 算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解 無理數 和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
初中數學分解因式的步驟
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
數學 整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
以上就是我為大家總結的初二數學上冊課本內容。僅供參考,希望對大家有幫助。
② 初二數學上冊重點知識點總結
初中生在學習數學的過程中應該注意知識點的總結,下面總結了初二數學上冊知識點,供大家參考。
位置與坐標
1.確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2.平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。
3.軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
一次函數
(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
(二)函數三要素
1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。
2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。
3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。
(三)一次函數的表示方法
1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。
2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
3.圖像法:用圖象來表示函數關系的方法叫做圖象法。
(四)一次函數的性質
1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。
2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
全等三角形
1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
2.三角形全等的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
3.角平分線
(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。
(2)性質
①角平分線分得的兩個角相等,都等於該角的一半。
②角平分線上的點到角的兩邊的距離相等。
分式
(一)分式的運算
分式四則運算,順序乘除加減,
乘除同級運算,除法符號須變(乘),
乘法進行化簡,因式分解在先,
分子分母相約,然後再行運算,
加減分母需同,分母化積關鍵,
找出最簡公分母,通分不是很難,
變號必須兩處,結果要求最簡。
(二)分式的運演算法則
(1)約分
①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。
②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。
(2)公因式的提取方法
系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。
(3)除法
兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
(4)乘方
分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。
圖形的平移與旋轉
1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
2.平移性質
(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。
(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。
③ 人教版初二上冊數學知識點歸納
【篇一】
1全等三角形的對應邊、對應角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
12等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13推論3等邊三角形的各角都相等,並且每一個角都等於60°
14等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也慶含粗相等(等角對等邊)
15推論1三個角都相等的三角形是等邊三角形
16推論2有一個角等於60°的等腰三角形是等邊三角形
17在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
18直角三角形斜邊上的中線等於斜邊上的一半
19定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22定理1關於某條直線對稱的兩個圖形是全等形
23定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
24定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
25逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
26勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
27勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形
28定理四邊形的內角和等於360°
29四邊形的外角和等於360°
30多邊形內角和定理n邊形的內角的和等於(n-2)×180°
31推論任意多邊的外角和等於360°
32平行四邊形性質定理1平行四邊形的對角相等
33平行四邊形性質定理2平行四邊形的對邊相等
34推論夾在兩條平行線間的平行線段相等
35平行四邊形性質定理3平行四邊形的對角線互相平分
36平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
37平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
38平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
39平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
40矩形性質定理1矩形的四個角都是直角
41矩形性質定理2矩形的對角線相等
42矩形判定定理1有三個角是直角的四邊形是矩形
43矩形判定定理2對角線相等的平行四邊老友形是矩形
44菱形性質定理1菱形的四條邊都相等
45菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角
46菱形面積=對角線乘積的一半,即S=(a×b)÷2
47菱形判定定理1四邊都相等的四邊形是菱形
48菱形判定定理2對角線互相垂直的平行四邊形是菱形
49正方形性質定理1正方形的四個角都是直角,四條邊都相等
50正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
51定理1關於中心對稱的兩個圖形是全譽鎮等的
52定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
53逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
54等腰梯形性質定理等腰梯形在同一底上的兩個角相等
55等腰梯形的兩條對角線相等
56等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
57對角線相等的梯形是等腰梯形
58平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
59推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
60推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
61三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半
62梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h
【篇二】
一、軸對稱圖形
1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關於這條直線(成軸)對稱。
2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點
3、軸對稱圖形和軸對稱的區別與聯系
4.軸對稱的性質
①關於某直線對稱的兩個圖形是全等形。
②如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那麼這兩個圖形關於這條直線對稱。
二、線段的垂直平分線
1.經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點與這條線段的兩個端點的距離相等
3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結:
1.在平面直角坐標系中,關於x軸對稱的點橫坐標相等,縱坐標互為相反數.關於y軸對稱的點橫坐標互為相反數,縱坐標相等.
2.三角形三條邊的垂直平分線相交於一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1.等腰三角形的性質
①.等腰三角形的兩個底角相等。(等邊對等角)
②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點回顧
1.等邊三角形的性質:等邊三角形的三個角都相等,並且每一個角都等於600。
2、等邊三角形的判定:
①三個角都相等的三角形是等邊三角形。
②有一個角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等於300,那麼它所對的直角邊等於斜邊的一半。
①、等腰三角形的性質
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊並且垂直於底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,並且每個角都等於60°。
②、等腰三角形的其他性質:
(1)等腰直角三角形的兩個底角相等且等於45°
(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
(3)等腰三角形的三邊關系:設腰長為a,底邊長為b,則
(4)等腰三角形的三角關系:設頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用於證明同一個三角形中的邊相等。
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
④、三角形中的中位線
連接三角形兩邊中點的線段叫做三角形的中位線。
(1)三角形共有三條中位線,並且它們又重新構成一個新的三角形。
(2)要會區別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。
三角形中位線定理的作用:
位置關系:可以證明兩條直線平行。
數量關系:可以證明線段的倍分關系。
常用結論:任一個三角形都有三條中位線,由此有:
結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結論2:三條中位線將原三角形分割成四個全等的三角形。
結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結論4:三角形一條中線和與它相交的中位線互相平分。
結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
【篇三】
1.提公共因式法
※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2.概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
2.運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點點評:
因式分解要分解到底.如就沒有分解到底.
※4.運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
3.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
4.分組分解法:
※1.分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2.概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3.注意:分組時要注意符號的變化.
5.十字相乘法:
※1.對於二次三項式,將a和c分別分解成兩個因數的乘積,,,且滿足,往往寫成的形式,將二次三項式進行分解.
如:
※2.二次三項式的分解:
※3.規律內涵:
(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4.易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
④ 八年級數學課本知識點
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
八年級上冊數學知識點 總結 歸納
一、全等形
1、定義:能夠完全重合的兩個圖形叫做全等圖形,簡稱全等形。
2、一個圖形經過翻折、平移和旋轉等變換後所得到的圖形一定與原圖形全等。反之,兩個全等的圖形經過上述變換後一定能夠互相重合。
二、全等多邊形
1、定義:能夠完全重合的多邊形叫做全等多邊形。互相重合的點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、性質:
(1)全等多邊形的對應邊相等,對應角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:≌。如圖,不是為:△ABC≌△ABC。讀作:三角形ABC全等於三角形ABC。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應相等的兩三角形全等。(即SAS,邊角邊);
(2)有兩角和它們的夾邊對應相等的兩三角形全等。(即ASA,角邊角)
(3)有兩角和其中一角的對邊對應相等的兩三角形全等。(即AAS,角角邊)
(4)有三邊對應相等的兩三角形全等。(即SSS,邊邊邊)
(5)有斜邊和一條直角邊對應相等的兩直角三角形全等。(即HL,斜邊直角邊)
3、全等三角形的性質:
(1)全等三角形的對應邊相等、對應角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應邊上的中線、高,對應角的平分線都相等。
4、全等三角形的作用:
(1)用於直接證明線段相等,角相等。
(2)用於證明直線的平行關系、垂直關系等。
(3)用於測量人不能的到達的路程的長短等。
(4)用於間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用於解決有關等積等問題。
初二上數學知識點
同類項的概念:所含字母相同,並且相同字母的指數也相同的項叫做同類項。幾個常數項也叫同類項。
判斷幾個單項式或項,是否是同類項的兩個標准:
①所含字母相同。②相同字母的次數也相同。
判斷同類項時與系數無關,與字母排列的順序也無關。
合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
合並同類項步驟:
⑴.准確的找出同類項。
⑵.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
⑶.寫出合並後的結果。
合並同類項時注意:
(1)如果兩個同類項的系數互為相反數,合並同類項後,結果為0。
(2)不要漏掉不能合並的項。
(3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
(4)不是同類項千萬不能進行合並。
初二上冊數學一次函數知識點總結
一、函數:
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
二、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優缺點
(1)關系式(解析)法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。
2、一次函數的圖像:所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。
八年級數學課本知識點相關 文章 :
★ 八年級上冊數學課本的知識點歸納
★ 人教版八年級上冊數學課本知識點歸納
★ 人教版八年級數學上冊知識點總結
★ 八年級下冊數學知識點整理
★ 人教版八年級上冊數學課本知識點歸納(2)
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點總結人教版
★ 八年級下冊數學書知識點
★ 新人教版八年級數學上冊知識點
★ 初二數學上冊知識點總結
⑤ 八年級數學上冊知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級上冊數學知識點
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二數學知識點歸納
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
八年級數學上冊知識點 總結 相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點歸納
★ 初二上冊數學知識點歸納總結
★ 初二數學上冊知識點
★ 八年級上冊數學的知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結人教版
★ 初二數學知識點歸納上冊人教版
⑥ 初二數學上冊書知識點總結
學習八年級數學知識點的時間不多。學習會使你獲得許多你成長所必需的“能源”,以下是我為大家整理的初二數學上冊書知識點總結,希望你們喜歡。
初二數學上冊書知識點總結1-40
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
初二數學上冊書知識點總結41-80
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
初二數學上冊書知識點總結81-136
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ¬
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 ¬
86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ¬
分線的比都等於相似比 ¬
87 性質定理2 相似三角形周長的比等於相似比 ¬
88 性質定理3 相似三角形面積的比等於相似比的平方 ¬
89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 ¬
於它的餘角的正弦值 ¬
90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 ¬
於它的餘角的正切值 ¬
91圓是定點的距離等於定長的點的集合 ¬
92圓的內部可以看作是圓心的距離小於半徑的點的集合 ¬
93圓的外部可以看作是圓心的距離大於半徑的點的集合 ¬
94同圓或等圓的半徑相等 ¬
95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 ¬
徑的圓 ¬
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ¬
平分線 ¬
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ¬
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ¬
離相等的一條直線 ¬
99定理 不在同一直線上的三點確定一個圓. ¬
100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 ¬
101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ¬
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ¬
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 ¬
102推論2 圓的兩條平行弦所夾的弧相等 ¬
103圓是以圓心為對稱中心的中心對稱圖形 ¬
104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ¬
相等,所對的弦的弦心距相等 ¬
105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ¬
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 ¬
106定理 一條弧所對的圓周角等於它所對的圓心角的一半 ¬
107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ¬
108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ¬
對的弦是直徑 ¬
109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 ¬
110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 ¬
的內對角 ¬
111①直線L和⊙O相交 d
②直線L和⊙O相切 d=r ¬
③直線L和⊙O相離 d>r ¬
112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 ¬
113切線的性質定理 圓的切線垂直於經過切點的半徑 ¬
114推論1 經過圓心且垂直於切線的直線必經過切點 ¬
115推論2 經過切點且垂直於切線的直線必經過圓心 ¬
116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ¬
圓心和這一點的連線平分兩條切線的夾角 ¬
117圓的外切四邊形的兩組對邊的和相等 ¬
118弦切角定理 弦切角等於它所夾的弧對的圓周角 ¬
119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 ¬
120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ¬
相等 ¬
121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 ¬
兩條線段的比例中項 ¬
122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ¬
線與圓交點的兩條線段長的比例中項 ¬
123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ¬
124如果兩個圓相切,那麼切點一定在連心線上 ¬
125①兩圓外離 d>R+r ②兩圓外切 d=R+r ¬
③兩圓相交 R-r<d r) ¬</d
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d r) ¬
126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ¬
127定理 把圓分成n(n≥3): ¬
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ¬
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ¬
128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ¬
129正n邊形的每個內角都等於(n-2)×180°/n ¬
130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ¬
131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ¬
132正三角形面積√3a/4 a表示邊長 ¬
133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 ¬
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ¬
134弧長計算公式:L=n兀R/180 ¬
135扇形面積公式:S扇形=n兀R^2/360=LR/2 ¬
136內公切線長= d-(R-r) 外公切線長= d-(R+r)¬