當前位置:首頁 » 基礎知識 » 數學必修一知識結構圖
擴展閱讀
亞星教育怎麼樣 2024-12-29 17:52:06
軌道基礎結構是什麼 2024-12-29 17:46:50

數學必修一知識結構圖

發布時間: 2022-02-27 19:03:52

1. 高中數學必修一各章思維導圖

內容如下:

《高中數學必修1》(即《普通高中課程標准實驗教科書·數學必修1·A版》的簡稱)是2007年1月人民教育出版社出版的圖書,作者是人民教育出版社課程教材研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。

本冊包括:集合、函數。

作為這套書的主編,在大家開始用這套書學習數學之前,對於為什麼要學數學、如何才能學好數學等問題,我有一些想法與你們交流。

為什麼要學數學呢?我想從以下兩個方面談談認識。

1.數學是有用的。

2.學數學能提高能力

那麼,如何才能學好數學呢?我想首先應當對數學有一個正確的認識。

1.數學是自然的。

2.數學是清楚的。

在對數學有一個正確認識的基礎上,還需要講究一點點方法。

1.學數學要摸索自己的學習方法。

2.學數學趁年輕。

2. 求高中數學的知識樹,思維導圖,知識結構圖,知識點總結優化記憶法······

這個真不好回答。不過一切回歸課本,按照目錄自己總結效果會好一些。另外還可以藉助資料書。

3. 高中數學必修五第一章知識結構圖

如果你們平時用的練習冊是《創新設計》,那麼你就翻到第17也,就可以看到「本章歸納整合」中的「知識網路了」。

4. 誰那有高中階段數學的知識網路結構圖啊

5. 高中數學知識結構框架圖

原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例

6. 高一數學(集合)知識概念總結--結構圖。

集合
1.集合的概念與表示方法
A.概念~~~~
B.表示方法 a.列舉法 b.描述法 c.圖示法
2.集合間的關系
A.包含---子集與真子集
B.相等
3.集合的運算
A.交集
B.並集
C.補集
4.集合的應用---不等式的解集
A.含絕對值不等式
B.一元二次不等式
C.簡單分式不等式

把上面的畫成網路式,再把書中對應的內容填上就行了.

7. 關於數學的知識結構圖怎麼畫說詳細點。

其實很簡單
就是畫樹狀圖。
你把這學期的章節分別寫出來,然後這章里的重點列出來。
主要就是寫成樹狀圖的形式,也就是結構圖了。


你現在是幾年級啊,小學吧

這種需要自己理解與感悟和書上的知識進行歸納

我給你個參考圖

按這個來吧

不懂再問,望採納!

8. 高中數學必修一第二章的知識結構圖 急~~~~~~~

《圓錐曲線》知識結構 二次曲線與直線的關系C:A1x2+C1y2+Dx+Ey+F=0

(A1C1不全為0)

l:A2x+B2y+C2=0

(A1、B2不全為0)

概念:

定義:

圖形:

方程:

性質:

[

范圍:

中心:

焦點:

頂點:

對稱軸:

准線:

漸近線

離心率:

焦准距:

焦半徑:

通徑:

[

相離

相切

相交



MC=r(r>0)

(x-x0)2+(y-y0)2=r2(r>0)

x2+y2+Dx+Ey+F=0

(D2+E2-4F>0)

x0-4≤x≤x0+r,y0-r≤y≤y0+r

C(x0,y0)

y-y0=k(x-x0)(k∈R)

及x=x0

d>r,或<0

d=r,或=0

過圓x2+y2=r2上點M(x,y)的切線方程

x1x+y1y=r2

d0

弦長l=2=

(θ∈R)

橢圓

MF1+MF2=2a(0

=e(0

+=1(a>b>0) +=1(a>b>0)

-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a

0(0,0)

F1(-C,O)、F2(C,O) F1(O,-C)、F2(O,C)

C=

F1F2=2C

A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)、

B1(0,-b)、B2(0,b) B1(-b,0)、B2(b,0)

x=0,y=0

A1A2=2a,B1B2=2b

l1:x=-,l2:x= l1:y=,l2:y=a

e(0

FK=

r1=e(x+)、r2=e(-x) r1=e(y+)、r2=e(-y)

P1P2=

<0

=0

>0

弦長l=

(θ∈R)

雙曲線

MF1-MF2=2a(0<2a

=e(e>1,MN⊥l於N,Fl)

-=1(a>0,b>0) -=1(a>0,b>0)

x≤-a或x≥a,y∈R x∈R,y≤-a或y≥a

0(0,0)

F1(-C,0)、F2(C,0) F1(0,-C)、F2(0,C)

C=

F1F2=2c

A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)

x=0,y=0

A1A2=2a,B1B2=2b

l1:x=-,l2:x= l1:y=,l2:y=

y=x、y=x y=x、y=-x

e(e<1)

FK= r1=ex+,r2=ex-,

r1=ey+,r2=ey-
P1P2= <0 =0 >0 弦長l= 拋物線 =e(e=1,MN⊥l於N,Fl)

y2=2px(p>0) y2=-2px(p>0)

x2=2py(p>0) x2=-2py(p>0)

x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0F(,0) F(-,0) F(0,)F(0,-) 0(0,0) y=0 x=0 l:x=- l:x= l:y=- l:y= e=1FK=pMF=x+ MF=-x MF=y+ MF=-y P1P2=2P <0 =0 >0 弦長l= 焦點弦長l=x1+x2+p l=p-x1-x2 l=y1+y2+p l=p-y1-y2

9. 高一數學必修一第一章的相關知識梳理

1. 函數概念

函數概念是微積分的基礎,也是本章的重點。理解函數概念需要把握以下幾個方面:

(1)對應法則(規律)和定義域是函數定義中的兩個要素。

因此,兩個函數僅當它們的對應規律和定義域都相同時,才是兩個相同的函數。

(2)關於由解析表達式給出的函數的定義域,分兩種情況:在不考慮函數的實際意義時,約定函數的定義域是使函數的解析表達式有意義的一切實數所構成的數集;在實際問題中,還需根據問題的實際意義來確定。

(3)記號f 和f(x) ,有著本質的區別。
參考資料:http://www.ahtvu.ah.cn/jxc1/zhykch/3103/kfkchhome.files/fx1.htm