A. 高一數學必修1的所有知識點
一、函數的定義域的常用求法:
1、分式的分母不等於零;2、偶次方根的被開方數大於等於零;3、對數的真數大於零;4、指數函數和對數函數的底數大於零且不等於1;5、三角函數正切函數中;餘切函數中;6、如果函數是由實際意義確定的解析式,應依據自變數的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法
三、函數的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法
四、函數的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法
五、函數單調性的常用結論:
1、若均為某區間上的增(減)函數,則在這個區間上也為增(減)函數
2、若為增(減)函數,則為減(增)函數
3、若與的單調性相同,則是增函數;若與的單調性不同,則是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在處有定義,則,如果一個函數既是奇函數又是偶函數,則(反之不成立)
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數和復合而成的函數,只要其中有一個是偶函數,那麼該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數的定義域關於原點對稱,則可以表示為,該式的特點是:右端為一個奇函數和一個偶函數的和。
表1指數函數
對數數函數
定義域
值域
圖象
性質過定點
過定點
減函數增函數減函數增函數
表2冪函數
奇函數
偶函數
第一象限性質減函數增函數過定點
B. 高一數學必修一各章知識點總結
第
1
頁
共
11
頁
高
一
數
學
必
修
1
各
章
知
識
點
總
結
第一章
集合與函數概念
一、集合有關概念
1.
集合的含義
2.
集合的中元素的三個特性:
(1)
元素的確定性如:世界上最高的山
(2)
元素的互異性如:由
HAPPY
的字母組成的集合
{H,A,P,Y}
(3)
元素的無序性
:
如:
{a,b,c}
和
{a,c,b}
是表示同一個集合
3.
集合的表示:
{
…
}
如:
{
我校的籃球隊員
}
,
{
太平洋
,
大西
洋
,
印度洋
,
北冰洋
}
(1)
用拉丁字母表示集合:
A={
我校的籃球隊員
},B={1,2,3,4,5}
(2)
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)
記作:
N
正整數集
N*
或
N+
整數集
Z
有理數集
Q
實數集
R
1
)
列舉法:
{a,b,c
……
}
2
)
描述法:
將集合中的元素的公共屬性描述出來,
寫在大括弧內
表示集合的方法。
{x
R| x-3>2} ,{x| x-3>2}
3
)
語言描述法:例:
{
不是直角三角形的三角形
}
4
)
Venn
圖
:
4
、集合的分類:
(1)
有限集
含有有限個元素的集合
(2)
無限集
含有無限個元素的集合
(3)
空集
不含任何元素的集合
例:
{x|x
2
=
-
5
}
二、集合間的基本關系
1.
‚包含‛關系—子集
注意:
B
A
有兩種可能(
1
)
A
是
B
的一部分,
;
(
2
)
A
與
B
是同
一集合。
反之
:
集合
A
不包含於集合
B,
或集合
B
不包含集合
A,
記作
A
B
或
B
A
2
.
‚相等‛關系:
A=B (5
≥
5
,且
5
≤
5
,則
5=5)
實例:
設
A={x|x
2
-1=0} B={-1,1}
‚元素相同則兩集合相等‛
即:①
任何一個集合是它本身的子集。
A
A
②真子集
:
如果
A
B,
且
A
B
那就說集合
A
是集合
B
的真子集,記
作
A
B(
或
B
A)
③如果
A
B, B
C ,
那麼
A
C
④
如果
A
B
同時
B
A
那麼
A=B
3.
不含任何元素的集合叫做空集,記為
Φ
規定
:
空集是任何集合的子集,
空集是任何非空集合的真子集。
有
n
個元素的集合,含有
2
n
個子集,
2
n-1
個真子集
三、集合的運算
C. 高中數學必修1知識點總結
馬上就要高考了,現在高中數學讓很多孩子頭疼,很多的家長還有孩子都開始著急,他們都在上一些輔導班,都在採取一對一的輔導,對於一對一的教師都是可以抓住孩子的一些弱點,然後還要了解他們的學習過程,還會幫助學生制定一些計劃,幫助他們提高學習的效率,對於高中數學,一定掌握學習的方法,才可以提高成績.高中數學都要學習什麼知識?
高中數學知識
對於高中數學的一些知識,其實還是很簡單的,只要你抓住學習的方法,從中找到樂趣,讓自己喜歡上數學,對你的學習是很有幫助的,至於一對一輔導,其實還是有用的,好的老師會給你講述好的學習方法,然後讓你考一個好成績,拿到滿意的答卷.
D. 高一數學必修一和四的知識點總結
唉,年輕的時候還願意回憶回憶順便打幾個字,孩子你自己總結總結吧,網路文庫挺多這種資料的,但是太全了也沒必要,根據自身情況酌情刪減吧,然後合上回憶下,或者先看教材然後回憶總結(包括題型、方法)
E. 高一數學必修一知識點總結
高一數學必修1第一章知識點總結
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=
韋
恩
圖
示
性
質 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
例題:
1.下列四組對象,能構成集合的是 ( )
A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等於它自身的實數
2.集合{a,b,c }的真子集共有 個
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關系是 .
4.設集合A= ,B= ,若A B,則 的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數的定義域:
⑴ ⑵
2.設函數 的定義域為 ,則函數 的定義域為_ _
3.若函數 的定義域為 ,則函數 的定義域是
4.函數 ,若 ,則 =
6.已知函數 ,求函數 , 的解析式
7.已知函數 滿足 ,則 = 。
8.設 是R上的奇函數,且當 時, ,則當 時 =
在R上的解析式為
9.求下列函數的單調區間:
⑴ (2)
10.判斷函數 的單調性並證明你的結論.
11.設函數 判斷它的奇偶性並且求證: .
F. 高一數學必修一第一章的相關知識梳理
1. 函數概念
函數概念是微積分的基礎,也是本章的重點。理解函數概念需要把握以下幾個方面:
(1)對應法則(規律)和定義域是函數定義中的兩個要素。
因此,兩個函數僅當它們的對應規律和定義域都相同時,才是兩個相同的函數。
(2)關於由解析表達式給出的函數的定義域,分兩種情況:在不考慮函數的實際意義時,約定函數的定義域是使函數的解析表達式有意義的一切實數所構成的數集;在實際問題中,還需根據問題的實際意義來確定。
(3)記號f 和f(x) ,有著本質的區別。
參考資料:http://www.ahtvu.ah.cn/jxc1/zhykch/3103/kfkchhome.files/fx1.htm