當前位置:首頁 » 基礎知識 » 中考數學必考知識點
擴展閱讀
筏板基礎澆好要保養多久 2024-12-29 18:39:46
動漫繪圖師怎麼做 2024-12-29 18:32:27

中考數學必考知識點

發布時間: 2022-02-28 02:09:14

『壹』 初中數學重點是什麼

初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何(我不知道你是哪裡的人,反正在我們山東省濟南市的中考中是這樣的)。 代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的 幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。

『貳』 初中數學中考重點是什麼

《2019傑哥解密中考數學初二春暑沖刺套餐完結》網路網盤免費在線下載

鏈接:

提取碼:CSBH

二次函數的分佔百分之四十五,其他都是初一到初三的基礎,就二次函數拔關,多注意復習!


『叄』 中考數學都考什麼

一、考基礎知識,基本技能,綱本意識強。今年中考題將一如既往地採用基本題型微量的幾何作圖題,分值的分配大致是:代數佔65%,幾何點35%,其中填空選擇題佔70分上下,初三內容為考查的重難點,試題的覆蓋率約佔全卷的55%。日後,發給初三畢業班同學人手一冊的《考綱說明》將有更詳盡的標注,試題一般都是由易到難地編排。

無論哪種題型(大題)的中後期總要設計一兩道尾巴高翹的「斷梁」,下一大題又將重新從易到難,尤其是卷末的綜合壓軸題,激流險灘之中將呈現一派雄渾格調,是制卷者匠心獨具的「戲眼」。所以整個試卷若是一條路,會有五虎擋道,若是一域水,會波瀾起伏。但無論是對知識或能力的考查,都會較多地選擇課本題,或根據課本題改編,緊扣教材,呈現考試的公平性。

二、考數學思想和方法,體現數學素養。

三、考查數學思想。重點考查四種數學思想:方程思想,分類討論,數形結合及化歸思想。由於函數是高中教學內容的核心,從初高中銜接角度考慮,會將函數作為重點內容考查,而且函數思想脈絡中蘊含著極為豐富的數學思想內容,因此歷來是各省中考題中「兵家必爭之地」。

『肆』 中考數學重點

中考數學常用公式及性質
乘法與因式分解
①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;
④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
冪的運算性質
①am×an=am+n;②am÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤()n=;
⑥a-n=,特別:()-n=()n;⑦a0=1(a≠0)。
二次根式
①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
三角不等式
|a|-|b|≤|a±b|≤|a|+|b|(定理);
加強條件:||a|-|b||≤|a±b|≤|a|+|b|也成立,這個不等式也可稱為向量的三角不等式(其中a,b分別為向量a和向量b)
|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;
|a-b|≥|a|-|b|; -|a|≤a≤|a|;
某些數列前n項之和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2 ;
2+4+6+8+10+12+14+…+(2n)=n(n+1); 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;
13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;
一元二次方程
對於方程:ax2+bx+c=0:
①求根公式是x=,其中△=b2-4ac叫做根的判別式。
當△>0時,方程有兩個不相等的實數根;
當△=0時,方程有兩個相等的實數根;
當△<0時,方程沒有實數根.注意:當△≥0時,方程有實數根。
②若方程有兩個實數根x1和x2,則二次三項式ax2+bx+c可分解為a(x-x1)(x-x2)。
③以a和b為根的一元二次方程是x2-(a+b)x+ab=0。
一次函數
一次函數y=kx+b(k≠0)的圖象是一條直線(b是直線與y軸的交點的縱坐標,稱為截距)。
①當k>0時,y隨x的增大而增大(直線從左向右上升);
②當k<0時,y隨x的增大而減小(直線從左向右下降);
③特別地:當b=0時,y=kx(k≠0)又叫做正比例函數(y與x成正比例),圖象必過原點。
反比例函數
反比例函數y=(k≠0)的圖象叫做雙曲線。
①當k>0時,雙曲線在一、三象限(在每一象限內,從左向右降);
②當k<0時,雙曲線在二、四象限(在每一象限內,從左向右上升)。
二次函數
(1).定義:一般地,如果是常數,,那麼叫做的二次函數。
(2).拋物線的三要素:開口方向、對稱軸、頂點。
①的符號決定拋物線的開口方向:當時,開口向上;當時,開口向下;
相等,拋物線的開口大小、形狀相同。
②平行於軸(或重合)的直線記作.特別地,軸記作直線。
(3).幾種特殊的二次函數的圖像特徵如下:
函數解析式 開口方向 對稱軸 頂點坐標
當時
開口向上
當時
開口向下 (軸) (0,0)
(軸) (0, )
(,0)
(,)
()
(4).求拋物線的頂點、對稱軸的方法
①公式法:,∴頂點是,對稱軸是直線。
②配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線。
③運用拋物線的對稱性:由於拋物線是以對稱軸為軸的軸對稱圖形,對稱軸與拋物線的交點是頂點。
若已知拋物線上兩點(及y值相同),則對稱軸方程可以表示為:
(5).拋物線中,的作用
①決定開口方向及開口大小,這與中的完全一樣。
②和共同決定拋物線對稱軸的位置.由於拋物線的對稱軸是直線。
,故:①時,對稱軸為軸;②(即、同號)時,對稱軸在軸左側;③(即、異號)時,對稱軸在軸右側。
③的大小決定拋物線與軸交點的位置。
當時,,∴拋物線與軸有且只有一個交點(0,):
①,拋物線經過原點; ②,與軸交於正半軸;③,與軸交於負半軸.
以上三點中,當結論和條件互換時,仍成立.如拋物線的對稱軸在軸右側,則 。
(6).用待定系數法求二次函數的解析式
①一般式:.已知圖像上三點或三對、的值,通常選擇一般式.
②頂點式:.已知圖像的頂點或對稱軸,通常選擇頂點式。
③交點式:已知圖像與軸的交點坐標、,通常選用交點式:。
(7).直線與拋物線的交點
①軸與拋物線得交點為(0, )。
②拋物線與軸的交點。
二次函數的圖像與軸的兩個交點的橫坐標、,是對應一元二次方程
的兩個實數根.拋物線與軸的交點情況可以由對應的一元二次方程的根的判別式判定:
a有兩個交點()拋物線與軸相交;
b有一個交點(頂點在軸上)()拋物線與軸相切;
c沒有交點()拋物線與軸相離。
③平行於軸的直線與拋物線的交點
同②一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的縱坐標相等,設縱坐標為,則橫坐標是的兩個實數根。
④一次函數的圖像與二次函數的圖像的交點,由方程組 的解的數目來確定:
a方程組有兩組不同的解時與有兩個交點;
b方程組只有一組解時與只有一個交點;
c方程組無解時與沒有交點。
⑤拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,則
統計初步
(1)概念:①所要考察的對象的全體叫做總體,其中每一個考察對象叫做個體.從總體中抽取的一部份個體叫做總體的一個樣本,樣本中個體的數目叫做樣本容量.②在一組數據中,出現次數最多的數(有時不止一個),叫做這組數據的眾數.③將一組數據按大小順序排列,把處在最中間的一個數(或兩個數的平均數)叫做這組數據的中位數.
(2)公式:設有n個數x1,x2,…,xn,那麼:
①平均數為:;
②極差:用一組數據的最大值減去最小值所得的差來反映這組數據的變化范圍,用這種方法得到的差稱為極差,即:極差=最大值-最小值;
③方差:數據、……, 的方差為,
則=
④標准差:方差的算術平方根。
數據、……, 的標准差,
則=
一組數據的方差越大,這組數據的波動越大,越不穩定。
頻率與概率
(1)頻率
頻率=,各小組的頻數之和等於總數,各小組的頻率之和等於1,頻率分布直方圖中各個小長方形的面積為各組頻率。
(2)概率
①如果用P表示一個事件A發生的概率,則0≤P(A)≤1;
P(必然事件)=1;P(不可能事件)=0;
②在具體情境中了解概率的意義,運用列舉法(包括列表、畫樹狀圖)計算簡單事件發生的概率。
③大量的重復實驗時頻率可視為事件發生概率的估計值;
銳角三角形
①設∠A是△ABC的任一銳角,則∠A的正弦:sinA=,∠A的餘弦:cosA=,∠A的正切:tanA=.並且sin2A+cos2A=1。
0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,餘弦值反而越小。
②餘角公式:sin(90º-A)=cosA,cos(90º-A)=sinA。
③特殊角的三角函數值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,
tan30º=,tan45º=1,tan60º=。
④斜坡的坡度:i==.設坡角為α,則i=tanα=。
正(余)弦定理
(1)正弦定理 a/sinA=b/sinB=c/sinC=2R;註:其中 R 表示三角形的外接圓半徑。
正弦定理的變形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c
(2)餘弦定理 b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC;
註:∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
積化和差
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
平面直角坐標系中的有關知識
(1)對稱性:若直角坐標系內一點P(a,b),則P關於x軸對稱的點為P1(a,-b),P關於y軸對稱的點為P2(-a,b),關於原點對稱的點為P3(-a,-b)。
(2)坐標平移:若直角坐標系內一點P(a,b)向左平移h個單位,坐標變為P(a-h,b),向右平移h個單位,坐標變為P(a+h,b);向上平移h個單位,坐標變為P(a,b+h),向下平移h個單位,坐標變為P(a,b-h).如:點A(2,-1)向上平移2個單位,再向右平移5個單位,則坐標變為A(7,1)。
多邊形內角和公式
多邊形內角和公式:n邊形的內角和等於(n-2)180º(n≥3,n是正整數),外角和等於360º
平行線段成比例定理
(1)平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例。
如圖:a∥b∥c,直線l1與l2分別與直線a、b、c相交與點A、B、C和D、E、F,
則有。
(2)推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。如圖:△ABC中,DE∥BC,DE與AB、AC相交與點D、E,則有:

直角三角形中的射影定理
直角三角形中的射影定理:如圖:Rt△ABC中,∠ACB=90o,CD⊥AB於D,
則有:(1)(2)(3)
圓的有關性質
(1)垂徑定理:如果一條直線具備以下五個性質中的任意兩個性質:①經過圓心;②垂直弦;③平分弦;④平分弦所對的劣弧;⑤平分弦所對的優弧,那麼這條直線就具有另外三個性質.註:具備①,③時,弦不能是直徑。
(2)兩條平行弦所夾的弧相等。
(3)圓心角的度數等於它所對的弧的度數。
(4)一條弧所對的圓周角等於它所對的圓心角的一半。
(5)圓周角等於它所對的弧的度數的一半。
(6)同弧或等弧所對的圓周角相等。
(7)在同圓或等圓中,相等的圓周角所對的弧相等。
(8)90º的圓周角所對的弦是直徑,反之,直徑所對的圓周角是90º,直徑是最長的弦。、
(9)圓內接四邊形的對角互補。
三角形的內心與外心
(1)三角形的內切圓的圓心叫做三角形的內心.三角形的內心就是三內角角平分線的交點。
(2)三角形的外接圓的圓心叫做三角形的外心.三角形的外心就是三邊中垂線的交點.
常見結論:①Rt△ABC的三條邊分別為:a、b、c(c為斜邊),則它的內切圓的半徑;
②△ABC的周長為,面積為S,其內切圓的半徑為r,則
弦切角定理及其推論
(1)弦切角:頂點在圓上,並且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:∠PAC為弦切角。
(2)弦切角定理:弦切角度數等於它所夾的弧的度數的一半。
如果AC是⊙O的弦,PA是⊙O的切線,A為切點,則
推論:弦切角等於所夾弧所對的圓周角(作用證明角相等)
如果AC是⊙O的弦,PA是⊙O的切線,A為切點,則
相交弦定理、割線定理和切割線定理
(1)相交弦定理:圓內的兩條弦相交,被交點分成的兩條線段長的積相等。
如圖①,即:PA·PB = PC·PD
(2)割線定理:從圓外一點引圓的兩條割線,這點到每條割線與圓交點的兩條線段長的積相等。如圖②,即:PA·PB = PC·PD
(3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。如圖③,即:PC2 = PA·PB

① ② ③
面積公式

①S正△=×(邊長)2.
 ②S平行四邊形=底×高.
③S菱形=底×高=×(對角線的積),
④
⑤S圓=πR2.
⑥l圓周長=2πR.
⑦弧長L=.
 ⑧
⑨S圓柱側=底面周長×高=2πrh,
S全面積=S側+S底=2πrh+2πr2
⑩S圓錐側=×底面周長×母線=πrb,
S全面積=S側+S底=πrb+πr2

第十四章 圖形的相似
考點一、比例線段 (3分)
1、比例線段的相關概念
如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那麼就說這兩條線段的比是,或寫成a:b=m:n
在兩條線段的比a:b中,a叫做比的前項,b叫做比的後項。
在四條線段中,如果其中兩條線段的比等於另外兩條線段的比,那麼這四條線段叫做成比例線段,簡稱比例線段
若四條a,b,c,d滿足或a:b=c:d,那麼a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內項,線段的d叫做a,b,c的第四比例項。
如果作為比例內項的是兩條相同的線段,即或a:b=b:c,那麼線段b叫做線段a,c的比例中項。
2、比例的性質
(1)基本性質
①a:b=c:dad=bc
②a:b=b:c
(2)更比性質(交換比例的內項或外項)
(交換內項)
(交換外項)
(同時交換內項和外項)
(3)反比性質(交換比的前項、後項):

(4)合比性質:

(5)等比性質:

3、黃金分割
把線段AB分成兩條線段AC,BC(AC>BC),並且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=AB0.618AB
考點二、平行線分線段成比例定理 (3~5分)
三條平行線截兩條直線,所得的對應線段成比例。
推論:
(1)平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。
逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊。
(2)平行於三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。
考點三、相似三角形 (3~8分)
1、相似三角形的概念
對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號「∽」來表示,讀作「相似於」。相似三角形對應邊的比叫做相似比(或相似系數)。
2、相似三角形的基本定理
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。

用數學語言表述如下:
∵DE∥BC,∴△ADE∽△ABC
相似三角形的等價關系:
(1)反身性:對於任一△ABC,都有△ABC∽△ABC;
(2)對稱性:若△ABC∽△A』B』C』,則△A』B』C』∽△ABC
(3)傳遞性:若△ABC∽△A』B』C』,並且△A』B』C』∽△A』』B』』C』』,則△ABC∽△A』』B』』C』』。
3、三角形相似的判定
(1)三角形相似的判定方法
①定義法:對應角相等,對應邊成比例的兩個三角形相似
②平行法:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
③判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似,可簡述為兩角對應相等,兩三角形相似。
④判定定理2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應相等,並且夾角相等,那麼這兩個三角形相似,可簡述為兩邊對應成比例且夾角相等,兩三角形相似。
⑤判定定理3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似,可簡述為三邊對應成比例,兩三角形相似
(2)直角三角形相似的判定方法
①以上各種判定方法均適用
②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。
4、相似三角形的性質
(1)相似三角形的對應角相等,對應邊成比例
(2)相似三角形對應高的比、對應中線的比與對應角平分線的比都等於相似比
(3)相似三角形周長的比等於相似比
(4)相似三角形面積的比等於相似比的平方。
5、相似多邊形
(1)如果兩個邊數相同的多邊形的對應角相等,對應邊成比例,那麼這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數)
(2)相似多邊形的性質
①相似多邊形的對應角相等,對應邊成比例
②相似多邊形周長的比、對應對角線的比都等於相似比
③相似多邊形中的對應三角形相似,相似比等於相似多邊形的相似比
④相似多邊形面積的比等於相似比的平方
6、位似圖形
如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。
性質:每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比都等於位似比。
由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。

『伍』 中考數學知識點復習 總復習資料大全(精華版)

中考數學復習中考沖刺課程-初中數學競賽訓練營(mp4視頻)
鏈接:

提取碼: wwcb
若資源有問題歡迎追問~

『陸』 中考數學哪個知識點考的比較多

絕對值,相反數,科學計數法,三視圖,分式方程解法,一元二次方程解法,不等式解法,一次函數圖像,因式分解,勾股定理,冪的運算,三角函數值,圖形的對稱、平移和旋轉,解直角三角形,一次函數與反比例函數結合,二次函數解析式與圖像,二次函數最值,等腰三角形,等邊三角形,直角三角形,全等三角形,相似三角形,平行四邊形,矩形,菱形,正方形,中垂線,角平分線,圓,概率。

『柒』 初中數學重點有哪些 必考的考點有什麼

你好!
看看以往2、3年的試卷,試題的分類還是有規律可循的。有的甚至題號和題型提醒在不同的試卷中是一樣的。例如第一題一般是考察數字知識的,眾數、中位數、絕對值等等。
如果對你有幫助,望採納。

『捌』 中考數學重點知識歸納內容是什麼

一、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

二、一些基本公式

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三、二元一次方程組

1、二元一次方程

含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。

2、二元一次方程的解

使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。

3、二元一次方程組

兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)

4、二元一次方程組的解

使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。

5、二元一次方程組的解法

四、基本思想:"消元"

解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.

6、三元一次方程

把含有三個未知數,並且含有未知數的項的次數都是1的整式方程。

五、列方程(組)解應用題

注意:千萬不要死記硬背例題的類型及其解法,要具體問題具體分析,一般來講,應按下面的步驟進行:

1、審題:弄清題意和題目中的已知量、未知量,並能找出能夠表示應用問題的全部含義的等量關系。

2、設未知數:選擇一個或幾個適當的未知量,用字母表示,並根據題目的數量關系,用含未知數的代數式表示相關的未知量。

3、列方程(組):根據等量關系列出方程(組)。

4、解方程(組):其過程可以省略,但要注意技巧和方法。

5、檢驗:首先檢查所列方程(組)是否正確,然後檢驗所得方程的解是否符合題意。

6、寫答:不要忘記單位名稱。

7、分式方程的解法

①一般解法:去分母法,即方程兩邊同乘以最簡公分母。

②特殊解法:換元法。

(2)驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。

說明:解分式方程,一般先考慮換元法,再考慮去分母法。

六、相交線中的角

兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。

臨補角互補,對頂角相等。

直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。

七、線段的性質

1、線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。

2、連接兩點的線段的長度,叫做這兩點的距離。

3、線段的中點到兩端點的距離相等。

4、線段的大小關系和它們的長度的大小關系是一致的。

5、線段垂直平分線的性質定理及逆定理

垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

『玖』 中考數學必考知識點有哪些

中考數學必考知識點如下:

1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。

2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。

3、若一個三角形30°內角所對的邊是某一邊的一半,那麼這個三角形是以這條長邊為斜邊的直角三角形。

4、圓錐底面半徑 r=n°/360°L(L為母線長)(r為底面半徑)。

5、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線,AB與⊙O相交,d<r。