當前位置:首頁 » 基礎知識 » 初中數學一次函數知識點
擴展閱讀
電力鐵塔基礎怎麼定方向 2025-01-04 09:02:06
淘寶運營教育行業如何 2025-01-04 08:53:10
教育工作者如何規避風險 2025-01-04 08:34:28

初中數學一次函數知識點

發布時間: 2022-03-02 07:34:08

❶ 求初中數學函數知識點歸納如反比例函數,一次函數等等

其實你可以去書店(如新華書店,最好是在某個中學附近的小書店,專門賣中學生資料的那種書店)查查,那樣更准確。

❷ 請幫忙總結初中數學函數知識點

好好看看課本,學會總結,別愁,一旦自己整理出來,你也就記住了,要耐心

❸ 初中數學一次函數的知識

四次課解決一次函數問題(mp4視頻)

鏈接:https://pan..com/s/1rElvLAH-w0dAZS7vRMdDfA

提取碼:g933

若資源有問題歡迎追問~

❹ 人教版數學初二 第十四章 一次函數 知識點歸納

5xud。。。。。。。。。

❺ 初中數學函數有哪些知識點

有理數 整式 一元一次方程 一元二次方程(組)不等式 實數 分式 一次函數 反比例函數 因式分解 二次函數 一元二次方程 四邊形 相似 解三角函數 圓 概率 統計 等等

❻ 初中數學一次函數,二次函數,反比例函數重點知識總結。

初中數學一次函數,正比例函數,反比例函數重點知識總結參見:http://wenku..com/view/2b6808ed102de2bd9605885b.html
二次函數重點知識總結:
I.定義與定義表達式
一般地,自變數x和因變數y之間存在如下關系:
y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2;+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2;+k [拋物線的頂點P(h,k)]
交點式:y=a(x-x1)(x-x2) [僅限於與x軸有交點A(x1,0)和 B(x2,0)的拋物線]
註:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x²的圖像,
可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線
x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P [ -b/2a ,(4ac-b^2;)/4a ]。
當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與x軸交點個數
Δ= b^2-4ac>0時,拋物線與x軸有2個交點。
Δ= b^2-4ac=0時,拋物線與x軸有1個交點。
Δ= b^2-4ac<0時,拋物線與x軸沒有交點。
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2;+bx+c,
當y=0時,二次函數為關於x的一元二次方程(以下稱方程),
即ax^2;+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。

二次函數解析式的幾種形式

(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).

(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).

(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點

答案補充
如果圖像經過原點,並且對稱軸是y軸,則設y=ax^2;如果對稱軸是y軸,但不過原點,則設y=ax^2+k

定義與定義表達式
一般地,自變數x和因變數y之間存在如下關系:
y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)
則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
x是自變數,y是x的函數

二次函數的三種表達式
①一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
②頂點式[拋物線的頂點 P(h,k) ]:y=a(x-h)^2+k
③交點式[僅限於與x軸有交點 A(x1,0) 和 B(x2,0) 的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進行如下轉化:
①一般式和頂點式的關系
對於二次函數y=ax^2+bx+c,其頂點坐標為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交點式的關系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

❼ 初中數學函數知識點

1.常量和變數
在某變化過程中可以取不同數值的量,叫做變數.在某變化過程中保持同一數值的量或數,叫常量或常數.
2.函數
設在一個變化過程中有兩個變數x與y,如果對於x在某一范圍的每一個值,y都有唯一的值與它對應,那麼就說x是自變數,y是x的函數.
3.自變數的取值范圍
(1)整式:自變數取一切實數.
(2)分式:分母不為零.
(3)偶次方根:被開方數為非負數.
(4)零指數與負整數指數冪:底數不為零.
4.函數值
對於自變數在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.
5.函數的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數的圖象
把自變數x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.
由函數解析式畫函數圖象的步驟:
(1)寫出函數解析式及自變數的取值范圍;
(2)列表:列表給出自變數與函數的一些對應值;
(3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;
(4)連線:用平滑曲線,按照自變數由小到大的順序,把所描各點連接起來.
7.一次函數
(1)一次函數
如果y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數.
特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.
(2)一次函數的圖象
一次函數y=kx+b的圖象是一條經過(0,b)點和
點的直線.
特別地,正比例函數圖象是一條經過原點的直線.
需要說明的是,在平面直角坐標系中,「直線」並不等價於「一次函數y=kx+b(k≠0)的圖象」,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.
(3)一次函數的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.
直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為

(4)用函數觀點看方程(組)與不等式
①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變數的值,從圖象上看,相當於已知直線y=kx+b,確定它與x軸交點的橫坐標.
②二元一次方程組
對應兩個一次函數,於是也對應兩條直線,從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數值相等,以及這兩個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線的交點的坐標.
③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大於0或小於0時,求自變數相應的取值范圍.
8.反比例函數
(1)反比例函數
如果
(k是常數,k≠0),那麼y叫做x的反比例函數.
(2)反比例函數的圖象
反比例函數的圖象是雙曲線.
(3)反比例函數的性質
①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.
②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.
③反比例函數圖象關於直線y=±x對稱,關於原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線
上,則k=x0y0.
②k的幾何意義:
若雙曲線
上任一點A(x,y),AB⊥x軸於B,則S△AOB

❽ 初中數學函數知識歸納

初中數學知識點歸納(口訣)——函數
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線

❾ 初中數學函數知識點。

以下是一些知識點供你參考,如果想要一些題得話,你可以在網路文庫裡面搜索初中函數知識點,裡面有不少呢~! 祝學習進步~! 函數及其圖像 一、平面直角坐標系 在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。 坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。 注意:x軸和y軸上的點,不屬於任何象限。 二、不同位置的點的坐標的特徵 1、各象限內點的坐標的特徵 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐標軸上的點的特徵 在x軸上縱坐標為0 , 在y軸上橫坐標為, 原點坐標為(0,0) 3、兩條坐標軸夾角平分線上點的坐標的特徵 點P(x,y)在第一、三象限夾角平分線上 x與y相等 點P(x,y)在第二、四象限夾角平分線上 x與y互為相反數 4、和坐標軸平行的直線上點的坐標的特徵 位於平行於x軸的直線上的各點的縱坐標相同。 位於平行於y軸的直線上的各點的橫坐標相同。 5、關於x軸、y軸或遠點對稱的點的坐標的特徵 點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數 點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數 點P與點p』關於原點對稱 橫、縱坐標均互為相反數 6、點到坐標軸及原點的距離 點P(x,y)到坐標軸及原點的距離: (1)到x軸的距離等於 (2)到y軸的距離等於 (3)到原點的距離等於 三、函數及其相關概念 1、變數與常量 在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。 一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。 2、函數的三種表示法(1)解析法(2)列表法(3)圖像法 3、由函數解析式畫其圖像的一般步驟(1)列表(2)描點(3)連線 4、自變數取值范圍 四、正比例函數和一次函數 1、正比例函數和一次函數的概念 一般地,如果 (k,b是常數,k 0),那麼y叫做x的一次函數。 特別地,當一次函數 中的b為0時, (k為常數,k 0)。這時,y叫做x的正比例函數。 2、一次函數的圖像:是一條直線 3、正比例函數的性質,,一般地,正比例函數 有下列性質: (1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大; (2)當k0時,y隨x的增大而增大 (2)當k0時,函數圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x 的增大而減小。 (2)當k0拋物線開口向上,對稱軸是x= ,頂點坐標是( , );在對稱軸的左側,即當x 時,y隨x的增大而增大;拋物線有最低點,當x= 時,y有最小值, (2) a 時,y隨x的增大而減小,; 拋物線有最高點,當x= 時,y有最大值, 4、.二次函數的解析式有三種形式: (1)一般式: (2)頂點式: (3)兩根式: 5、拋物線 中, 的作用: 表示開口方向: >0時,拋物線開口向上,,, 0時,圖像與x軸有兩個交點; 當 =0時,圖像與x軸有一個交點; 當