㈠ 數學高二必修3知識點
演算法初步
演算法的概念
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來准確、直觀地表示演算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
(二)構成程序框的圖形符號及其作用
程序框 名稱 功能
起止框 表示一個演算法的起始和結束,是任何流程圖不可少的。
輸入、輸出框 表示一個演算法輸入和輸出的信息,可用在演算法中任何需要輸入、輸出的位置。
處理框 賦值、計算,演算法中處理數據需要的算式、公式等分別寫在不同的用以處理數據的處理框內。
判斷框 判斷某一條件是否成立,成立時在出口處標明「是」或「Y」;不成立時標明「否」或「N」。 學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程序框圖的規則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。
(三)、演算法的三種基本邏輯結構:順序結構、條件結構、循環結構。
1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。
順序結構在程序框圖中的體現就是用流程線將程序框自上而
下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B
框是依次執行的,只有在執行完A框指定的操作後,才能接著執
行B框所指定的操作。
2、條件結構:
條件結構是指在演算法中通過對條件的判斷
根據條件是否成立而選擇不同流向的演算法結構。
條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。
3、循環結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:
(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。
(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。
當型循環結構
㈡ 高二數學知識點及公式有哪些
高二數學知識點及公式是如下:
一、集合與函數
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數。正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
二、復合函數常見題型
(1)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(2)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(3)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。
三、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可是任意個。
四、偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反。
五、奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同。
㈢ 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
㈣ 高二上學期數學知識點梳理總結
單元知識總結
一、坐標法
1.點和坐標
建立了平面直角坐標系後,坐標平面上的點和一對有序實數(x,y)建立了一一對應的關系.
2.兩點間的距離公式
設兩點的坐標為P1(x1,y1),P2(x2,y2),則兩點間的距離
特殊位置的兩點間的距離,可用坐標差的絕對值表示:
(1)當x1=x2時(兩點在y軸上或兩點連線平行於y軸),則
|P1P2|=|y2-y1|
(2)當y1=y2時(兩點在x軸上或兩點連線平行於x軸),則
|P1P2|=|x2-x1|
3.線段的定比分點
(2)公式:分P1(x1,y2)和P2(x2,y2)連線所成的比為λ的分點坐標是
公式
二、直線
1.直線的傾斜角和斜率
(1)當直線和x軸相交時,把x軸繞著交點按逆時針方向旋轉到和直線重合時所轉的最小正角,叫做這條直線的傾斜角.
當直線和x軸平行線重合時,規定直線的傾斜角為0.
所以直線的傾斜角α∈[0,π).
(2)傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜
∴當k≥0時,α=arctank.(銳角)
當k<0時,α=π-arctank.(鈍角)
(3)斜率公式:經過兩點P1(x1,y1)、P2(x2,y2)的直線的斜率為
2.直線的方程
(1)點斜式 已知直線過點(x0,y0),斜率為k,則其方程為:y-y0=k(x-x0)
(2)斜截式 已知直線在y軸上的截距為b,斜率為k,則其方程為:y=kx+b
(3)兩點式 已知直線過兩點(x1,y1)和(x2,y2),則其方程為:
(4)截距式 已知直線在x,y軸上截距分別為a、b,則其方程為:
(5)參數式 已知直線過點P(x0,y0),它的一個方向向量是(a,b),
v(cosα,sinα)(α為傾斜角)時,則其參數式方程為
(6)一般式 Ax+By+C=0 (A、B不同時為0).
(7)特殊的直線方程
①垂直於x軸且截距為a的直線方程是x=a,y軸的方程是x=0.
②垂直於y軸且截距為b的直線方程是y=b,x軸的方程是y=0.
3.兩條直線的位置關系
(1)平行:當直線l1和l2有斜截式方程時,k1=k2且b1≠b2.
(2)重合:當l1和l2有斜截式方程時,k1=k2且b1=b2,當l1和l2是
(3)相交:當l1,l2是斜截式方程時,k1≠k2
4.點P(x0,y0)與直線l:Ax+By+C=0的位置關系:
5.兩條平行直線l1∶Ax+By+C1=0,l2∶Ax+By+C2=0間
6.直線系方程
具有某一共同屬性的一類直線的集合稱為直線系,它的方程的特點是除含坐標變數x,y以外,還含有特定的系數(也稱參變數).
確定一條直線需要兩個獨立的條件,在求直線方程的過程中往往先根據一個條件寫出所求直線所在的直線系方程,然後再根據另一個條件來確定其中的參變數.
(1)共點直線系方程:
經過兩直線l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交點的直線系方程為:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系數.
在這個方程中,無論λ取什麼實數,都得不到A2x+B2y+C2=0,因此它不表示l2.當λ=0時,即得A1x+B1y+C1=0,此時表示l1.
(2)平行直線系方程:直線y=kx+b中當斜率k一定而b變動時,表示平行直線系方程.與直線Ax+By+C=0平行的直線系方程是Ax+By+λ=0(λ≠C),λ是參變數.
(3)垂直直線系方程:與直線Ax+By+C=0(A≠0,B≠0)垂直的直線系方程是:Bx-Ay+λ=0.
如果在求直線方程的問題中,有一個已知條件,另一個條件待定時,可選用直線系方程來求解.
7.簡單的線性規劃
(1)二元一次不等式Ax+By+C>0(或<0)表示直線Ax+By+C=0某一側所有點組成的平面區域.
二元一次不等式組所表示的平面區域是各個不等式所表示的平面點集的交集,即各個不等式所表示的平面區域的公共部分.
(2)線性規劃:求線性目標函數在線性約束條件下的最大值或最小值的問題,稱為線性規劃問題,
例如,z=ax+by,其中x,y滿足下列條件:
求z的最大值和最小值,這就是線性規劃問題,不等式組(*)是一組對變數x、y的線性約束條件,z=ax+by叫做線性目標函數.滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域,使線性目標函數取得最大值和最小值的可行解叫做最優解.
三、曲線和方程
1.定義
在選定的直角坐標系下,如果某曲線C上的點與一個二元方程f(x,y)=0的實數解建立了如下關系:
(1)曲線C上的點的坐標都是方程f(x,y)=0的解(一點不雜);
(2)以方程f(x,y)=0的解為坐標的點都是曲線C上的點(一點不漏).
這時稱方程f(x,y)=0為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
設P={具有某種性質(或適合某種條件)的點},Q={(x,y)|f(x,y)=0},若設點M的坐標為(x0,y0),則用集合的觀點,上述定義中的兩條可以表述為:
以上兩條還可以轉化為它們的等價命題(逆否命題):
為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
2.曲線方程的兩個基本問題
(1)由曲線(圖形)求方程的步驟:
①建系,設點:建立適當的坐標系,用變數對(x,y)表示曲線上任意一點M的坐標;
②立式:寫出適合條件p的點M的集合p={M|p(M)};
③代換:用坐標表示條件p(M),列出方程f(x,y)=0;
④化簡:化方程f(x,y)=0為最簡形式;
⑤證明:以方程的解為坐標的點都是曲線上的點.
上述方法簡稱「五步法」,在步驟④中若化簡過程是同解變形過程;或最簡方程的解集與原始方程的解集相同,則步驟⑤可省略不寫,因為此時所求得的最簡方程就是所求曲線的方程.
(2)由方程畫曲線(圖形)的步驟:
①討論曲線的對稱性(關於x軸、y軸和原點);
②求截距:
③討論曲線的范圍;
④列表、描點、畫線.
3.交點
求兩曲線的交點,就是解這兩條曲線方程組成的方程組.
4.曲線系方程
過兩曲線f1(x,y)=0和f2(x,y)=0的交點的曲線系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
四、圓
1.圓的定義
平面內與定點距離等於定長的點的集合(軌跡)叫圓.
2.圓的方程
(1)標准方程(x-a)2+(y-b)2=r2.(a,b)為圓心,r為半徑.
特別地:當圓心為(0,0)時,方程為x2+y2=r2
(2)一般方程x2+y2+Dx+Ey+F=0
當D2+E2-4F<0時,方程無實數解,無軌跡.
(3)參數方程 以(a,b)為圓心,以r為半徑的圓的參數方程為
特別地,以(0,0)為圓心,以r為半徑的圓的參數方程為
3.點與圓的位置關系
設點到圓心的距離為d,圓的半徑為r.
4.直線與圓的位置關系
設直線l:Ax+By+C=0和圓C:(x-a)2+(y-b)2=r2,則
5.求圓的切線方法
(1)已知圓x2+y2+Dx+Ey+F=0.
①若已知切點(x0,y0)在圓上,則切線只有一條,其方程是
過兩個切點的切點弦方程.
②若已知切線過圓外一點(x0,y0),則設切線方程為y-y0=k(x-x0),再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行於y軸的切線.
③若已知切線斜率為k,則設切線方程為y=kx+b,再利用相切條件求b,這時必有兩條切線.
(2)已知圓x2+y2=r2.
①若已知切點P0(x0,y0)在圓上,則該圓過P0點的切線方程為x0x+y0y=r2.
6.圓與圓的位置關系
已知兩圓圓心分別為O1、O2,半徑分別為r1、r2,則
單元知識總結
一、圓錐曲線
1.橢圓
(1)定義
定義1:平面內一個動點到兩個定點F1、F2的距離之和等於常數(大於|F1F2|),這個動點的軌跡叫橢圓(這兩個定點叫焦點).
定義2:點M與一個定點的距離和它到一條定直線的距離的比是常
(2)圖形和標准方程
(3)幾何性質
2.雙曲線
(1)定義
定義1:平面內與兩個定點F1、F2的距離的差的絕對值等於常數(小於|F1F2|)的點的軌跡叫做雙曲線(這兩個定點叫雙曲線的焦點).
定義2:動點到一定點的距離與它到一條定直線的距離之比是常數e(e>1)時,這個動點的軌跡是雙曲線(這定點叫做雙曲線的焦點).
(2)圖形和標准方程
圖8-3的標准方程為:
圖8-4的標准方程為:
(3)幾何性質
3.拋物線
(1)定義
平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線,定點F叫做拋物線的焦點,定直線l叫做拋物線的准線.
(2)拋物線的標准方程,類型及幾何性質,見下表:
①拋物線的標准方程有以下特點:都以原點為頂點,以一條坐標軸為對稱軸;方程不同,開口方向不同;焦點在對稱軸上,頂點到焦點的距離等於頂點到准線距離.
②p的幾何意義:焦點F到准線l的距離.
焦點弦長公式:|AB|=p+x1+x2
4.圓錐曲線(橢圓、雙曲線、拋物線統稱圓錐曲線)的統一定義
與一定點的距離和一條定直線的距離的比等於常數的點的軌跡叫做圓錐曲線,定點叫做焦點,定直線叫做准線、常數叫做離心率,用e表示,當0<e<1時,是橢圓,當e>1時,是雙曲線,當e=1時,是拋物線.
二、利用平移化簡二元二次方程
1.定義
缺xy項的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同時為0)※,通過配方和平移,化為圓型或橢圓型或雙曲線型或拋物線型方程的標准形式的過程,稱為利用平移化簡二元二次方程.
A=C是方程※為圓的方程的必要條件.
A與C同號是方程※為橢圓的方程的必要條件.
A與C異號是方程※為雙曲線的方程的必要條件.
A與C中僅有一個為0是方程※為拋物線方程的必要條件.
2.對於缺xy項的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同時為0)利用平移變換,可把圓錐曲線的一般方程化為標准方程,其方法有:①待定系數法;②配方法.
中心O′(h,k)
中心O′(h,k)
拋物線:對稱軸平行於x軸的拋物線方程為
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
頂點O′(h,k).
對稱軸平行於y軸的拋物線方程為:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
頂點O′(h,k).
以上方程對應的曲線按向量a=(-h,-k)平移,就可將其方程化為圓錐曲線的標准方程的形式.
㈤ 江蘇現在的高一升高二後,高二上學期數學准備學哪些知識點
很多人想知道高二數學的學習上有哪些重要的知識點,小編為大家整理了一些高二數學的重點知識,供參考!
1高二上學期數學知識點總結
一、不等式的性質
1.兩個實數a與b之間的大小關系
2.不等式的性質
(4)(乘法單調性)
3.絕對值不等式的性質
(2)如果a>0,那麼
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據
(2)不等式的性質(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當且僅當a=b時取「=」號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.
三、解不等式
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解無理不等式;
④解指數不等式;
⑤解對數不等式;
⑥解帶絕對值的不等式;
⑦解不等式組.
2.解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質.
(2)正確應用冪函數、指數函數和對數函數的增、減性.
(3)注意代數式中未知數的取值范圍.
3.不等式的同解性
(5)|f(x)|0)
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解.
(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x)
四、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
五、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
六、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學
七、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
八、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
2高二上學期數學重點知識大全
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
3高二數學期末復習建議
1、高二數學期末考試首先是對高二數學學習的檢測,所以先要保證自己的基礎知識沒有問題,那麼就需要高二學生在進行高二數學期末復習的時候要著重書上的重要知識點,在做題的時候一定要知道自己運用的什麼知識點,如有不會及時解決。
2、高二數學期末考試中基礎題為主要,所以在進行練習的時候要對典型題的解題步驟和易錯要點注意。比如利用導數求函數單調性的步驟,數學歸納法的基本思路和步驟,排列組合中的分類討論、排除法問題,用二項式定理求展開式中某項系數問題,服從典型分布的離散型隨機變數問題。一定要細心,保證自己會的不丟分。
3、高二數學期末復習的時候就要學會掌控時間,數學對於有些人來說做題是很費時間的,所以一定要勤加練習,別造成考試的時候題會做,但是沒有時間做,這樣就很傷心了。
4、學習不能是死學,一定要活學活用,一個題目會了就要保證相類似的題型就差不多沒問題。
5、考試中也會有難題出現,這就考查學生的能力了,所以在高二數學期末復習中還要做一些難題,以保證考試的時候沒有思路。
㈥ 高二數學知識點總結
一、求雙曲線的標准方程
求雙曲線的標准方程 或 (a、b>0),通常是利用雙曲線的有關概念及性質再 結合其它知識直接求出a、b或利用待定系數法.
例1 求與雙曲線 有公共漸近線,且過點 的雙曲線的共軛雙曲線方程.
解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .
評 此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設為 (kR,且k≠0);有公共焦點的雙曲線方程可設為 ,本題用的是待定系數法.
例2 雙曲線的實半軸與虛半軸長的積為 ,它的兩焦點分別為F1、F2,直線 過F2且與直線F1F2的夾角為 ,且 , 與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且 ,建立適當的坐標系,求雙曲線的方程.
解 以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為 (a>0,b>0),設F2(c,0),不妨設 的方程為 ,它與y軸交點 ,由定比分點坐標公式,得Q點的坐標為 ,由點Q在雙曲線上可得 ,又 ,
∴ , ,∴雙曲線方程為 .
評 此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3 設F1、F2為雙曲線 的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.
解 由雙曲線的第一定義知, ,兩邊平方,得 .
∵∠F1PF2=900,∴ ,
∴ ,
∴ .
2、第二定義的應用
例4 已知雙曲線 的離心率 ,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使 是 P到l的距離d與 的比例中項?
解 設存在點 ,則 ,由雙曲線的第二定義,得 ,
∴ , ,又 ,
即 ,解之,得 ,
∵ ,
∴ , 矛盾,故點P不存在.
評 以上二例若不用雙曲線的定義得到焦半徑 、
或其關系,解題過程將復雜得多.
三、雙曲線性質的應用
例5 設雙曲線 ( )的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到 的距離為 ,
求雙曲線的離心率.
解析 這里求雙曲線的離心率即求 ,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,
∵ , , ,由面積法知ab= ,考慮到 ,
知 即 ,亦即 ,注意到a<b的條件,可求得 .
四、與雙曲線有關的軌跡問題
例6 以動點P為圓心的圓與⊙A: 及⊙B: 都外切,求點P的軌跡方程.
解 設動點P(x,y),動圓半徑為r,由題意知 , , .
∴ .∴ , ,據 雙曲線的定義知,點P的軌跡是以A、B為焦點的雙曲線的右支,方程為 : .
例 7 如圖2,從雙曲線 上任一點Q引直線 的垂線,垂足為N,求線段QN的中點P的軌跡方程.
解析 因點P隨Q的運動而運動,而點Q在已知雙曲線上,
故可從尋求 Q點的坐標與P點的坐標之間的關系入手,用轉移法達到目的.
設動點P的坐標為 ,點Q的坐標為 ,
則 N點的坐標為 .
∵點 N在直線 上,∴ ……①
又∵PQ垂直於直線 ,∴ ,
即 ……②
聯立 ①、②解得 .又∵點N 在雙曲線 上,
∴ ,
即 ,化簡,得點P的軌跡方程為: .
五、與雙曲線有關的綜合題
例8 已知雙曲線 ,其左右焦點分別為F1、F2,直線l過其右焦點F2且與雙曲線 的右支交於A、B兩點,求 的最小值.
解 設 , ,( 、 ).由雙曲線的第二定義,得
, ,
∴ ,
設直線l的傾角為θ,∵l與雙曲線右支交於兩點A、B,∴ .
①當 時,l的方程為 ,代入雙曲線方程得
.
由韋達定理得: .
∴ .
②當 時,l的方程為 ,∴ ,∴ .
綜①②所述,知所求最小值為 .
㈦ 高二數學知識點及公式是什麼
高二數學知識點及公式是如下:
一、復合函數定義域
若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域。
⑵當為偶次根式時,被開方數不小於0(即≥0)。
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0。
⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。
⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數的定義域是各段上自變數的取值集合的並集。
⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求。
⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。
⑼對數函數的真數必須大於零,底數大於零且不等於1。
二、復合函數常見題型
(ⅰ)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。
㈧ 高二數學知識點總結
一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關系用符號=表示。
(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:①對應法則 ;②定義域 (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱;
五、反函數:
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要採用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根
注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分布的情況,得出結果,在令 和 檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:
(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
八、導 數
1.求導法則:
(c)/=0 這里c是常數。即常數的導數值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能准確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值 f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用於研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。
2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
九、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。
④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
基本應用:①放縮,變形;
②求函數最值:注意:①一正二定三相等;②積定和最小,和定積最大。
常用的方法為:拆、湊、平方;
三、絕對值不等式:
注意:上述等號「=」成立的條件;
四、常用的基本不等式:
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。
⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因導果。
(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有:
⑴添加或捨去一些項,
⑵將分子或分母放大(或縮小)
⑶利用基本不等式,
(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。
(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;
十、不等式的解法:
(1)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(2)絕對值不等式:若 ,則 ; ;
注意:
(1)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;
(2).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(3).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(4)分式不等式的解法:通解變形為整式不等式;
(5)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(6)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數,要討論。
十一、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列中,若m+n=p+q,則
16、等比數列中,若m+n=p+q,則
17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列與的和差的數列、仍為等差數列。
19、兩個等比數列與的積、商、倒數組成的數列
、 、 仍為等比數列。
20、等差數列的任意等距離的項構成的數列仍為等差數列。
21、等比數列的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、為等差數列,則 (c>0)是等比數列。
25、(bn>0)是等比數列,則 (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數列的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
十二、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 a>0時, 與a的方向相同;當a<0時, 與a的方向相反;當 a=0時,a=0.
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。
十三、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?