① 小學1到6年級數學知識重點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
北師:
小學數學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小於90度的角,直角是90度,鈍角是大於90度而小於平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形。
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
17、小數的計數單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩定性
22、三角形任意兩邊之和大於第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差。四六九十一三十,平年二月二十八,閏年二月二十九。
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
周長公式:長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C=πd C =2πr
半圓的周長=圓周長的一半+直徑 πr+d
面積公式:長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
梯形面積=(上底+下底)×高÷2 S=(a+b)h÷2
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=Ch
表面積公式:長方體表面積=(長×寬+長×高+寬×高)×2
S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=C h
圓柱體表面積=側面積+底面積×2 S=S側+2 S底
體積公式:長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=Sh
(將近似長方體平放得到:圓柱體體積=側面積的一半×半徑 V=Ch÷2×r=2πr÷2×r=πr×r)
圓錐體體積=底面積×高÷3 V=Sh÷3或1/3Sh
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
② 小學一至六年級數學知識點
小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?
③ 小學六年級上冊數學必考知識點有哪些
一、運算定律或性質
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
二、幾何圖形計算公式
周長:即圍繞物體一周的長度。
①長方形周長=(長+寬)×2 C=(a+b)×2
②正方形周長=邊長×4 C=4a
③圓的周長=圓周率×直徑=圓周率×半徑×2 C=πd C =2πr
面積:即物體的表面或封閉圖形的大小
①長方形的面積=長×寬S=ab
②正方形的面積=邊長×邊長S=a•a=a2
③平行四邊形的面積=底×高S=ah
④三角形的面積=底×高÷2 S=ah÷2
三、數量關系式
1、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
3、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
四、分數乘法的演算法:
1、分數與整數相乘,分子與整數相乘的積做分子,分母不變。
2、分數與分數相乘,用分子相乘的積做分子,分母相乘的積做分母。
分數的化簡:分子、分母同時除以它們的最大公因數。
五、分數除法
分數除法是分數乘法的逆運算,就是已知兩個數的積與其中一個因數,求另一個因數的運算。除以一個數是乘這個數的倒數,除以幾就是乘這個數的幾分之一。
比:兩個數相除也叫兩個數的比。比表示兩個數的關系,可以寫成比的形式,也可以用分數表示,但仍讀幾比幾。註:10/2=5/1,表示比讀5比1,19:2=5,是比值,比值是一個數,可以是整數,分數,也可以是小數。
④ 小學六年級數學必考知識點有哪些
小學六年級數學必考知識點:
一、分數
1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
2.分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3.分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
4.分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。
二、百分數
1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。
2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。
三、分數除法
1、分數除法:分數除法是分數乘法的逆運算。
2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。
四。比例
1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。
2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。
⑤ 六年級數學知識
、、、要找資料可以去網路文庫啊、、
(1)自然數:我們在數物體的時候,用來表示物體個數的0,1,2,3,……,都叫做自然數。1是自然數的記數單位。自然數既可以表示事物的多少(基數),也可以表示事物的次序(序數)。如「每星期7天」中的「7」表示的是基數,「5月3日」中的「5」和「3」表示的是序數。一個物體也沒有就用0表示。0是最小的自然數。
(2)整數和自然數:自然數都是整數,但只是整數的一部分(整數還包括負整數)。最小的一位數是1而不是0。
0的作用:①在數字中起佔位作用,表示該位上沒有單位;②表示起點;③表示界線。如溫度計、數軸上的0,表示正、負數的分界線。
(3)分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數就是分數單位。
分數與除法的關系:分數是一種數,除法是一種運算,它們是兩個不同的概念,但它們也有密切的內在聯系。如:
(4)小數:把整數「1」平均分成10份,100份,1000份……這樣的一份或幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。
小數的分類:
(5)數位、位數和計數單位:各個計數單位所佔的位置叫做數位。一個自然數含有數位的多少叫做位數。整數和小數都是按照十進制計數法寫出的數,其中個、十、百……以及十分之一、百分之一……都是計數單位。
(6)整數和小數數位順序表:
(7)百分數、成數和折扣:
①百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或百分比。
②成數:農業上常用的名詞。幾成就是十分之幾。
③折扣:商業上常用的名詞。幾折就是十分之幾。
注意:百分數、成數和折扣只表示兩個數的倍比關系,而分數除了表示倍比關系外,還可以是一個具體數量。
2、數的讀法和寫法
(1)整數的讀法:從高位到低位,一級一級地讀,每一級末尾的0都不讀出來,其他數位連續有幾個0都只讀一個零。
(2)整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
(3)小數的讀法和寫法:整數部分按整數來讀(寫),小數點讀作點,小數部分依次讀(寫)出每一位上的數。
3、數的改寫
(1)多位數的改寫和省略:為了讀寫方便,我們常把一個較大的多位數,寫成用「萬」或「億」作單位的數,先找到萬位或億位,再在萬位或億位上數的右下角點上小數點,並在後面寫上「萬」或「億」,要用「=」;有時也可以根據需要省略這個數某一位後面的尾數,寫成近似數。省略一般用「四捨五入法」,結果用「≈」。
(2)分數、小數與百分數的互化:
(3)一個最簡分數,如果分母中含有2和5以外的質因數,則這個分數不能化成有限小數。
4、數的大小比較
(1)整數的大小比較:先看位數,位數多的數大;位數相同,從最高位看起,相同數位上的數大的那個數就大。
(2)小數的大小比較:先比較兩個數的整數部分,整數部分大的那個數大;整數部分相同,再看它們的小數部分,從高位看起,依數位比較,相同數位上的數大的那個數就大。
(3)分數大小比較:分母相同的分數,分子大的分數大;分子相同的分數,分母小的分數大。分母不同的分數,先通分再比較。
第二節 數的整除和分數、小數的基本性質
知識要點
1、數的整除
(1)整除的意義:在小學階段講「數的整除」時所說的數一般指非0自然數。
數a除以數b,除得的商正好是整數而沒有餘數,我們就說,a能被b整除,或者說b能整除a。
(2)約數和倍數:如果a能被b整除,a叫做b的倍數,b叫做a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。
一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
(3)奇數和偶數:能被2整除的數叫做偶數,因為0也能被2整除,所以最小的偶數是0;不能被2整除的數叫做奇數,最小的奇數是1。
(4)能被2,3,5整除的數的特徵:
①能被2整除的數:個位是0,2,4,6,8。
②能被3整除的數:各位上的數的和能被3整除。
③能被5整除的數:個位上是0或5。
(5)質數和合數:一個數如果只有1和它本身兩個約數,叫做質數;一個數,如果除了1和它本身,還有別的約數,就叫做合數。1既不是質數,也不是合數。最小的質數是2,最小的合數是4。
(6)分解質因數:每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。把一個合數用幾個質因數相乘的形式表示出來,稱為分解質因數。通常我們用短除法來分解質因數。
(7)公約數和最大公約數:幾個數公有的約數叫做這幾個數的公約數。其中最大的一個叫做這幾個數的最大公約數。
(8)互質數:公約數只有1的兩個數,叫做互質數。
(9)公倍數和最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。其中最小的一個叫做這幾個數的最小公倍數。
(10)求最大公約數和最小公倍數的方法:一般採用短除法。如果兩個數中大數是小數的倍數,小數是大數的約數,則大數是它們的最小公倍數,小數是它們的最大公約數。如果兩個數是互質數,則它們的最大公約數是1,最小公倍數是兩數相乘所得的積
2、分數、小數的基本性質
(1)分數的基本性質:分數的分子和分母同時乘上或者除以相同的數(零除外),分數的大小不變。
(2)小數的基本性質:小數的末尾添上0或者去掉0,小數的大小不變。
(3)小數點位置移動引起小數大小變化:小數點向右移動一位,兩位,三位……原來的數就擴大10倍,100倍,1000倍……反之,小數點向左移動一位,兩位,三位……原來的數就縮小10倍,100倍,1000倍……
第三節 數的運算
知識要點
1、四則運算的意義和法則
(1)四則運算的意義:
數的
分類
運算名稱 整 數 小 數 分 數
加 法 把兩個數合並成一個數的運算。 與整數加法的意義相同。 與整數加法的意義相同。
減 法 已知兩個數的和與其中的一個加數,求另一個加數的運算。 與整數減法的意義相同。 與整數減法的意義相同。
乘 法 求幾個相同加數的和的簡便運算。 小數乘整數與整數乘法的意義相同。
一個數乘小數,就是求這個數的十分之幾、百分之幾、千分之幾……是多少。 分數乘整數與整數乘法的意義相同。
一個數乘分數,就是求這個數的幾分之幾是多少。
除 法 已知兩個因數的積與其中一個因數,求另一個因數的運算。 與整數除法的意義相同。 與整數除法的意義相同。
(2)四則運算的法則:
①加減法的法則:
同單位相加減,單位不變,單位的個數相加減
整 數 小 數 分 數
1.相同數位對齊;
2.從低位算起;
3.加法中滿幾十就向前一位進幾;減法中不夠減時,就從前一位退,退幾當幾十。 1. 相同數位對齊(小數點對齊);
2. 從低位算起;
3.按整數加減法進行計算;
4.結果中的小數點和相加減的數里的小數點對齊。 1.同分母分數相加減,分母不變,分子相加減。
2.異分母分數相加減,先通分,然後計算。
3.結果能約分的要約分,是假分數的化成帶分數。
②乘法、除法的法則:
乘
法 整 數 小 數 分 數
1.從個位乘起,依次用第二個因數每位上的數去乘第一個因數。
2.用第二個因數哪一位上的數去乘,得數的末位就和第二個因數的哪一位對齊。
3.再把幾次乘得的數加起來。 1.按整數乘法法則先求出積。
2.看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。 1.分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
2.有整數的把整數看做分母是1的假分數。
3.有帶分數的,通常先把帶分數化成假分數。
除
法 除法是整數的除法:從被除數的高位起,除數是幾位數,就先看被除數的前幾位,如果不夠除,就要多看一位。除到哪一位就要把商寫在哪一位的上面。商的小數點和被除數的小數點對齊。 除數是小數的除法:先移動除數的小數點,使它變成整數。除數的小數點向右移動幾位,被除數的小數點也向右移動相同的位數(位數不夠的補「0」),然後按照除數是整數的除法進行計算。 甲數除以乙數(0除外),等於甲數乘上乙數的倒數。
(3)四則運算各部分的關系:
2、運算定律和簡便運算
(1)運算定律:
①加法交換律 a+b=b+a
②加法結合律 (a+b)+c=a+(b+c)
③乘法交換律 a×b=b×a
④乘法結合率 a×b×c=a×(b×c)
⑤乘法分配律 a×(b+c)=a×b+a×c
(2)運算性質:
①減法的運算性質 a-(b+c)=a-b-c a-(b-c)=a-b+c
②除法的運算性質 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷b-b÷c
3、四則運算的順序
四則運算分為二級。加減法叫做第一級運算,乘除法叫做第二級運算。運算順序:在一個沒有括弧的算式里,如果只含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先做第二級運算,後做第一級運算。
在一個有括弧的算式里,要先算小括弧裡面的,再算小括弧外面的。
第二章 代數的初步知識
第一節 簡易方程
知識要點
1、用字母表示數
(1)用字母可以表示我們學過的自然數、整數、小數、百分……
(2)用含有字母的式子,可以簡明地表達數學概念、運算定律和數學計算公式。還可以簡明地表達數量關系。
注意:(1)在含有字母的乘法里,乘號可以省略不寫或用「?」表示。如:a×x寫成ax或a?x。數和數相乘時,乘號不能省略。
(2)數字和字母相乘時,可以化簡成數字放在最前面。如:a×4×b寫成4ab。
(3)1與字母相乘時,1省略不寫。如:a×1寫成a。
2、簡易方程
(1)等式:表示相等關系的式子叫等式。
(2)方程:含有未知數的等式叫方程。
(3)方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。
(4)解方程:求方程的解的過程叫做解方程。
(5)簡易方程的解法步驟:①對於只有一步運算的方程,可用加法與減法、乘法與除法的互逆關系求解。對於含有二、三步運算的方程,先根據方程確定運算順序,再根據四則運算的互逆關系求出方程的解。
②把求出的未知數的值,分別代入原方程兩邊計算(即求含有字母的式子的值),如果原方程的等號兩邊相等,則所求得的未知數的值,是原方程的解。
第二節 比和比例
知識要點
1、 和比例
比 比例
意義 兩個數相除又叫做兩個數的比。 表示兩個比相等的式子叫做比例。
基本性質 比的前項和後項同時乘上或者同時除以相同的數(零除外),比值不變。 在比例里,兩個內項的積等於兩個外項的積。
2、 比、分數與除法的關系
比 「:」(比號) 前項 後項 比值
分數 「—」(分數線) 分子 分母 分數值
除法 「÷」(除號) 被除數 除數 商
3、 求比值和化簡比的區別與聯系
一般方法 結果
求比值 根據比值的意義,用前項除以後項。 是一個商,可以是整數、小數或分數。
化簡比 根據比的基本性質,把比的前項和後項同時乘上或者同時除以相同的數(零除外)。 是一個比,它的前項和後項都是整數。
4、 比例尺
圖上距離和實際距離的比,叫做這幅圖的比例尺。即圖上距離:實際距離=比例尺。通常把比例尺寫成前項(或後項)是1的比。
5、 正比例和反比例的區別與聯系
相同點 不同點
特徵 關系式
正比例關系 兩種相關聯的量,一種量變化,另一種量也隨著變化。 兩種量中相對應的兩個數比值一定。 yx = k(一定)
反比例關系 兩種量中相對應的兩個數的積一定。 x×y=k(一定)
第三章 應用題
第一節 一般復合應用題
知識要點
1、復合應用題
兩步或兩步以上的應用題,通常叫做復合應用題。復合應用題是由幾道有聯系的簡單應用題組合而成的。不具備特定的結構特徵和解題規律的復合應用題,叫做一般復合應用題。
2、一般復合應用題的解法
一般復合應用題無一定的解答規律,可以把它先分解成幾個簡單的一步應用題,分別求出間接問題,然後求出結果。在具體分析解答中,一般採用分析法,綜合法,或分析綜合法。對於比較復雜的問題,可以運用圖示法、假設法、轉化法等幫助分析。
(1)分析法:就是從問題入手,逐步分析題里的已知條件。
(2)綜合法:就是從應用題的已知條件,逐步推向未知,直到求出解。
(3)分析綜合法:是將分析法|綜合法結合起來交替使用的方法。當已知條件中有明顯計算過程時就用綜合法順推,遇到困難時再轉向原題所提的問題用分析法幫忙,逆推幾步,順推和逆推聯繫上了,問題就解決了。
3、一般復合應用題的解題步驟
解答一般復合應用題,按照以下步驟進行:
(1)審清題意,並找出已知條件和所求問題;
(2)分析題目里的數量關系,從而確定先算什麼,再算什麼……最後算什麼;
(3)列出算式,算出得數;
(4)進行檢驗,寫出答案。
第二節 典型應用題
知識要點
1、典型應用題
用兩步或兩步以上運算解答的並且有一定解答規律的應用題叫典型應用題。如求平均數應用題、相遇問題、歸一應用題等。要特別注意認識各類應用題的特點,並掌握其解題規律。
2、求平均數問題
(1)求平均數問題的特點:把各「部分量」合並為「總量」,然後按「總份數」平均,求其中一份是多少。
(2)求平均數問題的解題規律:解答這類問題的關鍵是先求出「總量」和「總份數」,然後用總量÷總份數=平均數。
(3)有些復雜的求平均數問題,我們根據平均數就是移出大數多出部分給小數後得到相等數的實質,用「移多補少法」解答。
3、歸一問題
(1)歸一問題的特點:從已知條件中求出「單一量」,再以「單一量」為標准去計算所求的量。歸一問題通常分為正歸一和反歸一兩種。
(2)歸一問題的解題規律:在解題過程中,首先求出一個單位數量,然後以這個「單位量」為標准,根據題目的要求,用乘法算出若干個「單位量」是多少,這是正歸一的解題規律。或用除法算出總量包含多少個「單位量」,這是反歸一的解題規律。歸一問題還可以用倍比問題的解題方法求解。
4、相遇問題
(1)特點:a.兩個運動物體;b.運動方向相向;c.運動時間同時。
(2)解題規律:速度和×相遇時間=路程 路程÷速度和=相遇時間
路程÷相遇時間=速度和
第三節 分數、百分數應用題
知識要點
1、分數乘法應用題
已知一個數,求它的幾分之幾(百分之幾)是多少,用乘法。
即「一個數×幾分之幾(百分之幾)」。
用等式表示三量的關系:單位「1」的量×對應分率=對應數量
2、分數除法應用題
(1)已知一個數的幾分之幾(百分之幾)是多少,求這個數,用除法。即「多少÷幾分之幾」。
用等式表示三量的關系:對應數量÷對應分率=單位「1」的量
(2)求一個數是另一個數的幾分之幾(百分之幾),用除法。即「一個數÷另一個數」
用等式表示三量的關系:對應數量÷單位「1」的量=對應分率
3、工程問題的應用題
把工作總量用「1」表示,工作效率用單位時間內做工作總量的「幾分之一」表示。根據工作總量與工作效率,就能求出合作完成工作的時間。
三量之間的關系式:工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
第四節 列方程解應用題
知識要點
1、列方程解應用題
列方程解應用題就是用字母代替應用題中的未知數,根據數量間的相等關系列方程,解方程。
2、列方程解應用題的一般步驟
(1)弄清題意,找出未知數並用x表示;
(2)找出應用題中數量間的相等關系,列方程;
(3)解方程;
(4)檢驗或驗算,寫出答案。
第五節 比和比例應用題
知識要點
比和比例應用題包括:比例尺、按比例分配和正反比例應用題。
(1)在比例尺應用題中,圖上距離、實際距離和比例尺三者之間的關系式:圖上距離:時間距離=比例尺。三個相關的量中,知道任意兩個量,就可根據關系式,求出另一個量。在計算中,要注意各種量的單位在算式中必須統一。
(2)按比例分配的應用題:是把一個數量按照一定的比分配成幾部分。按比例分配應用題是在比的意義、比與分數的關系的基礎上來解決的。關鍵是要根據各部分之比,確定各部分量與總量之間的關系,即各部分佔總量的幾分之幾。然後按照「求一個數(這里指分配的量)的幾分之幾是多少」的問題來解答。
(3)正比例應用題中的各種相關聯的數量有正比例關系,關系式是:yx = k(一定),反比例應用題中的各種相關聯的數量有反比例關系,關系式是:x ? y= k(一定)。解答正、反比例應用題,基本步驟是:
①分析數量關系,依據相關聯的量之間的數量關系式,判定它們成什麼比例;
②根據關系式列出等量關系式;
③設未知數,根據等量關系式列方程;
④解方程;⑤檢驗並寫出答案
第四章 量的計算
知識要點
1、量、計量和計量單位的意義
事物的多少、長短、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
2、常用計量單位及其進率
(1)長度、面積、地積、體積、容積、重量單位及其進率:
長度 1千米=1000米 1米=10分米=100厘米
1分米=10厘米 1厘米=10毫米
面積 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地積 1平方千米=100公頃
1公頃=10000平方米
體積 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容積 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1噸=1000千克 1千克=1000克
(2)常用時間單位及其關系:
①年月日之間的關系可用下表來說明:
一年有12個月,平年全年有365天,閏年全年有366天。 按大小月分 1月、3月、5月、7月、8月、10月、12月是大月,每月有31天
4月、6月、9月、11月是小月,每月30天
2月既不是大月,也不是小月,平年2月28天,閏年2月29天
按四個季度分 1月、2月、3月屬第一季度
4月、5月、6月屬第二季度
7月、8月、9月屬第三季度
10月、11月、12月屬第四季度
②每個月分上、中、下三旬,上旬、中旬各有10天,下旬天數要根據月份確定,大月下旬11天,小月下旬10天 ,平年二月下旬8天,閏年二月下旬9天。
③1星期=7日 1日=24小時 1小時=60分 1分=60秒
④根據公歷年份判斷該年是平年還是閏年方法如下:
整百、整千的年份能被400整除,其他年份能被4整除的都是閏年,反之是平年。
3、同一類計量單位之間的化聚
(1)化法:把高級單位的單名數和復名數改換成低級單位的單名數的方法,叫做化法。主要用相應的進率乘高級單位的量數。
(2)聚法:把低級單位的單名數改換成高級單位的單名數或復名數的方法,叫做聚法。在聚的過程中,要用相應的進率去除相關的量數。
(3)化法和聚法的關系:
第五章 幾何的初步知識
第一節 平面圖形的認識和計算
知識要點
1、線
2、角
(1)角:從一點引出兩條射線所組成的圖形叫做角。
(2)角的分類:
3、平面圖形
(1)三角形
①三角形的定義:由三條線段首尾互相連接圍成的圖形叫三角形。
②三角形的分類:
(2)四邊形
①四邊形的定義:由四條線段依次連接圍成的封閉圖形叫四邊形。
②四邊形的分類:
(3)特徵及周長、面積計算公式:
第六章 統計圖表
知識要點
1、統計表
(1)統計表:把收集到的資料進行數據整理後製成表格,用來分析情況,反映問題。這種表格叫做統計表,它一般分為單式統計表、復式統計表和百分數統計表三種類型。
(2)製作統計表:製作統計表時,首先要搜集數據,整理數據,然後根據資料和製表要求確定表的格式和項目。一般統計表包括總標題(表的名稱)、縱標目(每一縱欄的標題)、橫標目(每一橫欄的標題)、數據資料欄等,此外還應註明數量單位和製表日期,必要時,還要註明製表人。
2、統計圖
(1)統計圖:用點、線、面等來表示相關聯的量之間數量關系的圖形,叫做統計圖。常見的統計圖有條形統計圖、折線統計圖和扇形統計圖三種。
(2)條形統計圖:
①條形統計圖是用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些直條按照一定的順序排列起來。從條形統計圖中很容易看出各種數量的多少。
②條形統計圖的繪制方法:
a.整理數據;b.畫出縱軸和橫軸,用一個長度單位表示一定的數量;c.根據數量的多少畫成寬窄一樣,長短不同的直條,並按一定順序排列起來;d.寫出統計圖的名稱和制圖日期,並標出圖例。
(3)折線統計圖
①折線統計圖是用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次連接起來。它不但可表示數量的多少,而且能夠清楚地表示出數量增減變化的情況。
②折線統計圖的繪制方法:
a.整理數據;
b.畫出縱軸和橫軸,用一個長度單位表示一定的數量;
c.根據數量的多少描出各點,再把各點用線段順次連接起來;
d.寫出統計圖的名稱和制圖日期,並標出圖例。
⑥ 1至6年級數學知識總結
小學1至6年級數學主要學習基礎的計算和幾何代數的初步認識。數與代數裡面的基礎概念,如數位、自然數、正數、負數等;圖形與幾何部分的基礎概念,如角、角的定點、角的邊、三角形、四邊形等。
小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;
小學二年級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;
小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;
小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;
小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;
小學六年級:比例百分比概率,圓扇圓柱及圓錐。
⑦ 六年級數學知識點
①加數+加數=和
和-一個加數=另一個加數
②被減數-減數=差
被減數-差=減數
差+減數=被減數
③因數×因數=積
積÷一個因數=另一個因數
④被除數÷除數=商
被除數÷商=除數
商×除數=被除數
除數×商+余數=被除數
.比
比的意義:兩個數相除又叫作兩個數的比。
根據比的意義可以求比值;求比值的方法:用前向除以後項。
比的基本性質:比的前項和後項都乘或除以相同的數(0除外)比值不變。應用比的基本性質可以化簡比。
.四則混合運算
①在四則運算中,加法和減法稱為第一級運算,乘法和除法稱為第二級運算。
②在沒有括弧的算式里,如果只含有同一級運算,要從左往右一次計算;如果含有兩級運算,要先做第二級運算,再做第一級運算。
③在有括弧的算式里,要先算括弧裡面的,如果既有小括弧又有中括弧,要先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。
39.分數、百分數應用題
單位「1」已知,用乘法。單位「1」未知,用除法。
①求一個數是另一個數的幾(百)分之幾?
基本公式:前一個數÷後一個數 (比較量÷標准量)
②求一個數的幾(百)分之幾或幾倍是多少?(單位「1」已知)
基本公式:單位「1」的量×分率=分率對應的量
③已知一個數的幾(百)分之幾是多少,求這個數.(單位「1」未知用除法或方程)
基本公式:分率對應的數量÷分率=單位「1」的量 或者列方程解。
④已知兩個數,求一個數比另一個數多幾分之幾。
已知兩個數,求一個數比另一個數多百分之幾。
已知兩個數,求一個數比另一個數少幾分之幾。
已知兩個數,求一個數比另一個數少百分之幾。
基本公式:兩個數的差÷單位「1」的量(標准量
本金:存入銀行的錢叫本金。利息:取款時銀行多支付的錢叫利息。利率:利息與本金的百分比叫做利率。
②利息計算公式:利息=本金×時間×利率
利息稅=本金×時間×利率×5%
41.四則運算定律
加法交換律:a+b=b+a,
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba,
乘法結合律:(ab)c=a(bc)
乘法分配律:(a±b)c=ac±bc
運算性質
①減法的基本性質:a-(b+c)=a-b-c
a-b-c=a-(b+c)
②除法的基本性質:a÷b÷c=a÷(b×c)
(a±b)÷c=a÷c±b÷c
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 ?=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
⑧ 小學六年級數學的知識點總結
小學六年級教材共分上下兩冊,在這兩冊中,最重要的是下冊的總復習,這里包括了小學數學全部的知識點及其知識間的相互聯系,必須在老師的指導下切實掌握好這些知識及其知識間的聯系。其次是上冊的第三單元「分數四則混合運算和應用題」這一部分,每年的小學畢業考試試卷上有60分至80分的題目都來自於這個單元。再次是比例、圓柱與圓錐。最後是數學廣角(雞兔同籠和抽屜原理)與統計。這只是大范圍的介紹六年級的知識點,細說太麻煩,可以找個六年級的數學教師(老教六年級的更好)問一問。
⑨ 小學六年級數學都學有哪些知識詳細一點
有分數除法,圓,百分數,統計。。。負數,比例,圓柱和圓錐
你說的應該二元一次方程吧,就是如果一個方程含有兩個未知數,並且所含未知項都為1次方,就是二元一次方程