當前位置:首頁 » 基礎知識 » 人教版八年級上冊數學知識點
擴展閱讀
寫真女友動漫是什麼類型 2024-11-10 16:58:19
丸子同學結局是什麼 2024-11-10 16:56:14
老酒冷知識大全 2024-11-10 16:42:54

人教版八年級上冊數學知識點

發布時間: 2022-02-28 10:34:09

㈠ 初二數學知識點總結 上冊的

(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理三角形兩邊的和大於第三邊

16 推論三角形兩邊的差小於第三邊

17 三角形內角和定理三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形

48定理四邊形的內角和等於360°

49四邊形的外角和等於360°

50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51推論任意多邊的外角和等於360°

52平行四邊形性質定理1 平行四邊形的對角相等

53平行四邊形性質定理2 平行四邊形的對邊相等

54推論夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1 矩形的四個角都是直角

㈡ 八年級上冊數學知識點歸納、總結 人教版、

一.整式
1.1:加減
1.2:乘法
1.3:公式:1.平方差
2.完全平方
1.4:除法
1.5:因式分解
二.分式
2.1:定義
2.2:運算
2.3:方程
三.反比例函數
3.1:定義
3.2:利用反比例函數解決實際問題
四.軸對稱
4.1:定義
4.2:軸對稱變換
4.3:等腰三角形
五.總復習
回答者: 鄭長春123 - 門吏 二級 2-15 14:09
=======================================================
知 識 點 能力要求 了解 理解 掌握 應用 軸對稱圖形、軸對稱的概念 √ 軸對稱圖形的對稱軸及軸對稱的對稱軸、對稱點 √ 軸對稱圖形與軸對稱的區別和聯系 √ 線段垂直平分線的定義和性質 √ 成軸對稱的兩個圖形的性質 √ 利用軸對稱的性質作簡單的軸對稱 √ 利用軸對稱進行圖案設計 √ 對稱圖案中顏色的對稱 √ 利用網格設計軸對稱圖案 √ 線段是軸對稱圖形 √ 線段的垂直平分線的性質 √ 角是軸對稱圖形 √ 角平分線的性質 √ 等腰三角形的軸對稱性 √ 等腰三角形的性質 √ √ 等腰三角形三線合一的性質 √ 運用等腰三角形的性質解決問題 √ 等邊三角形及直角三角形的性質 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性質 √ 梯形輔助線的幾種作法 √ 等腰梯形同一底上的兩個內角相等、兩條對角線相等 √ 等腰梯形是軸對稱圖形 √ 等腰梯形的判定 √ 蘇科版八年級數學(上)知識點系目表 2008.9 勾股定理 √ 面積法證明勾股定理 √ 直角三角形的判定條件 √ 利用直角三角形的判定條件判定三角形 √ 勾股定理的實際應用 √ 勾股數的概念 √ 平方根的概念 √ 求一個非負數的平方根 √ 平方根的性質 √ 開平方的概念 √ , √ 立方根的概念 √ 求一個實數的立方根 √ 立方根的性質 √ 開立方的概念 √ 無理數、實數的概念 √ 實數的分類 √ 實數的大小比較 √ 用計算器計算 √ 實數范圍內的運算 √ 近似數的概念 √ 根據要求取近似數 √ 有效數字的概念 √ 1.旋轉的基本性質。 √ 2.按要求作出簡單的平面圖形通過旋轉後的形 √ 3.中心對稱及中心對稱圖形的有關概念和性質 √ 4.畫出已知圖形成中心對稱,會設計中心對稱案 √ 5.平行四邊形的性質; √ 6.運用平行四邊形的性質解決實際問題 √ 7.平行四邊形的判定方法 √ 8.運用平行四邊形的判定和性質解決實際問題; √ 9矩形、菱形、正方形的概念及其特殊的性質。 √ 10.矩形、菱形、正方形的判斷方法,運用矩形、菱形、正方形的判定和性質解決實際問題 √ 11.三角形中位線概念、性質. √ 12.會利用三角形的中位線的性質解決有關問題. √ 13.梯形的中位線的概念和性質; √ 14.能應用梯形的中位線的性質解決有關問題 √ 15.理解鑲嵌的意義,進行簡單的鑲嵌設計 √ 1、感受可以用多種方法記錄、描繪後表示變化的數量及變化規律 √ 2、能根據圖表所提供的信息,探索數量變化的某些聯系 √ 3、會描述物體運動的路徑 √ 4、能根據經緯度確定移動物體位置變化的路徑 √ 5、會用變化的數量描繪物體位置的變化 √ 6、領會實際模型中確定位置的方法,會正確畫出平面直角坐標系 √ 7、在給定的直角坐標系中,根據點的坐標描出點的位置 √ 8、在給定的直角坐標系中,會由點的位置寫出點的坐標 √ 9、在同一直角坐標系中,探索位置變化與數量變化的關系 √ 10、在同一直角坐標系中,探索圖形位置的變化與點的坐標變化的關系 √ 11、能建立適當直角坐標系,將實際問題數學化,並會用直角坐標系解決問題 √ 常量、變數意義 √ 函數概念和三種表示方法 √ 結合圖象分析實際問題中的函數關系 √ 確定自變數的取值范圍 √ 求函數值 √ 正比例函數概念 √ 一次函數概念 √ 根據已知條件確定一次函數解析式 √ 會畫一次函數圖象 √ 正比例函數圖象性質 √ 一次函數圖象性質 √ 一次函數圖象的性質(k>0或k<0圖象的變化) √ 直線在平面直角坐標系中的平移 √ 直線與直線的對稱 √ 直線的旋轉 √ 平面直角坐標系中的面積 √ 一次函數解決實際問題 √ 對變數的變化規律進行初步預測 √ 圖象發求二元一次方程組的解 √ 1.算術平均數和加權平均數的意義。 √ 2.求一組數據的算術平均數和加權平均數。 √ 3.權的差異對平均數的影響。 √ 4.算術平均數與加權平均數的聯系與區別。 √ 5.利用算術平均數和加權平均數解決實際問題。 √ 6.中位數和眾數代表的概念。 √ 7.根據所給的信息求出一組數據的中位數、眾數。 √ 8.平均數、中位數、眾數的區別與聯系。 √ 9選擇合適的統計量表示數據的集中程度。 √ 10.利用計算器求一組數據的平均數。 √ 11.經歷數據的收集、加工、整理和描述的統計過程,提高數據處理能力,發展統計意識。 (去買本老師用書)

給些例題
小結
例題:
1、一次函數:若兩個變數x,y存在關系為y=kx+b (k≠0, k,b為常數)的形式,則稱y是x的函數。
注意:(1)k≠0,否則自變數x的最高次項的系數不為1;
(2)當b=0時,y=kx,y叫x的正比例函數。
2、圖象:一次函數的圖象是一條直線
(1)兩個常有的特殊點:與y軸交於(0,b);與x軸交於(- ,0)。

(2)正比例函數y=kx(k≠0)的圖象是經過(0,0)和(1,k)的一條直線;一次函數y=kx+b(k≠0)的圖象是經過(- ,0)和(0,b)的一條直線。

(3)由圖象可以知道,直線y=kx+b與直線y=kx平行,例如直線:y=2x+3與直線y=2x-5都與直線y=2x平行。
3、一次函數圖象的性質:
(1)圖象在平面直角坐標系中的位置:

(2)增減性:

k>0時,y隨x增大而增大;
k<0時,y隨x增大而減小。
4、求一次函數解析式的方法
求函數解析式的方法主要有三種:
一是由已知函數推導,如例題1;
二是由實際問題列出兩個未知數的方程,再轉化為函數解析式,如例題4的第一問。
三是用待定系數法求函數解析式,如例2的第二小題、例7。
其步驟是:①根據題給條件寫出含有待定系數的解析式;②將x、y的幾對值或圖象上幾個點的坐標代入上述的解析式中,得到以待定系數為未知數的方程或方程組;③解方程,得到待定系數的具體數值;④將求出的待定系數代入要求的函數解析式中。
二、例題舉例:
例1、已知變數y與y1的關系為y=2y1,變數y1與x的關系為y1=3x+2,求變數y與x的函數關系。
分析:已知兩組函數關系,其中共同的變數是y1,所以通過y1可以找到y與x的關系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即變數y與x的關系為:y=6x+4。
例2、解答下列題目
(1)(甘肅省中考題)已知直線 與y軸交於點A,那麼點A的坐標是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考題)已知正比例函數 ,當x=–3時,y=6.那麼該正比例函數應為( )。
(A) (B) (C) (D)

(3)(福州市中考題)一次函數y=x+1的圖象,不經過的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析與答案:
(1) 直線與y軸交點坐標,特點是橫坐標是0,縱坐標可代入函數關系求得。
或者直接利用直線和y軸交點為(0,b),得到交點(0,3),答案為D。
(2) 求解析式的關鍵是確定系數k,本題已知x=-3時,y=6,代入到y=kx中,解析式可確定。答案D: y=-2x。
(3) 由一次函數y=kx+b的圖象性質,有以下結論:

題目中y=x+1,k=1>0,則函數圖象必過一、三象限;b=1>0,則直線和y軸交於正半軸,可以判定直線位置,也可以畫草圖,或取兩個點畫草圖判斷,圖像不過第四象限。

答案:D。

例3、(遼寧省中考題)某單位急需用車;但又不準備買車,他們准備和一個體車主或一國營計程車公司其中的一家簽訂月租車合同。設汽車每月行駛x千米,應付給個體車主的月費用是y1元,應付給計程車公司的月費用是y2元,y1、y2分別與x之間的函數關系圖象(兩條射線)如圖,觀察圖象回答下列問題:
(1)每月行駛的路程在什麼范圍內時,租國營公司的車合算?
(2)每月行駛的路程等於多少時,租兩家車的費用相同?
(3)如果這個單位估計每月行駛的路程為2300千米,那麼這個單位租哪家的車合算?

分析:因給出了兩個函數的圖象可知一個是一次函數,一個是一次函數的特殊形式正比例函數,兩條直線交點的橫坐標為1500,表明當x=1500時,兩條直線的函數值y相等,並且根據圖像可以知道x>1500時,y2在y1上方;0<x<1500時,y2在y1下方。利用圖象,三個問題很容易解答。
答:(1)每月行駛的路程小於1500千米時,租國營公司的車合算。
[或答:當0≤x<1500(千米)時,租國營公司的車合算]。
(2)每月行駛的路程等於1500千米時,租兩家車的費用相同。
(3)如果每月行駛的路程為2300千米,那麼這個單位租個體車主的車合算。
例4、(河北省中考題)某工廠有甲、乙兩條生產線先後投產。在乙生產線投產以前,甲生產線已生產了200噸成品;從乙生產線投產開始,甲、乙兩條生產線每天分別生產20噸和30噸成品。
(1)分別求出甲、乙兩條生產線投產後,各自總產量y(噸)與從乙開始投產以來所用時間x(天)之間的函數關系式,並求出第幾天結束時,甲、乙兩條生產線的總產量相同;
(2)在如圖所示的直角坐標系中,作出上述兩個函數在第一象限內的圖象;觀察圖象,分別指出第15天和第25天結束時,哪條生產線的總產量高?

分析:(1)根據給出的條件先列出y與x的函數式, =20x+200, =30x,當 = 時,求出x。
(2)在給出的直角坐標系中畫出兩個函數的圖象,根據點的坐標可以看出第15天和25天結束時,甲、乙兩條生產線的總產量的高低。

解:(1)由題意可得:
甲生產線生產時對應的函數關系式是:y=20x+200,
乙生產線生產時對應的函數關系式是:y=30x,
令20x+200=30x,解得x=20,即第20天結束時,兩條生產線的產量相同。
(2)由(1)可知,甲生產線所對應的生產函數圖象一定經過兩點A(0,200)和
B(20,600);
乙生產線所對應的生產函數圖象一定經過兩點O(0,0)和B(20,600)。
因此圖象如右圖所示,由圖象可知:第15天結束時,甲生產線的總產量高;第25天結束時,乙生產線的總產量高。
例5.直線y=kx+b與直線y=5-4x平行,且與直線y=-3(x-6)相交,交點在y軸上,求此直線解析式。
分析:直線y=kx+b的位置由系數k、b來決定:由k來定方向,由b來定與y軸的交點,若兩直線平行,則解析式的一次項系數k相等。例如y=2x,y=2x+3的圖象平行。
解:∵ y=kx+b與y=5-4x平行,
∴ k=-4,
∵ y=kx+b與y=-3(x-6)=-3x+18相交於y軸,
∴ b=18,
∴ y=-4x+18。
說明:一次函數y=kx+b圖象的位置由系數k、b來決定:由k來定方向,由b來定點,即函數圖象平行於直線y=kx,經過(0,b)點,反之亦成立,即由函數圖象方向定k,由與y軸交點定b。
例6.直線與x軸交於點A(-4,0),與y軸交於點B,若點B到x軸的距離為2,求直線的解析式。
解:∵ 點B到x軸的距離為2,
∴ 點B的坐標為(0,±2),
設直線的解析式為y=kx±2,
∵ 直線過點A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直線AB的解析式為y= x+2或y=- x-2。

說明:此例看起來很簡單,但實際上隱含了很多推理過程,而這些推理是求一次函數解析式必備的。
(1)圖象是直線的函數是一次函數;
(2)直線與y軸交於B點,則點B(0,yB);
(3)點B到x軸距離為2,則|yB|=2;
(4)點B的縱坐標等於直線解析式的常數項,即b=yB;
(5)已知直線與y軸交點的縱坐標yB,可設y=kx+yB;
下面只需待定k即可。
三、提高與思考
例1.已知一次函數y1=(n-2)x+n的圖象與y軸交點的縱坐標為-1,判斷y2=(3- )xn+2是什麼函數,寫出兩個函數的解析式,並指出兩個函數在直角坐標系中的位置及增減性。
解:依題意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函數;
y1=-3x-1的圖象經過第二、三、四象限,y1隨x的增大而減小;
y2=(3- )x的圖象經過第一、三象限,y2隨x的增大而增大。
說明:由於一次函數的解析式含有待定系數n,故求解析式的關鍵是構造關於n的方程,此題利用「一次函數解析式的常數項就是圖象與y軸交點縱坐標」來構造方程。
例2.已知一次函數的圖象,交x軸於A(-6,0),交正比例函數的圖象於點B,且點B在第三象限,它的橫坐標為-2,△AOB的面積為6平方單位,求正比例函數和一次函數的解析式。
分析:自畫草圖如下:
解:設正比例函數y=kx,
一次函數y=ax+b,
∵ 點B在第三象限,橫坐標為-2,
設B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把點B(-2,-2)代入正比例函數y=kx,得k=1,
把點A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

說明:(1)此例需要利用正比例函數、一次函數定義寫出含待定系數的結構式,注意兩個函數中的系數要用不同字母表示;
(2)此例需要把條件(面積)轉化為點B的坐標。這個轉化實質含有兩步:一是利用面積公式 AO•

BD=6(過點B作BD⊥AO於D)計算出線段長BD=2,再利用|yB|=BD及點B在第三象限計算出yB=-2。若去掉第三象限的條件,想一想點B的位置有幾種可能,結果會有什麼變化?(答:有兩種可能,點B可能在第二象限(-2,2),結果增加一組y=-x, y= (x+3)。 (有答案,自己去看吧)

1 全等三角形的對應邊、對應角相等 ­

2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ­

3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ­

4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ­

5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ­

6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ­

7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ­

8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ­

9 角的平分線是到角的兩邊距離相等的所有點的集合 ­

10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ­

21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ­

22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ­

23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ­

24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ­

25 推論1 三個角都相等的三角形是等邊三角形 ­

26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ­

27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ­

28 直角三角形斜邊上的中線等於斜邊上的一半 ­

29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ­

30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ­

31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ­

32 定理1 關於某條直線對稱的兩個圖形是全等形 ­

33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ­

34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ­

35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ­

36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ­

38定理 四邊形的內角和等於360° ­

39四邊形的外角和等於360° ­

40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ­

41推論 任意多邊的外角和等於360° ­

42平行四邊形性質定理1 平行四邊形的對角相等 ­

43平行四邊形性質定理2 平行四邊形的對邊相等 ­

44推論 夾在兩條平行線間的平行線段相等 ­

45平行四邊形性質定理3 平行四邊形的對角線互相平分 ­

46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ­

47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ­

48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ­

49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ­

50矩形性質定理1 矩形的四個角都是直角 ­

51矩形性質定理2 矩形的對角線相等 ­

52矩形判定定理1 有三個角是直角的四邊形是矩形 ­

53矩形判定定理2 對角線相等的平行四邊形是矩形 ­

54菱形性質定理1 菱形的四條邊都相等 ­

55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ­

56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四邊都相等的四邊形是菱形 ­

58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ­

59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ­

60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ­

61定理1 關於中心對稱的兩個圖形是全等的 ­

62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ­

63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ­

點平分,那麼這兩個圖形關於這一點對稱 ­

64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ­

65等腰梯形的兩條對角線相等 ­

66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ­

67對角線相等的梯形是等腰梯形 ­

68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ­

相等,那麼在其他直線上截得的線段也相等 ­

69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ­

70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ­

三邊 ­

71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ­

的一半 ­

72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ­

一半 L=(a+b)÷2 S=L×h ­

㈢ 初二上冊數學的知識點

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角

㈣ 新人教版八年級數學上知識點總結詳細講解

㈤ 初二上學期數學所有知識點歸納

初二數學知識點
第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀點看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見的統計圖表:條形圖、扇形圖、折線圖、復合條形圖、直方圖,了解各種圖表的特點
條形圖特點:
(1)能夠顯示出每組中的具體數據;
(2)易於比較數據間的差別
扇形圖的特點:
(1)用扇形的面積來表示部分在總體中所佔的百分比;
(2)易於顯示每組數據相對與總數的大小
折線圖的特點;
易於顯示數據的變化趨勢
直方圖的特點:
(1)能夠顯示各組頻數分布的情況;
(2)易於顯示各組之間頻數的差別
2 會用各種統計圖表示出一些實際的問題
第三章 全等三角形
1 全等三角形的性質:
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質
角平分線上的點到角的兩邊的距離相等;
到角的兩邊距離相等的點在角的平分線上。
第四章 軸對稱
1 軸對稱圖形和關於直線對稱的兩個圖形
2 軸對稱的性質
軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連的線段的垂直平分線;
線段垂直平分線上的點到線段兩個端點的距離相等;
到線段兩個端點距離相等的點在這條線段的垂直平分線上
3 用坐標表示軸對稱
點(x,y)關於x軸對稱的點的坐標是(x,-y),關於y軸對稱的點的坐標是(-x,y),關於原點對稱的點的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個底角相等;(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個三角形的兩個相等的角所對的邊也相等。(等角對等邊)
5 等邊三角形的性質和判定
等邊三角形的三個內角都相等,都等於60度;
三個角都相等的三角形是等邊三角形;
有一個角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個銳角是30度,那麼他所對的直角邊等於斜邊的一半。
在三角形中,大角對大邊,大邊對大角。

第五章 整式
1 整式定義、同類項及其合並
2 整式的加減
3 整式的乘法
(1)同底數冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下冊知識點
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差

㈥ 數學八年級上冊知識點,要總結歸納

八年級上冊數學復習提綱
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬

㈦ 初二數學都有哪些知識點

《新初二曹.笑數學秋季培優班(人教版高清視頻)》網路網盤資源下載

鏈接:

提取碼: q2vy

若資源有問題歡迎追問~

㈧ 初二上學期人教版數學重點難點

專題一:函數。包括正比例函數,一次函數,定義,圖像,性質,解析式,常見統計圖表特點等等 專題重點:函數部分在考試中一般考得都是函數的應用,很少有純函數計算的問題,因此大部分學生都需要在函數概念上加深理解,融會貫通,掌握知識的靈活運用。 專題二:全等三角形證明,角平分線的性質判定,軸對稱性質等腰三角形性質判定 專題重點:大多數學生針對這類幾何證明題目都會做簡單分析,但下筆一做就出錯,做題中一般表現出來的邏輯推理過程不嚴密,綜合運用能力差。 我遼寧丹東初三的學生初二剛結束考的什麼也有點印象其實初二上課認真聽講就足夠了 也沒什麼多餘的公式!