『壹』 奧數知識點有那些
一、 計算
1. 四則混合運算繁分數
⑴ 運算順序
⑵ 分數、小數混合運算技巧
一般而言:
① 加減運算中,能化成有限小數的統一以小數形式;
② 乘除運算中,統一以分數形式。
⑶帶分數與假分數的互化
⑷繁分數的化簡
2. 簡便計算
⑴湊整思想
⑵基準數思想
⑶裂項與拆分
⑷提取公因數
⑸商不變性質
⑹改變運算順序
① 運算定律的綜合運用
② 連減的性質
③ 連除的性質
④ 同級運算移項的性質
⑤ 增減括弧的性質
⑥ 變式提取公因數
形如:
3. 估算
求某式的整數部分:擴縮法
4. 比較大小
① 通分
a. 通分母
b. 通分子
② 跟「中介」比
③ 利用倒數性質
若 ,則c>b>a.。形如: ,則 。
5. 定義新運算
6. 特殊數列求和
運用相關公式:
①
②
③
④
⑤
⑥
⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 數論
1. 奇偶性問題
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原則
形如: =100a+10b+c
3. 數的整除特徵:
整除數 特 征
2 末尾是0、2、4、6、8
3 各數位上數字的和是3的倍數
5 末尾是0或5
9 各數位上數字的和是9的倍數
11 奇數位上數字的和與偶數位上數字的和,兩者之差是11的倍數
4和25 末兩位數是4(或25)的倍數
8和125 末三位數是8(或125)的倍數
7、11、13 末三位數與前幾位數的差是7(或11或13)的倍數
4. 整除性質
① 如果c|a、c|b,那麼c|(a b)。
② 如果bc|a,那麼b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那麼bc|a。
④ 如果c|b,b|a,那麼c|a.
⑤ a個連續自然數中必恰有一個數能被a整除。
5. 帶余除法
一般地,如果a是整數,b是整數(b≠0),那麼一定有另外兩個整數q和r,0≤r<b,使得a=b×q+r
當r=0時,我們稱a能被b整除。
當r≠0時,我們稱a不能被b整除,r為a除以b的余數,q為a除以b的不完全商(亦簡稱為商)。用帶余數除式又可以表示為a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一個大於1的自然數n都可以寫成質數的連乘積,即
n= p1 × p2 ×...×pk
7. 約數個數與約數和定理
設自然數n的質因子分解式如n= p1 × p2 ×...×pk 那麼:
n的約數個數:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有約數和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同餘定理
① 同餘定義:若兩個整數a,b被自然數m除有相同的余數,那麼稱a,b對於模m同餘,用式子表示為a≡b(mod m)
②若兩個數a,b除以同一個數c得到的余數相同,則a,b的差一定能被c整除。
③兩數的和除以m的余數等於這兩個數分別除以m的余數和。
④兩數的差除以m的余數等於這兩個數分別除以m的余數差。
⑤兩數的積除以m的余數等於這兩個數分別除以m的余數積。
9.完全平方數性質
①平方差: A -B =(A+B)(A-B),其中我們還得注意A+B, A-B同奇偶性。
②約數:約數個數為奇數個的是完全平方數。
約數個數為3的是質數的平方。
③質因數分解:把數字分解,使他滿足積是平方數。
④平方和。
10.孫子定理(中國剩餘定理)
11.輾轉相除法
12.數論解題的常用方法:
枚舉、歸納、反證、構造、配對、估計
三、 幾何圖形
1. 平面圖形
⑴多邊形的內角和
N邊形的內角和=(N-2)×180°
⑵等積變形(位移、割補)
① 三角形內等底等高的三角形
② 平行線內等底等高的三角形
③ 公共部分的傳遞性
④ 極值原理(變與不變)
⑶三角形面積與底的正比關系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性質(份數、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不變原理
知5-2=3,則圓點比方點多3。
⑺隱含條件的等價代換
例如弦圖中長短邊長的關系。
⑻組合圖形的思考方法
① 化整為零
② 先補後去
③ 正反結合
2. 立體圖形
⑴規則立體圖形的表面積和體積公式
⑵不規則立體圖形的表面積
整體觀照法
⑶體積的等積變形
①水中浸放物體:V升水=V物
②測啤酒瓶容積:V=V空氣+V水
⑷三視圖與展開圖
最短線路與展開圖形狀問題
⑸染色問題
幾面染色的塊數與「芯」、棱長、頂點、面數的關系。
四、 典型應用題
1. 植樹問題
①開放型與封閉型
②間隔與株數的關系
2. 方陣問題
外層邊長數-2=內層邊長數
(外層邊長數-1)×4=外周長數
外層邊長數2-中空邊長數2=實面積數
3. 列車過橋問題
①車長+橋長=速度×時間
②車長甲+車長乙=速度和×相遇時間
③車長甲+車長乙=速度差×追及時間
列車與人或騎車人或另一列車上的司機的相遇及追及問題
車長=速度和×相遇時間
車長=速度差×追及時間
4. 年齡問題
差不變原理
5. 雞兔同籠
假設法的解題思想
6. 牛吃草問題
原有草量=(牛吃速度-草長速度)×時間
7. 平均數問題
8. 盈虧問題
分析差量關系
9. 和差問題
10. 和倍問題
11. 差倍問題
12. 逆推問題
還原法,從結果入手
13. 代換問題
列表消元法
等價條件代換
五、 行程問題
1. 相遇問題
路程和=速度和×相遇時間
2. 追及問題
路程差=速度差×追及時間
3. 流水行船
順水速度=船速+水速
逆水速度=船速-水速
船速=(順水速度+逆水速度)÷2
水速=(順水速度-逆水速度)÷2
4. 多次相遇
線型路程: 甲乙共行全程數=相遇次數×2-1
環型路程: 甲乙共行全程數=相遇次數
其中甲共行路程=單在單個全程所行路程×共行全程數
5. 環形跑道
6. 行程問題中正反比例關系的應用
路程一定,速度和時間成反比。
速度一定,路程和時間成正比。
時間一定,路程和速度成正比。
7. 鍾面上的追及問題。
① 時針和分針成直線;
② 時針和分針成直角。
8. 結合分數、工程、和差問題的一些類型。
9. 行程問題時常運用「時光倒流」和「假定看成」的思考方法。
六、 計數問題
1. 加法原理:分類枚舉
2. 乘法原理:排列組合
3. 容斥原理:
① 總數量=A+B+C-(AB+AC+BC)+ABC
② 常用:總數量=A+B-AB
4. 抽屜原理:
至多至少問題
5. 握手問題
在圖形計數中應用廣泛
① 角、線段、三角形,
② 長方形、梯形、平行四邊形
③ 正方形
七、 分數問題
1. 量率對應
2. 以不變數為「1」
3. 利潤問題
4. 濃度問題
倒三角原理
例:
5. 工程問題
① 合作問題
② 水池進出水問題
6. 按比例分配
八、 方程解題
1. 等量關系
① 相關聯量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恆等變形
2. 二元一次方程組的求解
代入法、消元法
3. 不定方程的分析求解
以系數大者為試值角度
4. 不等方程的分析求解
九、 找規律
⑴周期性問題
① 年月日、星期幾問題
② 余數的應用
⑵數列問題
① 等差數列
通項公式 an=a1+(n-1)d
求項數: n=
求和: S=
② 等比數列
求和: S=
③ 裴波那契數列
⑶策略問題
① 搶報30
② 放硬幣
⑷最值問題
① 最短線路
a.一個字元陣組的分線讀法
b.在格子路線上的最短走法數
② 最優化問題
a.統籌方法
b.烙餅問題
十、 算式謎
1. 填充型
2. 替代型
3. 填運算符號
4. 橫式變豎式
5. 結合數論知識點
十一、 數陣問題
1. 相等和值問題
2. 數列分組
⑴知行列數,求某數
⑵知某數,求行列數
3. 幻方
⑴奇階幻方問題:
楊輝法 羅伯法
⑵偶階幻方問題:
雙偶階:對稱交換法
單偶階:同心方陣法
十二、 二進制
1. 二進制計數法
① 二進制位值原則
② 二進制數與十進制數的互相轉化
③ 二進制的運算
2. 其它進制(十六進制)
十三、 一筆畫
1. 一筆畫定理:
⑴一筆畫圖形中只能有0個或兩個奇點;
⑵兩個奇點進必須從一個奇點進,另一個奇點出;
2. 哈密爾頓圈與哈密爾頓鏈
3. 多筆畫定理
筆畫數=
十四、 邏輯推理
1. 等價條件的轉換
2. 列表法
3. 對陣圖
競賽問題,涉及體育比賽常識
十五、 火柴棒問題
1. 移動火柴棒改變圖形個數
2. 移動火柴棒改變算式,使之成立
十六、 智力問題
1. 突破思維定勢
2. 某些特殊情境問題
十七、 解題方法
(結合雜題的處理)
1. 代換法
2. 消元法
3. 倒推法
4. 假設法
5. 反證法
6. 極值法
7. 設數法
8. 整體法
9. 畫圖法
10. 列表法
11. 排除法
12. 染色法
13. 構造法
14. 配對法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
『貳』 小學生奧數知識點總結
《最全小學奧數知識要點.doc》網路網盤資源免費下載
鏈接:https://pan..com/s/1Psg71xfW5w15QYyWFOK20A
『叄』 奧數都學習什麼
數學方面的延伸知識,鍛煉孩子大腦,提高計算能力。
『肆』 求小學奧數知識的歸類整理.
小學奧數理論知識總結(簡單)
1、和差倍問題
2、年齡問題的三個基本特徵:
①兩個人的年齡差是不變的;
②兩個人的年齡是同時增加或者同時減少的;
③兩個人的年齡的倍數是發生變化的;
3、歸一問題的基本特點
問題中有一個不變的量,一般是那個「單一量」,題目一般用「照這樣的速度」……等詞語來表示。
關鍵問題:根據題目中的條件確定並求出單一量;
4、植樹問題
5、雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;
基本思路:
①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
②假設後,發生了和題目條件不同的差,找出這個差是多少;
③每個事物造成的差是固定的,從而找出出現這個差的原因;
④再根據這兩個差作適當的調整,消去出現的差。
基本公式:
①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關鍵問題:找出總量的差與單位量的差。
6、盈虧問題
基本概念:一定量的對象,按照某種標准分組,產生一種結果:按照另一種標准分組,又產生一種結果,由於分組的標准不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量、
基本思路:先將兩種分配方案進行比較,分析由於標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然後根據題意求出對象的總量、
基本題型:
①一次有餘數,另一次不足;
基本公式:總份數=(余數+不足數)÷兩次每份數的差
②當兩次都有餘數;
基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差
③當兩次都不足;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點:對象總量和總的組數是不變的。
關鍵問題:確定對象總量和總的組數。
7、牛吃草問題
基本思路:假設每頭牛吃草的速度為「1」份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);
總草量=較長時間×長時間牛頭數-較長時間×生長量;
8、周期循環與數表規律
周期現象:事物在運動變化的過程中,某些特徵有規律循環出現。
周期:我們把連續兩次出現所經過的時間叫周期。
關鍵問題:確定循環周期。
閏 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9、平均數
基本公式:①平均數=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
②平均數=基準數+每一個數與基準數差的和÷總份數
基本演算法:
①求出總數量以及總份數,利用基本公式①進行計算.
②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標准,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最後求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②。
10、抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那麼必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那麼就有以下四種情況:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發現一個共同特點:總有那麼一個抽屜里有2個或多於2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那麼必有一個抽屜至少有:
①k=[n/m ]+1個物體:當n不能被m整除時。
②k=n/m個物體:當n能被m整除時。
理解知識點:[X]表示不超過X的最大整數。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而後依據抽屜原則進行運算。
小學奧數理論知識總結(復雜)
循環小數
一、把循環小數的小數部分化成分數的規則
①純循環小數小數部分化成分數:將一個循環節的數字組成的數作為分子,分母的各位都是9,9的個數與循環節的位數相同,最後能約分的再約分。
②混循環小數小數部分化成分數:分子是第二個循環節以前的小數部分的數字組成的數與不循環部分的數字所組成的數之差,分母的頭幾位數字是9,9的個數與一個循環節的位數相同,末幾位是0,0的個數與不循環部分的位數相同。
二、分數轉化成循環小數的判斷方法:
①一個最簡分數,如果分母中既含有質因數2和5,又含有2和5以外的質因數,那麼這個分數化成的小數必定是混循環小數。
②一個最簡分數,如果分母中只含有2和5以外的質因數,那麼這個分數化成的小數必定是純循環小數。
不定方程
一次不定方程:含有兩個未知數的一個方程,叫做二元一次方程,由於它的解不唯一,所以也叫做二元一次不定方程;
常規方法:觀察法、試驗法、枚舉法;
多元不定方程:含有三個未知數的方程叫三元一次方程,它的解也不唯一;
多元不定方程解法:根據已知條件確定一個未知數的值,或者消去一個未知數,這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可;
涉及知識點:列方程、數的整除、大小比較;
解不定方程的步驟:1、列方程;2、消元;3、寫出表達式;4、確定范圍;5、確定特徵;6、確定答案;
技巧總結:A、寫出表達式的技巧:用特徵不明顯的未知數表示特徵明顯的未知數,同時考慮用范圍小的未知數表示範圍大的未知數;B、消元技巧:消掉范圍大的未知數;
簡單方程
代數式:用運算符號(加減乘除)連接起來的字母或者數字。
方程:含有未知數的等式叫方程。
列方程:把兩個或幾個相等的代數式用等號連起來。
列方程關鍵問題:用兩個以上的不同代數式表示同一個數。
等式性質:等式兩邊同時加上或減去一個數,等式不變;等式兩邊同時乘以或除以一個數(除0),等式不變。
移項:把數或式子改變符號後從方程等號的一邊移到另一邊;
移項規則:先移加減,後變乘除;先去大括弧,再去中括弧,最後去小括弧。
加去括弧規則:在只有加減運算的算式里,如果括弧前面是「+」號,則添、去括弧,括弧裡面的運算符號都不變;如果括弧前面是「-」號,添、去括弧,括弧裡面的運算符號都要改變;括弧裡面的數前沒有「+」或「-」的,都按有「+」處理。
移項關鍵問題:運用等式的性質,移項規則,加、去括弧規則。
乘法分配率:a(b+c)=ab+ac
解方程步驟:①去分母;②去括弧;③移項;④合並同類項;⑤求解;
方程組:幾個二元一次方程組成的一組方程。
解方程組的步驟:①消元;②按一元一次方程步驟。
消元的方法:①加減消元;②代入消元。
經濟問題
利潤的百分數=(賣價-成本)÷成本×100%;
賣價=成本×(1+利潤的百分數);
成本=賣價÷(1+利潤的百分數);
商品的定價按照期望的利潤來確定;
定價=成本×(1+期望利潤的百分數);
本金:儲蓄的金額;
利率:利息和本金的比;
利息=本金×利率×期數;
含稅價格=不含稅價格×(1+增值稅稅率);
牛吃草問題
基本思路:假設每頭牛吃草的速度為「1」份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);
總草量=較長時間×長時間牛頭數-較長時間×生長量;
工程問題
基本公式:
①工作總量=工作效率×工作時間
②工作效率=工作總量÷工作時間
③工作時間=工作總量÷工作效率
基本思路:
①假設工作總量為「1」(和總工作量無關);
②假設一個方便的數為工作總量(一般是它們完成工作總量所用時間的最小公倍數),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.
關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。
經驗簡評:合久必分,分久必合。
余數、同餘與周期
一、同餘的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(modm),讀作a同餘於b模m。
二、同餘的性質:
①自身性:a≡a(modm);
②對稱性:若a≡b(modm),則b≡a(modm);
③傳遞性:若a≡b(modm),b≡c(modm),則a≡c(modm);
④和差性:若a≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);
⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm);
⑥乘方性:若a≡b(modm),則an≡bn(modm);
⑦同倍性:若a≡b(modm),整數c,則a×c≡b×c(modm×c);
三、關於乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除後的余數特徵:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod9)或(mod3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(modp)。
余數及其應用
基本概念:對任意自然數a、b、q、r,如果使得a÷b=q……r,且0<r<b,那麼r叫做a除以b的余數,q叫做a除以b的不完全商。
余數的性質:
①余數小於除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數。
『伍』 奧數的小知識
解:原式=(2a-1-b)x^4+(5a+b-13)x^3-13x^2+2x+2021因為是二次多項式,所以2a-1-b=0 5a+b-13=0所以a=2 b=3所以a^2+b^2=13
『陸』 小學奧數有哪些知識點
16.約數與倍數
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
最大公約數的性質:
1、 幾個數都除以它們的最大公約數,所得的幾個商是互質數。
2、 幾個數的最大公約數都是這幾個數的約數。
3、 幾個數的公約數,都是這幾個數的最大公約數的約數。
4、 幾個數都乘以一個自然數m,所得的積的最大公約數等於這幾個數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那麼12和18的公約數有:1、2、3、6;
那麼12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質因數法:先分解質因數,然後把相同的因數連乘起來。
2、短除法:先找公有的約數,然後相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。
公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那麼12和18的公倍數有:36、72、108……;
那麼12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質:
1、兩個數的任意公倍數都是它們最小公倍數的倍數。
2、兩個數最大公約數與最小公倍數的乘積等於這兩個數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法
17.數的整除
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有餘數,那麼叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號「|」,不能整除符號「」;因為符號「∵」,所以的符號「∴」;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個數位上數字的和能被3、9整除。
5. 能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。
②逐次去掉最後一位數字並減去末位數字的2倍後能被7整除。
6. 能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最後一位數字並減去末位數字後能被11整除。
7. 能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最後一位數字並減去末位數字的9倍後能被13整除。
三、整除的性質:
1. 如果a、b能被c整除,那麼(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那麼a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那麼a也能被c整除。
4. 如果a能被b、c整除,那麼a也能被b和c的最小公倍數整除。
18.余數及其應用
基本概念:對任意自然數a、b、q、r,如果使得a÷b=q……r,且0< p>
余數的性質:
①余數小於除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數。
19.余數、同餘與周期
一、同餘的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(mod m),讀作a同餘於b模m。
二、同餘的性質:
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關於乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除後的余數特徵:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(mod p)。
20.分數與百分數的應用
基本概念與性質:
分數:把單位「1」平均分成幾份,表示這樣的一份或幾份的數。
分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。
分數單位:把單位「1」平均分成幾份,表示這樣一份的數。
百分數:表示一個數是另一個數百分之幾的數。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的量與它所佔的率的直接對應關系。
③轉化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標准(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標准為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然後再進行調整,求出最後結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發生變化,總量不變。B、總量發生變化,但其中有的分量不變。C、總量和分量都發生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規律進行處理。
⑧濃度配比法:一般應用於總量和分量都發生變化的狀況。
21.分數大小的比較
基本方法:
①通分分子法:使所有分數的分子相同,根據同分子分數大小和分母的關系比較。
②通分分母法:使所有分數的分母相同,根據同分母分數大小和分子的關系比較。
③基準數法:確定一個標准,使所有的分數都和它進行比較。
④分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數值越大。
⑤倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數的大小。(具體運用見同倍率變化規律)
⑥轉化比較方法:把所有分數轉化成小數(求出分數的值)後進行比較。
⑦倍數比較法:用一個數除以另一個數,結果得數和1進行比較。
⑧大小比較法:用一個分數減去另一個分數,得出的數和0比較。
⑨倒數比較法:利用倒數比較大小,然後確定原數的大小。
⑩基準數比較法:確定一個基準數,每一個數與基準數比較。
22.分數拆分
一、 將一個分數單位分解成兩個分數之和的公式:
① =+;
②=+(d為自然數);
23.完全平方數
完全平方數特徵:
1. 末位數字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3餘0或餘1;反之不成立。
3. 除以4餘0或餘1;反之不成立。
4. 約數個數為奇數;反之成立。
5. 奇數的平方的十位數字為偶數;反之不成立。
6. 奇數平方個位數字是奇數;偶數平方個位數字是偶數。
7. 兩個相臨整數的平方之間不可能再有平方數。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號後面的數叫比的後項。
比值:比的前項除以後項的商,叫做比值。
比的性質:比的前項和後項同時乘以或除以相同的數(零除外),比值不變。
比例:表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質:兩個外項積等於兩個內項積(交叉相乘),ad=bc。
正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:圖上距離與實際距離的比叫做比例尺。
按比例分配:把幾個數按一定比例分成幾份,叫按比例分配。
25.綜合行程
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
26.工程問題
基本公式:
①工作總量=工作效率×工作時間
②工作效率=工作總量÷工作時間
③工作時間=工作總量÷工作效率
基本思路:
①假設工作總量為「1」(和總工作量無關);
②假設一個方便的數為工作總量(一般是它們完成工作總量所用時間的最小公倍數),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.
關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。
經驗簡評:合久必分,分久必合。
27.邏輯推理
基本方法簡介:
①條件分析—假設法:假設可能情況中的一種成立,然後按照這個假設去判斷,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,那麼與他的相反情況是成立的。例如,假設a是偶數成立,在判斷過程中出現了矛盾,那麼a一定是奇數。
②條件分析—列表法:當題設條件比較多,需要多次假設才能完成時,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內的題設情況,運用邏輯規律進行判斷。
③條件分析——圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,有連線則表示「是,有」等肯定的狀態,沒有連線則表示否定的狀態。例如A和B兩人之間有認識或不認識兩種狀態,有連線表示認識,沒有表示不認識。
④邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據計算的結果為推理提供一個新的判斷篩選條件。
⑤簡單歸納與推理:根據題目提供的特徵和數據,分析其中存在的規律和方法,並從特殊情況推廣到一般情況,並遞推出相關的關系式,從而得到問題的解決。
28.幾何面積
基本思路:
在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉、翻折、分解、變形、重疊等,使不規則的圖形變為規則的圖形進行計算;另外需要掌握和記憶一些常規的面積規律。
常用方法:
1. 連輔助線方法
2. 利用等底等高的兩個三角形面積相等。
3. 大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。
4. 利用特殊規律
①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等於等腰直角三角形的面積)
②梯形對角線連線後,兩腰部分面積相等。
③圓的面積占外接正方形面積的78.5%。
29.立體圖形
名稱 圖形 特徵 表面積 體積
長
方
體 8個頂點;6個面;相對的面相等;12條棱;相對的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正
方
體 8個頂點;6個面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3
圓
柱
體 上下兩底是平行且相等的圓;側面展開後是長方形; S=S側+2S底
S側=Ch V=Sh
圓
錐
體 下底是圓;只有一個頂點;l:母線,頂點到底圓周上任意一點的距離; S=S側+S底
S側=rl V=Sh
球
體 圓心到圓周上任意一點的距離是球的半徑。 S=4r2 V=r3
30.時鍾問題—快慢表問題
基本思路:
1、 按照行程問題中的思維方法解題;
2、 不同的表當成速度不同的運動物體;
3、 路程的單位是分格(表一周為60分格);
4、 時間是標准表所經過的時間;
合理利用行程問題中的比例關系;